Matemática A: questão de aula n.º 6 (3/01/2019)

Ano e turma: 12.º 6 Duração: 5 minutos

Nome: N.º:

Classificação: O professor:

Uma partícula desloca-se sobre uma reta numérica sendo a sua posição, em metros e após t segundos, dada por $x(t) = t^3 + 3t^2 - 4$.

Sem usar a calculadora, determine a velocidade e a aceleração médias da partícula nos primeiros dois segundos.

Matemática A: questão de aula n.º 7 (16/01/2019)

Ano e turma: 12.º 6 Duração: 5 minutos

Nome: N.º:

Classificação: O professor:

Sem usar a calculadora, resolva, em $\left\lceil -\frac{\pi}{4}, 0 \right\rceil$, a equação $2 \sin^2(2x) - 2 \cos^2(2x) = 1$.

Matemática A: questão de aula n.º 8 (13/02/2019)

Ano e turma: 12.º 6 Duração: 5 minutos

Nome: N.º:

Classificação: O professor:

O movimento de um oscilador harmónico, num certo intervalo de tempo I, é dado pela função definida por

$$x(t) = 3\operatorname{sen}\left(\frac{\pi t}{2}\right) - \sqrt{3}\operatorname{cos}\left(\frac{\pi t}{2}\right).$$

Escreva x(t) na forma $A\cos(\omega t + \varphi)$ e determine a amplitude A, a fase φ , a pulsação ω , o período T e a frequência f deste oscilador harmónico.

calculadora, resolva, em $\left[-\frac{\pi}{4},0\right]$, a equação $2\sin^2(2x)-2\cos^2(2x)=1$.

Matemática A: questão de aula n.º 9 (21/02/2019)

Ano e turma: 12.º 6 Duração: 5 minutos

Nome: N.º:

Classificação: O professor:

Usando processos analíticos, determine o conjunto solução, em \mathbb{R} , da condição seguinte.

 $4^x < 8 + 7 \times 2^x$

Matemática A: questão de aula n.º 10 (11/03/2019)

Ano e turma: 12.º 6 Duração: 5 minutos

Nome: N.º:

Classificação: O professor:

Dados os números positivos a e b, diferentes de 1, sabe-se que $\log_b a = 2$.

Determine $\log_a \left(\frac{a}{\sqrt[4]{b}} \right)$.

Matemática A: questão de aula n.º 11 (25/03/2019)

Ano e turma: 12.º 6 Duração: 5 minutos

Nome:

Classificação: O professor:

Considere a função, de domínio $]-2,+\infty[\setminus\{0\}$, definida por $f(x)=\frac{3x+\ln\left(x^3+8\right)}{x}$.

Estude o gráfico de f quanto à existência de assíntotas horizontais.

