Novo Espaço - Matemática A 11.º ano

Apoio à avaliação [janeiro - 2025]

Nome: _____

Ano / Turma: _____ N.º: ____

Na figura está representado um cilindro oblíquo.
Sabe-se que:

- [AB] é um diâmetro da base;
- AD e BC são duas geratrizes do cilindro;
- $\overline{AD} = 12$
- a área da base é 16π;
- $E\hat{B}C = 60^{\circ}$

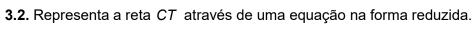
Qual é o valor de $\overrightarrow{BA} \cdot \overrightarrow{AD}$?

(A) -24

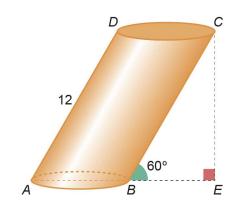
(B) -48

2. Em relação a um referencial o.n. Oxy, considera os vetores $\vec{u}(2, k)$ e $\vec{v}(k, k-1)$, com $k \in \mathbb{R}$.

Para que valores de k o ângulo formado pelos vetores \vec{u} e \vec{v} é obtuso?


- **(A)** $k \in]-\infty, -1[\cup]0, +\infty[$
- **(B)** $k \in \{-1, 0\}$

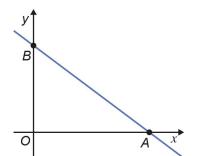
(C) $k \in]0,1[$


- **(D)** $k \in]-1, 0[$
- 3. Na figura, em relação a um referencial o.n. Oxy, estão representadas uma circunferência de centro C e uma reta t tangente à circunferência no ponto T.

Sabe-se que:

- o ponto C tem coordenadas (-4, 0);
- a reta t é definida pela equação y = -5x + 6.
- **3.1.** Mostra que as coordenadas do ponto T são (1, 1).

- **3.3.** Sabe-se que a reta t' é tangente à circunferência e paralela à reta t . Escreve uma equação vetorial da reta t' .
- **3.4.** Apresenta uma condição que caracterize os pontos do $1.^{\circ}$ quadrante que pertencem à região limitada pela circunferência e pela reta t, incluindo a fronteira.


 \overline{c}

0

Data: ___ - ___ - __

4. Na figura, em referencial o.n. Oxy, está representada a reta AB, em que A(4,0) e B(0,3). Seja α a inclinação da reta AB.

- **4.1.** Mostra que $\sin \alpha 3\cos \alpha = 3$.
- **4.2.** Considera a reta s definida pela equação

$$(x, y) = (1, -3) + k(-1, 2), k \in \mathbb{R}.$$

Determina, em graus e arredondada às décimas, a amplitude do ângulo formado pela reta s e pela reta AB.

5. Em relação a um referencial o.n. Oxyz, os planos definidos pelas equações $2x-y+3z-1=0 \ \ e \ -2x+ky-\left(k+2\right)z+2=0 \ , \ com \ \ k\in\mathbb{R} \ , \ são \ perpendiculares.$

Qual é o valor de k?

(A)
$$-\frac{5}{2}$$

(C)
$$\frac{1}{2}$$

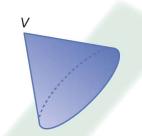
6. Em relação a um referencial o.n. Oxyz, o plano mediador do segmento de reta $\begin{bmatrix} AB \end{bmatrix}$ é designado por β e é definido pela equação -x+3y+2z=6.

Sabe-se que um ponto ${\it P}\,$ do espaço é equidistante de ${\it A}\,$ e de ${\it B}\,$.

Qual das opções pode representar as coordenadas do ponto P?

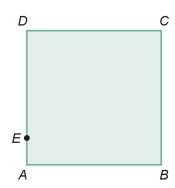
(A)
$$(-2, 0, 4)$$

(B)
$$(0, 2, -3)$$


(D)
$$(-2, 0, 2)$$

7. No espaço, em referencial ortonormado Oxyz, considera a superfície esférica definida por $x^2 + y^2 + (z+1)^2 = 16$. Qual é o conjunto de valores de k para os quais os planos definidos por equações do tipo z = k, com $k \in \mathbb{R}$, são tangentes à superfície esférica?

(A)
$$\{-5, 3\}$$


8. Na figura está representado um cone reto, cuja base está contida no plano α . Em relação a um referencial o.n. Oxyz, sabe-se que:

- o plano α é definido pela equação 4x + 2y 4z 14 = 0;
- o vértice V do cone tem coordenadas (-2, 1, 4).
- 8.1. Determina as coordenadas do centro da base do cone.
- **8.2.** Escreve uma equação do plano β paralelo a α e que contém o ponto V .
- **8.3.** Considera o ponto P(1, 7, 1) pertencente ao plano α e Q um ponto do plano xOz com cota igual ao cubo da metade da abcissa, tal que \overline{PQ} é perpendicular a \overline{OV} . Determina, recorrendo à calculadora gráfica, a abcissa do ponto Q. Na tua resposta:
 - equaciona o problema;
 - reproduz, num referencial, o(s) gráfico(s) da(s) função(ões) que visualizares na calculadora e que te permite(m) resolver a equação;
 - apresenta a abcissa do ponto Q, arredondada às centésimas.
- **9.** Na figura está representado o quadrado [ABCD].

Sabe-se que
$$\overline{AB} = a$$
 e $\overline{AE} = \frac{1}{5}\overline{AD}$.

Mostra que
$$\overrightarrow{EB} \cdot \overrightarrow{EC} = \frac{21}{25}a^2$$
.

FIM

		Cotações											
1	2	2.4	2.2	2 2	2 /	11	12		-				

Questões	1.	2.	3.1.	3.2.	3.3.	3.4.	4.1.	4.2.	5.	6.	7.	8.1.	8.2.	8.3.	9.
Pontos	12	12	14	10	14	12	16	14	12	12	12	16	12	16	16