ESCOLA SECUNDÁRIA DR. ÂNGELO AUGUSTO DA SILVA (2002/2003)

2.º Teste de Matemática - 11.º3

CLASSIFICAÇÃO:

1.º PERÍODO - 28/11/2002

DURAÇÃO: 75 MIN

O PROFESSOR:

NOME:_

1ª Parte (5 valores)

Em cada questão que responderes desta parte, sem apresentar cálculos, escreve na folha de respostas uma só letra, A, B, C ou D. Cada resposta certa vale 1 valor e cada errada tem cotação negativa (-0,2 valores). No entanto, um total negativo nesta primeira parte do teste vale **0** pontos.

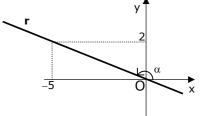
- **1.** Dado um ângulo α , sabe-se que: $\sin \alpha = \frac{2}{3} \wedge \cos \alpha = -\frac{\sqrt{5}}{3}$. Então:

 - (A) $tg \alpha = \frac{\sqrt{5}}{5}$ (B) $tg \alpha = -\frac{2\sqrt{5}}{5}$ (C) $tg \alpha = \sqrt{5}$
- **2.** Sejam β e δ dois ângulos do <u>segundo quadrante</u> tais que $\beta > \delta$. Das proposições a seguir apresentadas, indica a errada.
 - (A) sen β < sen δ

- **(B)** $tg \beta < sen \delta$ **(C)** $tg \beta < tg \delta$ **(D)** $cos \beta < cos \delta$
- **3.** Considera os vectores (não nulos) \vec{a} e \vec{b} e as seguintes afirmações:
 - (i) $\vec{a} \cdot \vec{b} = 2$ e $||\vec{a}|| = ||\vec{b}|| = 1$
- (ii) Se $\vec{a} \cdot \vec{b} > 90^{\circ}$, então $\vec{a} \cdot \vec{b} < 0$

Em relação à veracidade das afirmações anteriores, podemos concluir que:

- (A) Apenas a afirmação (ii) é verdadeira;
- (B) Ambas as afirmações são verdadeiras;
- (C) Ambas as afirmações são falsas;
- (D) Apenas a afirmação (i) é verdadeira.
- 4. A inclinação (no sistema circular) da recta representada ao lado é, aproximadamente, igual a:



(A) 0,38 rad

(B) 2,76 rad

- **(C)** 1,57 rad
- **(D)** 0,4 rad
- **5.** Se os vectores \vec{u} , \vec{v} e \vec{w} são tais que $\vec{u} \cdot \vec{v} = \sqrt{3}$ e $\vec{u} \perp \vec{w}$, então $2\vec{u} \cdot (3\vec{v} + 4\vec{w})$ é igual a:
 - **(A)** $6\sqrt{3}$
- **(B)** $14\sqrt{3}$
- **(C)** 12
- **(D)** 0

2ª Parte (15 valores)

Nesta parte, apresenta o teu raciocínio de forma clara e indica todos os cálculos que fizeres para justificares as respostas.

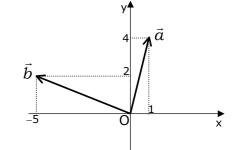
Atenção: quando não é indicada a aproximação que se pede para um resultado, pretende-se sempre o valor exacto.

1. Seja t a função real de variável real, definida por t(x) = 1 + 2sen x

- **a)** Calcule o valor de $t(\frac{4}{3}\pi)$.
- **b)** Resolva, em **R**, a equação t(x) = 1.
- **©)** Determine o valor de $t(\alpha)$ sabendo que $\cos \alpha = -\frac{3}{5}$ e $\alpha \in 3.0Q$.

2. Considera, no referencial o.n. ao lado, os vectores aí representados.

b) Determina a amplitude do ângulo, até à décima do grau, formado pelos vectores \vec{a} e \vec{b} .



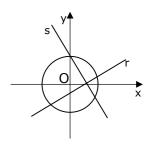
Calcula o valor do parâmetro \mathbf{k} de modo que os vectores \vec{b} e \vec{c} (1, \mathbf{k}) sejam perpendiculares.

d)Indica dois vectores perpendiculares ao vector \vec{a} , sendo um deles de norma 17.

3. 3.1. Escreve a equação reduzida da recta **s** sabendo que:

» A circunferência está centrada na origem e tem raio igual a 3;

$$3x - 5y - 5 = 0$$
 é uma equação de **r**.



3.2. Dada a recta \mathbf{t} de equação (x,y)=(1,1)+k(1,2), $k\in\mathbb{R}$, justifica que \mathbf{r} e \mathbf{t} <u>não são</u> perpendiculares.

4. Pediram ao Tolegário (outra vez ele) dois vectores não nulos e <u>não colineares</u>, mas ambos perpendiculares ao vector $\vec{u}(9,0,-2)$. Ele respondeu $\vec{a}(2,0,9)$ e $\vec{b}(-2,0,-9)$. Concordas com esta resposta? Justifica.

PASSATEMPO: inscreve, a seguir, o que pensas que vai ser a média da turma neste teste (arredondado às décimas). No último teste, a média foi (aproximadamente) 9. Em caso de empate, ganha quem estiver mais próximo nas décimas. Se fores o vencedor, ganhas 1 valor neste teste (até um máximo de 18 valores). Média:

Internet: go.to/roliveira

O professor: RobertOliveira