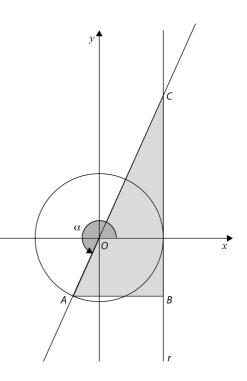
	Teste de Matemática A
	2022 / 2023
Teste N.º 2	
Matemática A	
Duração do Teste: 90 minutos	
11.º Ano de Escolaridade	
Nome do aluno:	N.º: Turma:
Utilize apenas caneta ou esferográfica de tinta azul	ou preta.
Não é permitido o uso de corretor. Risque aquilo qu	ue pretende que não seja classificado.
É permitido o uso de calculadora. Apresente apenas uma resposta para cada item.	
As cotações dos itens encontram-se no final do enu	unciado.
Na resposta aos itens de escolha múltipla, selecion respostas, o número do item e a letra que identifica	• •
Na resposta aos restantes itens, apresente todos os justificações necessárias. Quando, para um resu	•

apresente sempre o valor exato.

- **1.** Na figura estão representados, num referencial o.n. 0xy, a circunferência trigonométrica e o triângulo [ABC]. Sabe-se que:
 - ullet a reta r é tangente à circunferência no ponto de coordenadas (1,0);
 - ullet o ponto A pertence ao terceiro quadrante e à circunferência;
 - o ponto B é o ponto da reta r com ordenada igual à do ponto A;
 - o ponto *C* é o ponto de interseção da reta *r* com a reta *OA*;
 - α é a amplitude, em radianos, do ângulo orientado que tem por lado origem o semieixo positivo Ox e por lado extremidade a semirreta $\dot{O}A$, $\alpha \in \left]\pi, \frac{3\pi}{2}\right[$.



1.1. Mostre que a área do triângulo [ABC] pode ser dada, em função de α , por:

$$A(\alpha) = \frac{\operatorname{sen} \alpha}{2} \left(-2 + \cos \alpha + \frac{1}{\cos \alpha} \right)$$

1.2. Para uma certa posição do ponto A, sabe-se que $\cos\left(-\frac{\pi}{2} - \alpha\right) = \frac{3}{5}$.

Sem recurso à calculadora, determine, para essa posição do ponto A, o valor exato da área do triângulo [ABC]. Apresente o resultado sob a forma de fração irredutível.

1.3. Considere, para um certo valor de α_1 (compreendido entre $\frac{9\pi}{8}$ e $\frac{11\pi}{8}$), a área do triângulo [ABC]. Sabe-se que, quando esse valor de α_1 aumenta $\frac{\pi}{8}$ radianos, a área do triângulo [ABC]triplica.

Determine, recorrendo às capacidades gráficas da calculadora, o valor de α_{1} , sabendo que no intervalo considerado esse valor existe e é único.

Apresente o resultado com aproximação às centésimas.

Na sua resposta:

- apresente uma equação que lhe permita resolver o problema;
- reproduza, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora que lhe permite(m) resolver a equação, e apresente as coordenadas do(s) ponto(s) relevante(s) arredondadas às centésimas.

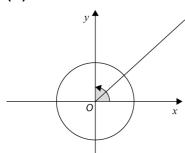
2. De dois ângulos, de amplitudes α e β , sabe-se que $\alpha \in \left] -\frac{3\pi}{2}, -\pi\right[$ e $\beta \in \left] \frac{3\pi}{2}, 2\pi\right[$.

Então, pode afirmar-se que:

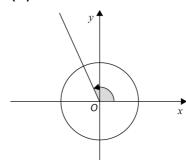
- **(A)** sen $\alpha \times \cos \beta < 0$
- **(B)** $tg \alpha \times tg \beta < 0$
- (C) $\cos \alpha + \sin \beta > 0$
- **(D)** $\operatorname{sen} \alpha \operatorname{sen} \beta > 0$
- 3. Em cada uma das figuras seguintes, está representado, na circunferência trigonométrica, o lado extremidade de um ângulo cujo lado origem é o semieixo positivo 0x.

Em qual das figuras esse ângulo pode ter 4 radianos de amplitude?

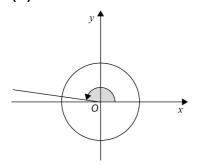
(A)



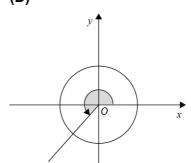
(B)



(C)



(D)



4. Seja $\alpha \in]-\pi, 0[$.

Sabe-se que $tg(\pi - \alpha) = -2$.

Determine, o mais simplificado possível, o valor exato de:

$$\cos(-\pi - \alpha) - tg(-\alpha) + \sin\left(\frac{\pi}{2} - \alpha\right) + \cos\left(\alpha + \pi\right)$$

5. Considere a função f definida por:

$$f(x) = \frac{1}{1 - \lg^2(2x)}$$

Considere as seguintes proposições:

- (I) $D_f = \mathbb{R} \setminus \left\{ x : x = \frac{\pi}{4} + \frac{k\pi}{2} \lor x = \frac{\pi}{8} + \frac{k\pi}{4}, k \in \mathbb{Z} \right\}.$
- (II) $\frac{\pi}{2}$ é período da função f.

Em relação às proposições anteriores, podemos afirmar que:

- (A) são ambas verdadeiras.
- (B) são ambas falsas.
- (C) apenas (I) é verdadeira.
- (D) apenas (II) é verdadeira.
- **6.** Considere a função f, de domínio $\mathbb{R}\setminus \left\{x: x=\frac{\pi}{2}+k\pi, \ k\in\mathbb{Z}\right\}$, definida por:

$$f(x) = (\cos x + \lg x)^2 + (1 - \sin x)^2$$

Utilizando processos exclusivamente analíticos, resolva as alíneas seguintes.

6.1. Mostre que:

$$\forall x \in D_f, f(x) = 1 + \frac{1}{\cos^2 x}$$

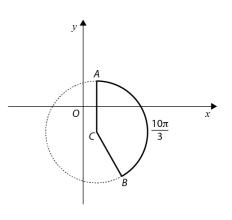
- **6.2.** Estude a função f quanto à paridade.
- **6.3.** Resolva, em $\mathbb{R}\setminus \left\{x: x=\frac{\pi}{2}+k\pi, k\in\mathbb{Z}\right\}$, a equação f(x)=3.
- 7. Na figura está representada, em referencial o.n. Oxy, a circunferência de equação:

$$x^2 - 2x + y^2 + 4y = 11$$

Sabe-se que:

- o ponto C é o centro da circunferência;
- A e B são dois pontos da circunferência;
- o arco de circunferência AB tem comprimento $\frac{10\pi}{3}$.

Determine o valor do produto escalar $\overrightarrow{CA} \cdot \overrightarrow{BC}$.



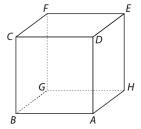
- **8.** Considere, num referencial o.n. 0xy, uma reta r de inclinação α . Sabe-se que $\cos \alpha = -\frac{1}{\sqrt{10}}$. Qual pode ser a equação reduzida de uma reta perpendicular à reta r?
 - **(A)** y = 3x

- **(B)** y = -3x **(C)** $y = \frac{1}{3}x$ **(D)** $y = -\frac{1}{3}x$
- **9.** Na figura está representado o cubo [ABCDEFGH].

Fixado um determinado referencial o.n. *0xyz*, tem-se:

- $E(7,11,4) \in F(10,5,6)$;
- a reta BD definida pela equação:

$$(x, y, z) = (3, -9, -1) + k(-1, 9, 4), k \in \mathbb{R}$$



- 9.1. Qual das equações seguintes define uma reta perpendicular à reta BD e que passa no ponto F?
 - **(A)** $(x, y, z) = (10, 5, 6) + k(-4, 0, 1), k \in \mathbb{R}$
 - **(B)** $(x, y, z) = (10, 5, 6) + k(-6, 2, 3), k \in \mathbb{R}$
 - (C) $(x, y, z) = (7, 2, 0) + k(-1, -1, 2), k \in \mathbb{R}$
 - **(D)** $(x, y, z) = (-16, 3, 4) + k(13, 1, 1), k \in \mathbb{R}$
- **9.2.** Resolva este item sem recorrer à calculadora. Determine as coordenadas do vetor \overline{BE} .
- **9.3.** Determine a amplitude do ângulo *OEF*.

Apresente o resultado em graus arredondado às unidades.

Se, em cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, três casas decimais.

FIM

COTAÇÕES

	ltem														
Cotação (em pontos)															
1.1.	1.2.	1.3.	2.	3.	4.	5.	6.1.	6.2.	6.3.	7.	8.	9.1.	9.2.	9.3.	TOTAL
15	15	15	10	10	15	10	15	15	15	15	10	10	15	15	200

TESTE N.º 2 - Proposta de resolução

1.

1.1. Sabemos que $A(\cos \alpha, \sin \alpha)$, $B(1, \sin \alpha)$ e $C(1, \operatorname{tg} \alpha)$.

Como *A* pertence ao 3.º quadrante $\cos \alpha < 0$, $\sin \alpha < 0$ e $tg \alpha > 0$.

$$A_{[ABC]} = \frac{\overline{AB} \times \overline{BC}}{2} = \frac{(1 - \cos \alpha)(-\sin \alpha + \tan \alpha)}{2} = \frac{-\sin \alpha + \sin \alpha \cos \alpha + \tan \alpha - \sin \alpha}{2} =$$

$$= \frac{-2 \sin \alpha + \sin \alpha \cos \alpha + \tan \alpha}{2} =$$

$$= \frac{\sin \alpha}{2} \left(-2 + \cos \alpha + \frac{\tan \alpha}{\sin \alpha} \right) =$$

$$= \frac{\sin \alpha}{2} \left(-2 + \cos \alpha + \frac{\sin \alpha}{\cos \alpha \sin \alpha} \right) =$$

$$= \frac{\sin \alpha}{2} \left(-2 + \cos \alpha + \frac{1}{\cos \alpha} \right) \quad \text{c.q.d.}$$

1.2.
$$\cos\left(-\frac{\pi}{2} - \alpha\right) = \frac{3}{5} \Leftrightarrow -\sin\alpha = \frac{3}{5} \Leftrightarrow \sin\alpha = -\frac{3}{5}$$

 $\sin^2\alpha + \cos^2\alpha = 1$

$$\frac{9}{25} + \cos^2 \alpha = 1 \Leftrightarrow \cos^2 \alpha = \frac{16}{25} \Leftrightarrow \cos \alpha = \pm \frac{4}{5}$$

Como $\alpha \in 3.^{\circ} Q$, $\cos \alpha = -\frac{4}{5}$.

$$\frac{\operatorname{sen} \alpha}{2} \times \left(-2 + \cos \alpha + \frac{1}{\cos \alpha}\right) = -\frac{3}{10} \times \left(-2 - \frac{4}{5} - \frac{5}{4}\right) = -\frac{3}{10} \times \left(-\frac{40}{20} - \frac{16}{20} - \frac{25}{20}\right) =$$
$$= -\frac{3}{10} \times \left(-\frac{81}{20}\right) =$$
$$= \frac{243}{200}$$

1.3.
$$\frac{9\pi}{8} < \alpha_1 < \frac{11\pi}{8}$$

$$A\left(\alpha_1 + \frac{\pi}{8}\right) = 3A\left(\alpha_1\right)$$

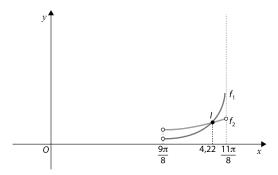
Utilizando x como variável independente:

$$A\left(x + \frac{\pi}{8}\right) = 3A(x)$$

Recorrendo às capacidades gráficas da calculadora:

$$f_1(x) = \frac{\operatorname{sen}\left(x + \frac{\pi}{8}\right)}{2} \left(-2 + \cos\left(x + \frac{\pi}{8}\right) + \frac{1}{\cos\left(x + \frac{\pi}{8}\right)}\right)$$

$$f_2(x) = \frac{3 \operatorname{sen}(x)}{2} \left(-2 + \cos x + \frac{1}{\cos x} \right)$$

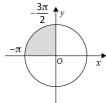


$$a \approx 4,22$$

$$b \approx 6.07$$

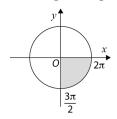
2. Opção (D)

$$\alpha \in \left] -\frac{3\pi}{2}, -\pi \right[$$



$$\alpha \in 2.^{\circ} Q$$

$$\beta \in \left[\frac{3\pi}{2}, 2\pi\right]$$



$$\beta \in 4.^{\circ} Q$$

$$sen \alpha \times cos \beta > 0$$

$$tg \alpha \times tg \beta > 0$$

$$\cos \alpha + \sin \beta < 0$$

$$sen \alpha - sen \beta > 0$$

3. Opção (D)

$$\pi < 4 < \frac{3\pi}{2}$$

4.
$$\alpha \in]-\pi,0[$$

$$tg(\pi - \alpha) = -2 \Leftrightarrow -tg \alpha = -2$$

 $\Leftrightarrow tg \alpha = 2$

Como $\alpha \in]-\pi$, 0[e tg $\alpha > 0$, então $\alpha \in 3.$ ° Q.

$$\cos(-\pi - \alpha) - \operatorname{tg}(-\alpha) + \operatorname{sen}\left(\frac{\pi}{2} - \alpha\right) + \cos(\alpha + \pi) = -\cos\alpha + \operatorname{tg}\alpha + \cos\alpha - \cos\alpha =$$
$$= -\cos\alpha + \operatorname{tg}\alpha = \frac{\sqrt{5}}{5} + 2$$

Cálculo auxiliar

$$1 + tg^2 \alpha = \frac{1}{\cos^2 \alpha}$$

$$1 + 4 = \frac{1}{\cos^2 \alpha} \Leftrightarrow \frac{1}{\cos^2 \alpha} = 5 \Leftrightarrow \cos^2 \alpha = \frac{1}{5} \Leftrightarrow \cos \alpha = \pm \frac{\sqrt{5}}{5}$$

Como $\alpha \in 3.^{\circ} Q$, $\cos \alpha = -\frac{\sqrt{5}}{5}$

5. Opção (A)

$$D_f = \left\{ x \in \mathbb{R} : 1 - \mathsf{tg}^2(2x) \neq 0 \ \land \ 2x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}$$

Cálculos auxiliares

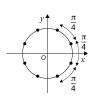
•
$$1 - \operatorname{tg}^2(2x) = 0 \Leftrightarrow \operatorname{tg}^2(2x) = 1 \Leftrightarrow \operatorname{tg}(2x) = 1 \quad \forall \quad \operatorname{tg}(2x) = -1$$

 $\Leftrightarrow 2x = \frac{\pi}{4} + k\pi \quad \forall \quad 2x = -\frac{\pi}{4} + k\pi, k \in \mathbb{Z}$

$$\Leftrightarrow x = \frac{\pi}{8} + \frac{k\pi}{2} \quad \forall \quad x = -\frac{\pi}{8} + \frac{k\pi}{2}, k \in \mathbb{Z}$$

$$\iff x = \frac{\pi}{8} + \frac{k\pi}{4}, k \in \mathbb{Z}$$

•
$$2x = \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \Leftrightarrow x = \frac{\pi}{4} + \frac{k\pi}{2}, k \in \mathbb{Z}$$



$$D_f = \mathbb{R} \setminus \left\{ x \colon x = \frac{\pi}{4} + \frac{k\pi}{2} \lor x = \frac{\pi}{8} + \frac{k\pi}{4}, k \in \mathbb{Z} \right\}$$

Averiguemos se $\frac{\pi}{2}$ é período de f:

•
$$\forall x \in D_f \Longrightarrow x + \frac{\pi}{2} \in D_f$$

•
$$\forall x \in D_f \Longrightarrow f\left(x + \frac{\pi}{2}\right) = \frac{1}{1 - \operatorname{tg}^2\left(2x + \frac{2\pi}{2}\right)} = \frac{1}{1 - \operatorname{tg}^2(2x)} = f(x)$$

 $\frac{\pi}{2}$ é período da função f.

6.

6.1. Seja $x \in D_f$ qualquer:

$$f(x) = (\cos x + \lg x)^{2} + (1 - \sin x)^{2} =$$

$$= \cos^{2} x + 2\cos x \lg x + \lg^{2} x + 1 - 2\sin x + \sin^{2} x =$$

$$= \cos^{2} x + \sin^{2} x + 2\sin x + \frac{1}{\cos^{2} x} - 2\sin x =$$

$$= 1 + \frac{1}{\cos^{2} x}$$

6.2.
$$\forall x \in D_f, x \in D_f \Longrightarrow -x \in D_f$$

$$f(-x) = 1 + \frac{1}{\cos^2(-x)} = 1 + \frac{1}{\cos^2 x} = f(x), \forall x \in D_f$$
 Logo, f é par.

6.3
$$f(x) = 3 \Leftrightarrow 1 + \frac{1}{\cos^2 x} = 3$$

$$\Leftrightarrow \frac{1}{\cos^2 x} = 2$$

$$\Leftrightarrow \cos^2 x = \frac{1}{2}$$

$$\Leftrightarrow \cos x = \frac{\sqrt{2}}{2} \quad \forall \quad \cos x = -\frac{\sqrt{2}}{2}$$

$$\Leftrightarrow \cos x = \cos\left(\frac{\pi}{4}\right) \quad \forall \quad \cos x = \cos\left(\frac{3\pi}{4}\right)$$

$$\Leftrightarrow x = \frac{\pi}{4} + 2k\pi \quad \forall \quad x = -\frac{\pi}{4} + 2k\pi \quad \forall \quad x = -\frac{3\pi}{4} + 2k\pi, k \in \mathbb{Z}$$

$$\Leftrightarrow x = \frac{\pi}{4} + \frac{k\pi}{2}, k \in \mathbb{Z}$$

7.
$$x^2 - 2x + y^2 + 4y = 11 \Leftrightarrow x^2 - 2x + 1 + y^2 + 4y + 4 = 11 + 1 + 4$$

$$\Leftrightarrow (x - 1)^2 + (y + 2)^2 = 16$$

$$C(1, -2) \qquad r = 4$$

$$A\hat{C}B = \alpha$$

$$\alpha \times r = \frac{10\pi}{3} \Leftrightarrow 4\alpha = \frac{10\pi}{3}$$

$$\Leftrightarrow \alpha = \frac{10\pi}{12}$$

$$\Leftrightarrow \alpha = \frac{5\pi}{6}$$

$$\overrightarrow{CA} \cdot \overrightarrow{BC} = \overrightarrow{CA} \cdot \left(-\overrightarrow{CB} \right) = -\overrightarrow{CA} \cdot \overrightarrow{CB} =$$

$$= -\|\overrightarrow{CA}\| \times \|\overrightarrow{CB}\| \times \cos\left(\widehat{\overrightarrow{CA}}, \overrightarrow{CB}\right) =$$

$$= -4 \times 4 \times \cos\left(\frac{5\pi}{6}\right) =$$

$$= -16 \times \left(-\frac{\sqrt{3}}{2}\right) =$$

$$= 8\sqrt{3}$$

8. Opção (C)

$$1 + tg^{2}\alpha = \frac{1}{\cos^{2}\alpha}$$

$$1 + tg^{2}\alpha = \frac{1}{\left(-\frac{1}{\sqrt{10}}\right)^{2}} \Leftrightarrow 1 + tg^{2}\alpha = 10 \Leftrightarrow tg^{2}\alpha = 9 \Leftrightarrow tg \alpha = 3 \ \forall \ tg \alpha = -3$$

Como $\cos \alpha < 0$ e α é a inclinação da reta r, então $\alpha \in]90^\circ, 180^\circ[$, logo tg $\alpha < 0$, ou seja, tg $\alpha = -3$.

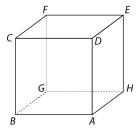
Assim, $m_r = -3$. Logo, o declive de uma reta perpendicular à reta r terá de ser igual a $\frac{1}{3}$.

9.

9.1. Opção (D)

Averiguemos qual das equações seguintes define uma reta perpendicular à reta BD e que passa no ponto F:

(x, y, z) = (10,5,6) + k(-4,0,1), k ∈ ℝ
 O ponto de coordenadas (10,5,6) pertence à reta
 (-4,0,1) · (-1,9,4) = 4 + 4 = 8, logo a reta definida acima não é perpendicular à reta BD.



- (x, y, z) = (10, 5, 6) + k(-6, 2, 3), k ∈ ℝ
 O ponto de coordenadas (10,5,6) pertence à reta
 (-6, 2, 3) · (-1, 9, 4) = 6 + 18 + 12 = 36 , logo a reta definida acima não é perpendicular à reta BD.
- $(x, y, z) = (7, 2, 0) + k(-1, -1, 2), k \in \mathbb{R}$ $(10, 5, 6) = (7, 2, 0) + k(-1, -1, 2) \Leftrightarrow (10, 5, 6) = (7 - k, 2 - k, 2k)$ $\Leftrightarrow \begin{cases} 10 = 7 - k \\ 5 = 2 - k \\ 6 = 2k \end{cases} \Leftrightarrow \begin{cases} k = -3 \\ k = -3 \end{cases}$ Condição impossível.

O ponto de coordenadas (10,5,6) não pertence à reta.

• $(x,y,z) = (-16,3,4) + k(13,1,1), k \in \mathbb{R}$ $(10,5,6) = (-16,3,4) + k(13,1,1) \Leftrightarrow (10,5,6) = (-16+13k,3+k,4+k)$ $\Leftrightarrow \begin{cases} 10 = -16+13k \\ 5 = 3+k \\ 6 = 4+k \end{cases} \Leftrightarrow \begin{cases} k = 2 \\ k = 2 \Leftrightarrow k = 2 \text{ , logo o ponto de coordenadas } (10,5,6) \text{ pertence à } k = 2 \end{cases}$ reta.

 $(13,1,1)\cdot(-1,9,4)=-13+9+4=0$, logo a reta definida acima é perpendicular à reta BD.

9.2. O ponto B é a interseção do plano BCF com a reta BD.

Determinemos, então uma equação do plano BCF.

$$\overrightarrow{FE} = E - F = (7, 11, 4) - (10, 5, 6) = (-3, 6, -2)$$

Uma equação do plano BCF é do tipo -3x + 6y - 2z + d = 0.

Como F(10,5,6) pertence ao plano:

$$-3 \times 10 + 6 \times 5 - 2 \times 6 + d = 0 \Leftrightarrow d = 12$$

$$BCF: -3x + 6y - 2z + 12 = 0$$

$$BD: (x, y, z) = (3, -9, -1) + k(-1, 9, 4), k \in \mathbb{R}$$

Ponto genérico da reta *BD*: (3 - k, -9 + 9k, -1 + 4k), com $k \in \mathbb{R}$

Substituindo as coordenadas do ponto genérico da reta BD na equação do plano BCF:

$$-3(3-k) + 6(-9+9k) - 2(-1+4k) + 12 = 0 \Leftrightarrow -9+3k-54+54k+2-8k+12 = 0$$
$$\Leftrightarrow 49k = 49$$

$$\Leftrightarrow k = 1$$

$$B(3-1,-9+9,-1+4)$$

B(2,0,3)

$$\overrightarrow{BE} = E - B = (7, 11, 4) - (2, 0, 3) = (5, 11, 1)$$

9.3.
$$O\widehat{E}F = \widehat{\overrightarrow{EO}}.\widehat{\overrightarrow{EF}}$$

$$\overrightarrow{EO} = O - E = (-7, -11, -4)$$

$$\overrightarrow{EF} = F - E = (3, -6, 2)$$

$$\|\vec{EO}\| = \sqrt{49 + 121 + 16} = \sqrt{186}$$

$$\|\vec{EF}\| = \sqrt{9 + 36 + 4} = 7$$

$$\cos(\widehat{EO}, \widehat{EF}) = \frac{\overrightarrow{EO} \cdot \overrightarrow{EF}}{\|\overrightarrow{EO}\| \times \|\overrightarrow{EF}\|} \Leftrightarrow \cos(\widehat{EO}, \widehat{EF}) = \frac{-21 + 66 - 8}{7\sqrt{186}}$$

$$\Leftrightarrow \cos(\widehat{EO}, \widehat{EF}) = \frac{37}{7\sqrt{186}}$$

Logo,
$$(\widehat{EO}, \widehat{EF}) = \cos^{-1}(\frac{37}{7\sqrt{186}})$$
, ou seja, $\widehat{EO}, \widehat{EF} \approx 67^{\circ}$.