	Teste de Matemática A
	2024 / 2025
Teste N.º 1	
Matemática A	
Duração do teste: 90 minutos	
11.º Ano de Escolaridade	
Nome do aluno:	N.º: Turma:
Utilize apenas caneta ou esferográfica de tinta azul o	u preta.
Não é permitido o uso de corretor. Risque aquilo que	pretende que não seja classificado.
É permitido o uso de calculadora.	
Apresente apenas uma resposta para cada item.	
As cotações dos itens encontram-se no final do enun	ciado.
Na resposta aos itens de escolha múltipla, selecione respostas, o número do item e a letra que identifica a	
Na resposta aos restantes itens, apresente todos os as justificações necessárias. Quando para um res apresente sempre o valor exato.	•

1. Na figura estão representados o triângulo [ABC], retângulo em B, e o triângulo [EDC], retângulo em D, que não estão desenhados à escala.

Ε'

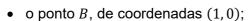
Sabe-se que:

- o ponto *D* pertence ao lado [*BC*];
- o ponto E pertence ao lado [AC];
- o ponto E' é a projeção ortogonal do ponto E sobre o lado[AB];
- $B\hat{A}C = 60^{\circ}$;
- $\overline{ED} = \overline{DB}$;
- $\overline{AB} = 12$.

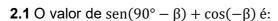
Sem recurso à calculadora, mostre que o valor da área do quadrado [EDBE'] é igual a $216(2-\sqrt{3})$ u.a.

2. Na figura estão representados, em referencial o.n. 0xy:

- a reta r, definida por x = 1;
- o ponto A, pertencente ao segundo quadrante e à circunferência;
- o ângulo, de amplitude α , cujo lado origem é o semieixo positivo das abcissas e cujo lado extremidade é a semirreta OA;



- o ponto C, pertencente à reta r e de ordenada igual a $-\frac{3}{4}$;
- o ângulo, de amplitude β, que tem por lado origem o semieixo positivo das abcissas e por lado extremidade a semirreta \dot{OC} .



(A)
$$\frac{8}{5}$$

(B)
$$\frac{7}{5}$$

(C)
$$\frac{4}{5}$$

(D)
$$\frac{1}{5}$$

C

2.2 Para uma certa posição do ponto A, sabe-se que $\cos^2(180^\circ - \alpha) - \frac{4}{9} = 0$.

Sem recurso à calculadora, determine, para essa posição do ponto A, a medida do segmento de reta [AB]. Apresente o resultado na forma $\frac{\sqrt{a}}{b}$, $a, b \in \mathbb{N}$.

3. Considere a condição $2-3\cos^2\alpha=k \wedge \alpha \in [90^\circ,180^\circ] \wedge k \in \mathbb{R}$.

Em qual dos seguintes intervalos se encontram todos os valores de k para os quais a condição é possível?

(A)
$$]-1,2]$$

(B)
$$[-2,1[$$

(C)
$$[-1, 2[$$

(D)
$$]-2,1]$$

- 4. De dois ângulos, de amplitudes α e β, sabe-se que α ∈]-90°, 90°[e β ∈]-180°, -90°[.
 Para quaisquer valores de α e β, em qual das seguintes opções se encontra uma afirmação necessariamente verdadeira?
 - **(A)** sen $\alpha \cos \beta > 0$

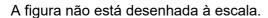
(B) $\sin \alpha + \cos \beta < 0$

В

(C) $\cos \alpha - \sin \beta > 0$

- **(D)** $\cos \alpha \times \tan \beta < 0$
- **5.** Na figura está representada uma circunferência de centro no ponto *0*. Sabe-se que:

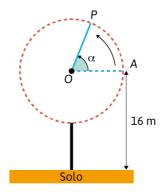
- o arco de circunferência AB tem comprimento de $\frac{10\pi}{3}$ cm;
- o arco de circunferência AB é o arco correspondente aos ângulos AOB e ACB;
- o setor circular correspondente ao arco de circunferência AB tem $10\pi~\text{cm}^2$ de área.



Determine, sem recorrer à calculadora, a amplitude, em radianos, do ângulo ACB.

6. O Pedro foi andar num carrossel. A figura, que não está à escala, ilustra a situação. Em cada volta, que se inicia no ponto *A*, o Pedro descreve uma circunferência com 7 metros de raio, centrada no ponto *O*, rodando no sentido indicado na figura.

A distância do ponto *A* ao solo é de 16 metros.



Para cada posição P do Pedro, fica determinado um ângulo de amplitude α , medida em radianos, que tem como lado origem a semirreta $\dot{O}A$ e como lado extremidade a semirreta $\dot{O}P$.

Qual das seguintes expressões define a função d que, para cada valor de α , dá a distância, em metros, do Pedro ao solo?

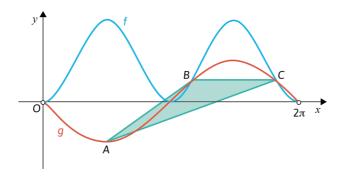
(A)
$$d(\alpha) = 7 + 16\cos\alpha$$

(B)
$$d(\alpha) = 7 + 16 \sin \alpha$$

(C)
$$d(\alpha) = 16 + 7\cos\alpha$$

(D)
$$d(\alpha) = 16 + 7 \sin \alpha$$

7. Na figura estão representados graficamente as funções $f \in g$, ambas de domínio $]0, 2\pi[$, definidas, respetivamente, por $f(x) = 2 \operatorname{sen}^2(x)$ e $g(x) = \cos\left(-\frac{\pi}{2} - x\right)$, e ainda o triângulo [ABC].



Sabe-se que:

- A é o ponto pertencente ao gráfico de g de menor ordenada;
- B e C são os pontos de interseção dos gráficos das funções f e g de ordenada positiva. Recorrendo a processos exclusivamente analíticos, determine a área do triângulo [ABC].
- **8.** Sabe-se que $3\cos(-\alpha \pi) = \sqrt{5}$ e que $\alpha \in]-\pi, 0[$. Determine, sem recorrer à calculadora, o valor de:

$$2\cos\left(-\frac{7\pi}{2} + \alpha\right) + 5\operatorname{tg}(-11\pi + \alpha) + \operatorname{sen}(\alpha - \pi)$$

Apresente o resultado na forma $a + b\sqrt{c}$, $a, b, c \in \mathbb{N}$.

9. Seja g a função, de domínio D e de contradomínio $]-\sqrt{3}$, $+\infty[$, definida por $g(x)=\mathrm{tg}x$. Qual dos conjuntos seguintes pode ser o conjunto D?

(A)
$$\left] -\frac{\pi}{3}, \frac{\pi}{3} \right[$$

(B)
$$\left] \frac{2\pi}{3}, \frac{3\pi}{2} \right[$$

(C)
$$\left] \frac{\pi}{2}, \frac{2\pi}{3} \right[$$

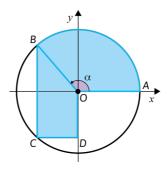
(D)
$$\left] \frac{4\pi}{3}, \frac{3\pi}{2} \right[$$

10. Seja f a função, de domínio \mathbb{R} , definida por:

$$f(x) = \cos(-2x - \pi) + \sin(\frac{\pi}{2} + 2x) - (\sqrt{2}\cos(2x) + 1)^2$$

Determine, sem recorrer à calculadora, os valores de x para os quais a função f se anula.

11. Na figura estão representadas, em referencial o.n. 0xy, a circunferência de centro em 0 e de raio 4 e uma região sombreada composta pelo trapézio [OBCD], retângulo em C e em D, e pelo setor circular correspondente ao ângulo orientado AOB, de amplitude α , em radianos, com $\alpha \in \left[\frac{\pi}{2}, \pi\right]$ e de raio \overline{OA} .



Sabe-se que:

- o ponto *A* pertence à circunferência e ao semieixo positivo *0x*;
- os pontos $B \in C$ pertencem à circunferência, sendo C o simétrico de B, em relação ao eixo Ox.
- **11.1** Mostre que a área da região sombreada é dada, em função de α , pela expressão:

$$8\alpha - 24 \operatorname{sen} \alpha \cos \alpha$$

11.2 Existe um valor de α para o qual a área da região sombreada é igual à área de metade do círculo delimitado pela circunferência representada.

Determine, recorrendo à calculadora, o valor de α .

Apresente o resultado em radianos, arredondado às unidades.

Na sua resposta:

- apresente uma equação que lhe permita resolver o problema;
- represente, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora e assinale o(s) ponto(s) relevante(s), que lhe permitem resolver a equação.

FIM

COTACÕES

	ltem												
	Cotação (em pontos)												
1.	2.1	2.2	3.	4.	5.	6.	7.	8.	9.	10.	11.1	11.2	Total
18	10	18	10	10	18	10	20	18	10	20	20	18	200