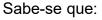
Escola Secundária, Francisco Franco (2018/2019)	3.° TESTE DI	E MATEMÁTICA A – 12.° 6			
2.º Período	06/02/19	Duração: 90 minutos			
Nome:		N.º:			
Classificação:	O pr	ofessor:			


Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva na folha de respostas o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

Caderno 1: 45 minutos (é permitido o uso de calculadora)

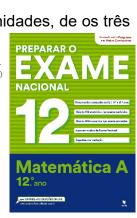
1. Algumas pessoas que têm conta no Facebook são loucas por ananás.

A maior parte dessas pessoas estão inseridas em dois grupos, «Amantes do ananás» (A) e «Sem ananás eu morro» (B).

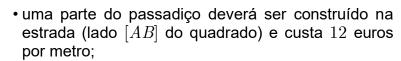
- 75% dos loucos por ananás pertencem ao grupo A;
- 15% dos loucos por ananás pertencem a ambos os grupos;
- 80% dos loucos por ananás que não pertencem ao grupo A pertencem ao grupo B.
- **1.1.** Escolhe-se, ao acaso, uma pessoa com conta no Facebook e que é louca por ananás.

 Determine a probabilidade de ela pertencer ao grupo A sabendo que não pertence ao grupo B.
- **1.2.** 15 elementos dos loucos por ananás e 5 elementos amantes de banana encontraram-se no evento «Bananás».

Vão ser escolhidos 3 elementos de um dos grupos para organizar um jantar de confraternização.

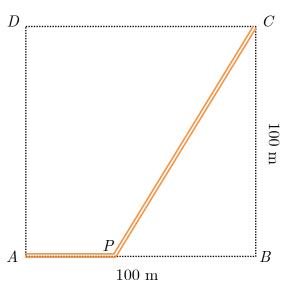

Qual é a probabilidade, em percentagem e com arredondamento às unidades, de os três elementos pertencerem todos ao grupo dos amantes de banana?

(A) 1%


(B) 2%

(C) 5%

(D) 6%



2. A Câmara Municipal de uma localidade pretende construir um passadiço em duas partes numa zona quadrangular (quadrado [ABCD] da figura de lado 100 metros) com os sequintes critérios:

- a outra parte do passadiço deverá ser construído no areal (segmento [PC] no interior do quadrado) e custa 20 euros por metro.
- **2.1.** Designando \overline{PB} por x, mostre que a função f que dá o custo de construção do passadiço é dada por

$$f(x) = 1200 - 12x + 20\sqrt{x^2 + 10000}$$
, $x \in]0,100[$.

- **2.2.** Usando processos analíticos, determine, em metros, o valor de x que minimiza o custo de construção do passadiço.
- **2.3.** O teorema de Lagrange, aplicado à função $f \, \mathrm{em} \, \left] 0,75 \right[$, permite concluir que:

(A)
$$\forall x \in]0,75[,f'(x) = -\frac{\sqrt{130}}{5}]$$

(B)
$$\exists x \in]0,75[:f'(x) = -\frac{\sqrt{130}}{5}]$$

(C)
$$\forall x \in]0,75[,f'(x) = -\frac{16}{3}$$

(D)
$$\exists x \in]0,75[:f'(x) = -\frac{16}{3}$$

- **3.** Considere a função, de domínio $\left[0,\frac{\pi}{2}\right]$, definida por $g(x) = \frac{\cos(3x)}{x+1}$.
 - **3.1.** Em qual das opções a seguir está uma equação vetorial da reta tangente ao gráfico de g no ponto de abcissa 0?

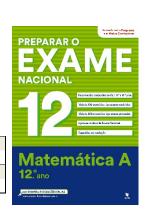
(A)
$$(x,y) = (0,1) + k(-2,2), k \in \mathbb{R}$$

(B)
$$(x,y) = (0,1) + k(1,1), k \in \mathbb{R}$$

(C)
$$(x,y) = (0,3) + k(-2,2), k \in \mathbb{R}$$

(D)
$$(x,y) = (0,3) + k(1,1), k \in \mathbb{R}$$

- **3.2.** Recorrendo à calculadora gráfica, determine um valor, aproximado às décimas, do comprimento do segmento [AB], em que:
 - A é o ponto de interseção do gráfico de g com a reta de equação y=0,6;
 - \bullet B é o ponto do gráfico de g cuja ordenada é mínima.


Reproduza, na folha de respostas, o gráfico, ou gráficos, visualizado(s) na calculadora, devidamente identificado(s), incluindo o referencial.

Nas coordenadas dos vértices em que é necessário fazer arredondamentos, utilize três casas decimais.

FIM DO CADERNO 1

COTAÇÕES (Caderno 1)

Item								
Cotação (em pontos)								
1.1.	1.2.	2.1.	2.2.	2.3.	3.1.	3.2.		
17	8	16	21	8	8	17	95	

Formulário

Trigonometria

$$sen(a + b) = sen a cos b + sen b cos a$$

$$cos(a + b) = cos a cos b - sen a sen b$$

$$\frac{sen A}{a} = \frac{sen B}{b} = \frac{sen C}{c}$$

$$a^{2} = b^{2} + c^{2} - 2bc cos A$$

Limites notáveis

$$\lim_{x \to 0} \left(1 + \frac{1}{n}\right)^n = e \qquad (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\operatorname{sen} x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \qquad (p \in \mathbb{R})$$

Regras de derivação

$$(u+v)' = u'+v'$$

$$(uv)' = u'v + uv'$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

$$(u^n)' = nu^{n-1}u' \quad (n \in \mathbb{R})$$

$$(\operatorname{sen}u)' = u' \operatorname{cos} u$$

$$(\operatorname{cos} u)' = -u' \operatorname{sen} u$$

$$(\operatorname{tg}u)' = \frac{u'}{\operatorname{cos}^2 u}$$

$$(e^u)' = u'e^u$$

$$(a^u)' = u'a^u \ln a \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Caderno 2: 45 minutos (não é permitido o uso de calculadora)

4. Uma cadeia de restaurantes tem, nos seus quadros, 10 chefs e 21 sous chefs.

Para um concurso, vão ser selecionados 14 deles, sendo que tem de haver um mínimo de 3 *chefs* e um mínimo de 10 *sous chefs* nessa seleção.

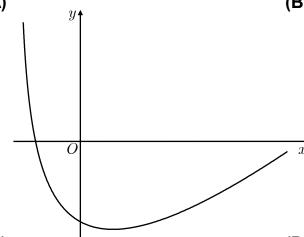
De quantas maneiras pode ser feita essa seleção?

(A)
$$^{10}C_4 \times ^{21}C_{10}$$

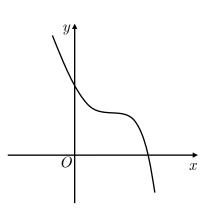
(B)
$$^{11}C_4 \times ^{21}C_{10}$$

(C)
$$^{11}C_4 + ^{21}C_{10}$$

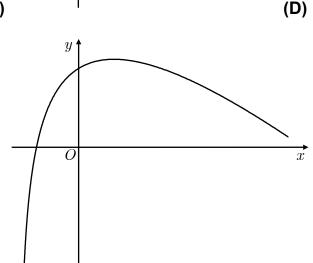
(A)
$$^{10}C_4 \times ^{21}C_{10}$$
 (B) $^{11}C_4 \times ^{21}C_{10}$ (C) $^{11}C_4 + ^{21}C_{10}$ (D) $^{10}C_4 + ^{21}C_{10}$


5. Seja h uma função duas vezes diferenciável em $\mathbb{R} \setminus \{-5\}$ e tal que:

•
$$\lim_{x \to 2} \frac{h(x) - h(2)}{2 - x} = 0$$
;


•
$$h''(x) = \frac{7}{(x+5)^2}$$
.

Em qual das seguintes opções pode estar representada parte do gráfico da função h ?


(A)

(B)

(C)

- **6.** Seja f uma função duas vezes diferenciável em $\mathbb R$ e tal que $f'(x) = (x^3 + 8)^4$. Estude a função f quanto ao sentido das concavidades e quanto à existência de pontos de inflexão do seu gráfico, indicando:
 - o(s) intervalo(s) onde o gráfico de f tem a concavidade voltada para baixo;
 - o(s) intervalo(s) onde o gráfico de f tem a concavidade voltada para cima;
 - a(s) abcissa(s) do(s) ponto(s) de inflexão do gráfico de f.
- **7.** Considere a função, de domínio $]-\infty,1+\pi[\setminus\{0\}]$, definida por

$$f(x) = \begin{cases} x \sin\left(\frac{\pi}{x}\right) - 4 & \text{se } x \le 1 \\ \\ \frac{2x^2 - 2}{\cos\left(1 - \frac{\pi}{2} - x\right)} & \text{se } 1 < x < 1 + \pi \end{cases}.$$

- **7.1.** Mostre que a função f é contínua no ponto 1.
- **7.2.** Estude o gráfico de f quanto à existência de assíntotas paralelas ao eixo Ox e indique, se existir(em), a(s) sua(s) equação(ões).
- **8.** Considere a função, de domínio $]\pi, 4\pi[\setminus\{3\pi\}]$, definida por $g(x) = \frac{\sin x + \cos\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right)\cos(2x) + 2\cos\left(\frac{x}{2}\right)\sin^2 x}$
 - **8.1.** Mostre que $g(x) = 2\operatorname{sen}\left(\frac{x}{2}\right) + 1$.
 - **8.2.** Determine os zeros de q.

FIM DO TESTE

COTAÇÕES (Caderno 2)

ltem								
Cotação (em pontos)								
4.	5.	6.	7.1.	7.2.	8.1.	8.2.		
8	8	21	17	17	17	17	105	
TOTAL (Caderno 1 + Caderno 2)							200	

