O Regulamento das Características de Comportamento Térmico dos Edifícios (RCCTE), aprovado pelo Decreto-Lei n.º 40/90, de 6 de Fevereiro, foi o primeiro instrumento legal que, em Portugal, impôs requisitos ao projecto de novos edifícios e de grandes remodelações por forma a salvaguardar a satisfação das condições de conforto térmico nesses edifícios sem necessidades excessivas de energia, quer no Inverno, quer no Verão.

Em paralelo, o RCCTE visava também garantir a minimização de efeitos patológicos na construção derivados das condensações superficiais e no interior dos elementos da envolvente.

Mais de uma dezena de anos passados, verifica-se que o RCCTE constituiu um marco significativo na melhoria da qualidade da construção em Portugal, havendo hoje uma prática quase generalizada de aplicação de isolamento térmico nos edifícios, incluindo nas zonas de clima mais ameno, mesmo para além do que o RCCTE exige, numa prova de que o referido Regulamento conseguiu atingir e mesmo superar os objectivos a que se propunha.

Entretanto, alguns dos pressupostos do RCCTE, tal como definido em 1990, têm vindo a alterar-se.

Enquanto que, no final da década de 1980, eram poucos os edifícios que dispunham de meios activos de controlo das condições ambientes interiores, verifica-se actualmente uma penetração muito significativa de equipamentos de climatização, com um número significativo de edifícios novos a preverem equipamentos de aquecimento, mesmo no sector residencial, e com um cada vez maior recurso a equipamentos de ar condicionado, sobretudo os de pequena dimensão, quer no sector residencial, quer nos edifícios de serviços, dando portanto lugar a consumos reais para controlo do ambiente interior dos edifícios, o que se tem traduzido por um crescimento dos consumos de energia no sector dos edifícios bastante acima da média nacional.

Enquanto que a primeira versão do RCCTE pretendia limitar potenciais consumos e era, portanto, relativamente pouco exigente nos seus objectivos concretos devido às questões de viabilidade económica face a potenciais consumos baixos, justifica-se agora uma contabilização mais realista de consumos que com muito maior probabilidade possam ocorrer, evoluindo portanto na direcção de maiores exigências de qualidade térmica da envolvente dos edifícios.

Esta nova versão do RCCTE assenta, portanto, no pressuposto de que uma parte significativa dos edifícios virão a ter meios de promoção das condições ambientais nos espaços interiores, quer no Inverno, quer no Verão, e impõe limites aos consumos que decorrerão dos seus potenciais existência e uso. Não se pode, porém, falar em consumos padrão, nomeadamente no subsector residencial, já que a existência de equipamentos ou mesmo de sistemas instalados não significa o seu uso permanente, tendo em conta a frugalidade tradicional no conforto doméstico que o clima naturalmente favorece. Tais valores continuarão a ser meras referências estatísticas. Neste contexto, são claramente fixadas as condições ambientais de referência para cálculo dos consumos energéticos nominais, segundo padrões típicos admitidos como os médios prováveis, quer em termos de temperatura ambiente, quer em termos de ventilação para renovação do ar e garantia de uma qualidade do ar interior aceitável, que se tem vindo a degradar com a maior estanquidade das envolventes e o uso de novos materiais e tecnologias na construção que libertam importantes poluentes. Este regulamento alarga, assim, as suas exigências, ao definir claramente objectivos de provisão de taxas de renovação do ar adequadas que os projectistas deverão obrigatoriamente satisfazer.

No contexto internacional, também, há um consenso de que é necessário melhorar a qualidade dos edifícios e reduzir os seus consumos de energia e as correspondentes emissões de gases que contribuem para o aquecimento global, ou efeito de estufa. Portugal obrigou-se a satisfazer compromissos neste sentido quando subscreveu o acordo de Quioto, tendo o correspondente esforço de redução das emissões de ser feito por todos os sectores consumidores de energia, nomeadamente, pelo dos edifícios.

Também a União Europeia, com objectivos semelhantes, publicou em 4 de Janeiro de 2003 a Directiva n.º 2002/91/CE, de 16 de Dezembro de 2002, relativa ao desempenho energético dos edifícios, que, entre outros requisitos, impõe aos Estados-membros o estabelecimento e actualização periódica de regulamentos para melhorar o comportamento térmico dos edifícios novos e reabilitados, obrigando-os a exigir, nestes casos, com poucas excepções, a implementação de todas as medidas pertinentes com viabilidade técnica e económica. A Directiva adopta também a obrigatoriedade da contabilização das necessidades de energia para preparação das águas quentes sanitárias, numa óptica de consideração de todos os consumos de energia importantes, sobretudo, neste caso, na habitação, com um objectivo específico de favorecimento da penetração dos sistemas de colectores solares ou outras alternativas renováveis.

Impõe-se, portanto, que o RCCTE seja actualizado em termos de um nível de exigências adequado aos actuais contextos social, económico e energético, promovendo um novo acréscimo de qualidade térmica dos edifícios no próximo futuro. Para maior flexibilidade de actualização destes objectivos em função dos progressos técnicos e dos contextos económicos e sociais, este regulamento é estruturado por forma a permitir a actualização dos valores dos requisitos específicos, fixados de forma periódica pelos Ministérios que tutelam o sector.

Tal como na primeira versão do RCCTE, a chave do sucesso deste regulamento, na sua nova versão, está também na sua aplicação na fase de licenciamento, garantindo que os projectos que recebam licença de construção satisfaçam integralmente os requisitos regulamentares.

Nesta sua reformulação, o RCCTE impõe portanto mecanismos mais efectivos de comprovação desta conformidade regulamentar, e aumenta as penalizações, pecuniárias e em termos profissionais, para os casos de incumprimento. Aumenta também o grau de exigência de formação profissional dos técnicos que podem vir a ser responsáveis pela comprovação dos requisitos deste regulamento, por forma a aumentar a sua competência e dar mais credibilidade e probabilidade de sucesso à satisfação dos objectivos pretendidos com este diploma.

Pretende-se, no entanto, manter uma metodologia de aplicação do regulamento que seja muito semelhante à estabelecida pelo Decreto-Lei n.º 40/90, de 6 de Fevereiro, para capitalizar nos hábitos e conhecimentos já existentes no meio técnico nacional, não introduzindo complexidades adicionais, mesmo que mais aparentes do que reais.

Foram ouvidos os órgãos de governo próprio das Regiões Autónomas.

Assim:

Nos termos da alínea *a*) do n.º 1 do artigo 198.º da Constituição, o Governo decreta o seguinte:

Artigo 1.º

Objecto

É aprovado o Regulamento das Características de Comportamento Térmico dos Edifícios, adiante designado por RCCTE, que se publica em anexo, juntamente com os seus Anexos I a IX e que fazem parte integrante do presente diploma.

Artigo 2.º

Aplicação nas Regiões Autónomas

- 1 O presente diploma aplica-se às Regiões Autónomas dos Açores e da Madeira, sem prejuízo das competências cometidas aos respectivos órgãos de Governo próprio e das adaptações que lhe sejam introduzidas por diploma regional.
- 2 O produto das coimas resultantes das contra-ordenações previstas no artigo 15.º do regulamento publicado em anexo ao presente diploma, aplicadas nas Regiões Autónomas, constitui receita própria destas, com excepção do que se encontra afecto às autarquias locais.

Artigo 3.º

Sistema Nacional de Certificação Energética e da Qualidade do Ar Interior nos Edifícios As exigências do RCCTE que dependem do Sistema Nacional de Certificação Energética e da Qualidade do Ar Interior nos Edifícios (SNCEQAIE), ficam condicionadas ao faseamento da entrada em vigor dos respectivos requisitos por ele previsto.

Artigo 4.º

Entrada em vigor

Este diploma entra em vigor noventa dias após a data da sua publicação.

Artigo 5°

Norma revogatória

É revogado o Decreto-Lei n.º 40/90, de 6 de Fevereiro.

Visto e aprovado em Conselho de Ministros de

O Primeiro-Ministro

O Ministro de Estado, das Actividades Económicas e do Trabalho

O Ministro das Finanças e da Administração Pública

O Ministro dos Negócios Estrangeiros e das Comunidades Portuguesas

O Ministro da Justiça

- O Ministro das Cidades, Administração Local, Habitação e Desenvolvimento Regional
 - O Ministro das Obras Públicas, Transportes e Comunicações
 - O Ministro do Ambiente e do Ordenamento do Território

Regulamento das Características de Comportamento Térmico dos Edifícios

CAPITULO I

Objecto e âmbito de aplicação

Artigo 1.º

Objecto

O presente Regulamento estabelece as regras a observar no projecto de todos os edifícios de habitação e dos edifícios de serviços sem sistemas de climatização centralizados de modo que:

- a) As exigências de conforto térmico, seja ele de aquecimento no Inverno ou de arrefecimento no Verão, e de ventilação para garantia de qualidade do ar no interior edifícios, bem como as necessidades de água quente sanitária, possam vir a ser satisfeitas sem dispêndio excessivo de energia;
- b) Sejam minimizadas as situações patológicas nos elementos de construção provocadas pela ocorrência de condensações superficiais ou internas, com potencial impacto negativo na durabilidade dos elementos de construção e na qualidade do ar interior.

Artigo 2.º

Âmbito de aplicação

1 - O presente Regulamento aplica-se a cada uma das fracções autónomas de todos os novos edifícios de habitação e de todos os novos edifícios de serviços sem sistemas de climatização centralizados, independentemente de serem ou não, nos termos de legislação específica, sujeitos a licenciamento no território nacional, com excepção das situações previstas no n.º 9 do presente artigo.

- 2 Para efeitos do presente Regulamento, entende-se por fracção autónoma de um edifício, cada uma das partes de um edifício dotadas de contador individual de consumo de energia, separada do resto do edifício por uma barreira física contínua, e cujo direito de propriedade ou fruição seja transmissível autonomamente.
- 3 Quando um grupo de edifícios tiver um único contador de energia, este Regulamento aplica-se, nos termos do n.º 1 do presente artigo, a cada um dos edifícios separadamente.
- 4 Nos edifícios com uma única fracção autónoma constituídos por corpos distintos, as exigências deste Regulamento devem ser verificadas por corpo.
- 5 Ficam também sujeitas ao presente Regulamento as grandes intervenções de remodelação ou de alteração na envolvente ou nas instalações de preparação de águas quentes sanitárias dos edifícios de habitação e dos edifícios de serviços sem sistemas de climatização centralizados já existentes, independentemente de serem ou não, nos termos de legislação específica, sujeitos a licenciamento no território nacional, com excepção das situações previstas no n.º 9 do presente artigo.
- 6 Por grande remodelação ou alteração entendem-se as intervenções na envolvente ou nas instalações cujo custo seja superior a 25% do valor do edifício, calculado com base num valor de referência C_{ref} por metro quadrado e por tipologia de edifício definido anualmente em portaria conjunta dos ministros que tutelem a economia, as obras públicas e habitação e as cidades, o ordenamento do território e ambiente, publicada no mês de Outubro e válida para o ano civil seguinte.
- 7 Ficam ainda sujeitas a este Regulamento as ampliações de edifícios existentes, exclusivamente na nova área construída, independentemente de carecerem ou não, nos termos de legislação específica, de licenciamento no território nacional, com excepção das situações previstas no n.º 9 deste artigo.

- 8 As exigências do presente Regulamento aplicam-se, para cada uma das fracções autónomas dos edifícios, obrigatoriamente, apenas aos espaços para os quais se requerem normalmente condições interiores de conforto, conforme definido no anexo I ao presente diploma e que dele faz parte integrante.
- 9- Excluem-se do âmbito de aplicação deste Regulamento:
 - a) Os edifícios ou fracções autónomas destinados a serviços, a construir ou renovar que, pelas suas características de utilização, se destinem a permanecer frequentemente abertos ao contacto com o exterior e não sejam aquecidos nem climatizados;
 - b) Os edifícios utilizados como locais de culto e os edifícios para fins industriais, afectos ao processo de produção, bem como garagens, armazéns, oficinas e edifícios agrícolas não residenciais;
 - c) As intervenções de remodelação, recuperação e ampliação de edifícios em zonas históricas ou em edifícios classificados, sempre que se verifiquem incompatibilidades com as exigências deste Regulamento.
- 10 As incompatibilidades a que se refere a alínea c) do número anterior devem ser convenientemente justificadas e aceites pela entidade licenciadora.

CAPITULO II

Princípios gerais, definições e referências

Artigo 3.º

Definições e referências

As definições necessárias à correcta aplicação deste Regulamento constam do anexo II ao presente diploma e que dele faz parte integrante e, na sua ausência, sucessivamente nos documentos legais nacionais e comunitários.

Artigo 4.º

Índices e parâmetros de caracterização

- 1 A caracterização do comportamento térmico dos edifícios faz-se, para efeitos do presente Regulamento, através da quantificação de um certo número de índices e de parâmetros.
- 2 Os índices térmicos fundamentais a quantificar para aplicação deste Regulamento são os valores das necessidades nominais anuais de energia útil para aquecimento (Nic), das necessidades nominais anuais de energia útil para arrefecimento (Nvc) e das necessidades nominais anuais de energia para produção de águas quentes sanitárias (Nac), bem como as necessidades globais de energia primária (Ntc).
- 3 São parâmetros complementares a quantificar sob condições específicas neste Regulamento:
 - a) Os coeficientes de transmissão térmica, superficiais e lineares, dos elementos da envolvente;
 - b) A classe de inércia térmica do edifício ou da fracção autónoma;
 - c) O factor solar dos vãos envidraçados;
 - d) A taxa de renovação de ar.
- 4 Para cálculo dos índices referidos no n.º 2 devem ser usadas condições de referência definidas no artigo 16.º e actualizáveis por portaria conjunta dos ministros que tutelem a economia, as obras públicas e habitação e as cidades, o ordenamento do território e ambiente, para garantia do conforto térmico e da qualidade do ar no interior edifícios, e para o cálculo da energia necessária para a produção da água quente sanitária.

5 - Para efeitos deste Regulamento, o País é dividido em zonas climáticas de Inverno e de Verão, numa base concelhia com ajustes associados à altitude e à distância ao mar do local de implantação do edifício, de acordo com uma distribuição especificada no anexo III ao presente diploma e que dele faz parte integrante e actualizável por portaria conjunta dos ministros que tutelem a economia, as obras públicas e habitação e as cidades, o ordenamento do território e ambiente.

CAPITULO III

Requisitos energéticos

Artigo 5.°

Limitação das necessidades nominais de energia útil para aquecimento

- 1 Cada fracção autónoma de um edifício abrangido por este Regulamento não pode, como resultado da sua morfologia, da qualidade térmica da sua envolvente e tendo em conta o aproveitamento dos ganhos solares e internos e de outras formas de energias renováveis, exceder um valor máximo admissível das necessidades nominais anuais de energia útil para aquecimento, Ni, fixado no artigo 17.º e actualizável por portaria conjunta dos ministros que tutelem a economia, as obras públicas e habitação e as cidades, o ordenamento do território e ambiente.
- 2 A portaria referida no número anterior pode isentar os edifícios de habitação unifamiliar de área útil inferior a um limite máximo A_{mv} nela definido, do cumprimento do requisito especificado no número anterior, sem prejuízo do cumprimento dos requisitos definidos no artigo 10.º.

Artigo 6.º

Limitação das necessidades nominais de energia útil para arrefecimento

- 1 Cada fracção autónoma de um edifício abrangido por este regulamento não pode, como resultado da sua morfologia, da qualidade térmica da sua envolvente e tendo em conta a existência de ganhos solares e internos, exceder um valor máximo admissível das necessidades nominais anuais de energia útil para arrefecimento, Nv, fixado no artigo 17.º e actualizável por portaria conjunta dos ministros que tutelem a economia, as obras públicas e habitação e as cidades, o ordenamento do território e ambiente.
- 2 A portaria referida no número anterior pode isentar os edifícios de habitação unifamiliar de área útil inferior a um limite máximo A_{mv} nela definido, do cumprimento do requisito especificado no número anterior, sem prejuízo do cumprimento dos requisitos definidos no artigo 10.º.

Artigo 7.º

Limitação das necessidades nominais de energia útil para produção

de águas quentes sanitárias

1 - Cada fracção autónoma de um edifício abrangido por este Regulamento não pode, sob condições e padrões de utilização nominais, como resultado dos tipos e eficiências dos equipamentos de produção de água quente sanitária, bem como da utilização de formas de energias renováveis, exceder um valor máximo admissível de necessidades nominais anuais de energia útil para produção de águas quentes sanitárias (Na), fixado no artigo 17.º e actualizável por portaria conjunta dos ministros que tutelem a economia, as obras públicas e habitação e as cidades, o ordenamento do território e ambiente.

- 2 O recurso a sistemas de colectores solares térmicos para aquecimento de água sanitária nos edifícios abrangidos pelo RCCTE é obrigatório sempre que haja uma exposição solar adequada, na base de 1 m² de colector por ocupante convencional previsto, conforme definido na metodologia de cálculo das necessidades nominais de energia para aquecimento de água sanitária referida no artigo 11.º, podendo este valor ser reduzido por forma a não ultrapassar 50% da área de cobertura total disponível, em terraço ou nas vertentes orientadas no quadrante sul, entre sudeste e sudoeste.
- 3 Para efeitos do disposto no número anterior, entende-se como exposição solar adequada a existência de cobertura em terraço ou de cobertura inclinada com água cuja normal esteja orientada numa gama de azimutes de 90° entre Sudeste e Sudoeste, que não sejam sombreadas por obstáculos significativos no período que se inicia diariamente duas horas depois do nascer do Sol e termina duas horas antes do ocaso.
- 4 Em alternativa à utilização de colectores solares térmicos, podem ser utilizadas quaisquer outras formas renováveis de energia que captem, numa base anual, energia equivalente à dos colectores solares, podendo ser esta utilizada para outros fins que não a do aquecimento de água se tal for mais eficiente ou conveniente.
- 5 A portaria referida no n.º 1 pode isentar certos tipos de edifícios do cumprimento dos requisitos especificados neste artigo.

Artigo 8.º

Limitação das necessidades nominais globais de energia primária de um edifício

1 - As necessidades nominais anuais globais (Ntc), de cada uma das fracções autónomas de um edifício abrangido por este Regulamento, não pode exceder um valor máximo admissível de energia primária (Nt), fixado no artigo 17.º e actualizável por Portaria conjunta dos ministros que tutelem a economia, as obras públicas e habitação e as cidades, o ordenamento do território e ambiente, definido em termos de uma soma ponderada dos valores máximos admissíveis individuais definidos nos artigos 5.º, 6.º e 7.º, convertidos para energia primária em função das formas de energia final utilizadas

para cada uso nessas fracções autónomas.

- 2 Os factores de conversão entre energia útil e energia primária são definidos periodicamente por despacho do Director Geral de Geologia e Energia, em função do mix energético nacional na produção de electricidade, com um mínimo de 3 meses de antecedência da data de entrada em vigor para efeitos deste regulamento.
- 3 Os edifícios de habitação unifamiliar abrangidos pelo disposto no n.º 2 do artigo 5.º e n.º 2 do artigo 6.º ficam também isentos dos requisitos do n.º 1 do artigo 8.º.

Artigo 9.º

Requisitos mínimos de qualidade térmica dos edifícios

Os valores máximos admissíveis de Ni e Nv especificados nos artigos 5.º e 6.º devem ser satisfeitos sem que sejam ultrapassados os valores limites, fixados no artigo 18.º e actualizáveis por Portaria conjunta dos ministros que tutelem a economia, as obras públicas e habitação e as cidades, o ordenamento do território e ambiente, dos parâmetros de qualidade térmica a seguir indicados:

- a) Coeficientes de transmissão térmica superficiais máximos da envolvente opaca, que separam a fracção autónoma do exterior, ou de espaços que não requeiram condições de conforto, ou de outros edifícios vizinhos;
- b) Factores solares dos vãos envidraçados horizontais e verticais com área total superior a 5% da área útil de pavimento do espaço que servem, desde que não orientados a Norte (entre Noroeste e Nordeste).

Artigo 10.º

Requisitos de qualidade térmica e ambiental de referência para os edifícios de habitação unifamiliar

1 - Para os efeitos previstos no n.º 2 dos artigos 5.º e 6.º e n.º 3 do artigo 8.º, os edifícios de habitação unifamiliar isentos de comprovar a satisfação dos requisitos especificados nos números 1 desses artigos devem demonstrar que satisfazem um conjunto de características mínimas de referência, fixadas no artigo 18.º e actualizáveis por portaria

conjunta dos ministros que tutelem a economia, as obras públicas e habitação e as cidades, o ordenamento do território e ambiente, respeitantes aos seguintes parâmetros:

- a) Coeficientes de transmissão térmica dos elementos da envolvente;
- b) Área e factor solar dos vãos envidraçados;
- c) Inércia térmica interior;
- d) Protecção solar das coberturas.
- 2 Caso um edifício não satisfaça todos os requisitos referidos no número anterior, é-lhe aplicável integralmente o disposto nos artigos 5.º a 9.º deste Regulamento.

Artigo 11.º

Métodos normalizados de cálculo

Os métodos normalizados de cálculo das necessidades nominais de aquecimento (Nic), de arrefecimento (Nvc), de preparação de águas quentes sanitárias (Nac), e dos parâmetros de qualidade térmica referidos nos artigos 9.º e 10.º são fixados, e actualizados periodicamente em função dos progressos técnicos e das normas portuguesas e europeias aplicáveis, por portaria conjunta dos ministros que tutelem a economia, as obras públicas e habitação e as cidades, o ordenamento do território e ambiente, sendo aplicados os métodos descritos nos Anexos IV, V, VI e VII do presente diploma e que delem fazem integrante até à primeira publicação desta portaria.

CAPITULO IV

Licenciamento e fiscalização

Artigo 12.º

Competência para o licenciamento

- 1 Compete às entidades licenciadoras dos edifícios, definidas em legislação própria, a responsabilidade de exigir a demonstração do cumprimento das exigências deste Regulamento aquando dos pedidos de emissão de licenças de construção e de utilização de todos os edifícios por ele abrangidos.
- 2 No exercício da competência referida no número anterior, as Câmaras Municipais devem obrigatoriamente receber, antes dos pedidos de emissão de licenças de construção e de utilização poderem ser aprovados, uma Declaração de Conformidade Regulamentar emitida por uma entidade acreditada no âmbito do Sistema Nacional de Certificação Energética e da Qualidade do Ar Interior nos Edifícios, que ateste a conformidade do projecto, para a licença de construção, ou, conforme aplicável, do edifício construído ou das suas fracções autónomas, com as exigências deste Regulamento.
- 3 As entidades responsáveis pela construção de edifícios isentos de licenciamento municipal devem também obrigatoriamente obter uma Declaração de Conformidade Regulamentar emitida nas condições especificadas no número anterior.

Artigo 13.º

Licenciamento

Todo o pedido de licenciamento junto da entidade licenciadora competente deve incluir, aquando da apresentação da demonstração do cumprimento deste Regulamento, a seguinte informação mínima, com o detalhe compatível com a fase de desenvolvimento do projecto:

- a) Uma Ficha de sumário de demonstração da conformidade regulamentar do edifício face ao RCCTE, conforme modelo da Ficha 1 no anexo VIII ao presente diploma e que dele faz parte integrante;
- b) Um levantamento dimensional para cada fracção autónoma, segundo o modelo da Ficha 2 do anexo VIII ao presente diploma e que dele faz parte integrante, que inclui

uma descrição sumária das soluções construtivas utilizadas.

- c) O cálculo dos valores das necessidades nominais de energia do edifício, Nic, Nvc, Nac e Ntc;
- d) Uma Ficha de comprovação de satisfação dos requisitos mínimos deste regulamento, nos termos do artigo 9.º, conforme modelo da Ficha 3 no anexo VIII ao presente diploma e que dele faz parte integrante, e pormenores construtivos definidores de todas as situações de ponte térmica, nomeadamente:
 - i) Ligação da fachada com os pavimentos térreos;
 - ii) Ligação da fachada com pavimentos locais não-úteis ou exteriores;
 - iii) Ligação da fachada com pavimentos intermédios;
 - iv) Ligação da fachada com cobertura inclinada ou terraço;
 - v) Ligação da fachada com varanda;
 - vi) Ligação entre duas paredes verticais;
 - vii) Ligação da fachada com caixa de estore;
 - viii) Ligação da fachada com padieira, ombreira ou peitoril.
- e) Termo de responsabilidade do técnico responsável pelo projecto declarando a satisfação dos requisitos deste Regulamento, nos termos do disposto no artigo 14.°;
- f) Declaração de Conformidade Regulamentar emitida por entidade acreditada para o efeito no âmbito do Sistema Nacional de Certificação Energética e da Qualidade do Ar Interior nos Edifícios.

Artigo 14.º

Responsabilidade pelo projecto e pela execução

1 - A responsabilidade pela demonstração da conformidade do projecto com as exigências

do Regulamento tem de ser assumida por um arquitecto, reconhecido pela Ordem dos Arquitectos, ou por um engenheiro, reconhecido pela Ordem dos Engenheiros, ou por um engenheiro técnico, reconhecido pela Associação Nacional dos Engenheiros Técnicos, com qualificações para o efeito.

- 2 O reconhecimento da qualificação profissional, referido no número anterior, tem de ser feito pela associação profissional respectiva com base num protocolo a estabelecer entre o Conselho Superior de Obras Públicas e a Direcção-Geral de Geologia e Energia, por um lado, e as referidas associações profissionais, por outro, que salvaguarde a formação de base dos técnicos, o seu curriculum profissional, e prova adequada da sua actualização profissional em prazo não superior a 5 anos.
- 3 A responsabilidade pela execução da construção de acordo com o definido no projecto, no que tem implicações com o presente Regulamento, deve ser assegurada por um técnico com as mesmas habilitações definidas nos n.ºs 1 e 2, podendo ser ou não o mesmo que assume a responsabilidade pelo projecto.

Artigo 15.°

Contra-Ordenações e Coimas

- 1 Constitui contra-ordenação punível com coima:
 - a) de € 1 250 a € 3 500, para pessoas singulares, e de € 5 000 a € 40.000, para pessoas colectivas, a construção ou uma grande intervenção de remodelação ou alteração de um edifício, ou fracção autónoma, que, tendo recebido licença de construção na base de um projecto que demonstre a conformidade regulamentar com este regulamento, viole, no final da construção, um dos seguintes requisitos deste regulamento que estiveram na base da concessão da referida licença:
 - i. exceder o valor máximo admissível das necessidades nominais anuais de energia útil para aquecimento, Ni;

- ii. exceder o valor máximo admissível das necessidades nominais anuais de energia útil para arrefecimento, Nv;
- iii. exceder o valor máximo admissível de necessidades anuais de energia útil para produção de águas quentes sanitárias, Na;
- iv. exceder o valor máximo admissível de necessidades nominais globais de energia primária, Nt;
- v. exceder o valor limite admissível de um qualquer dos parâmetros de qualidade térmica indicados nas alíneas a) e b) do artigo 9° ou nas alíneas a) a e) do artigo 10.°.
- b) de € 1 500 a € 3 740,98, para pessoas singulares, e de € 7 500 a € 44 891,81, para pessoas colectivas, a violação do disposto no artigo 14°.
- 2 A negligência e a tentativa são puníveis.
- 3 A iniciativa para a instauração e instrução dos processos de contra-ordenação compete às entidades licenciadoras, por iniciativa própria ou, obrigatoriamente, na sequência de comunicação da Comissão Coordenadora do Sistema Nacional de Certificação Energética e da Qualidade do Ar no Interior dos Edifícios (SCE), face aos resultados das auditorias realizadas pelas entidades de inspecção acreditadas por ela recebidos onde se indiquem as violações do articulado deste Regulamento.
- 4 O produto das coimas recebidas por infraçção referida neste artigo reverte em:
 - a) 60% para os cofres do Estado,:
 - b) 40% para a Autarquia que a aplicar.

Capítulo V
Disposições transitórias
Artigo 16.º
Condições interiores de referência

Até à primeira publicação da portaria referida no n.º 4 do artigo 4.º, as condições interiores de referência são as seguintes:

- a) As condições ambientes de conforto de referência são uma temperatura do ar de 20°C para a estação de aquecimento e uma temperatura do ar de 25°C e 50% de humidade relativa para a estação de arrefecimento;
- b) A taxa de referência para a renovação do ar, para garantia da qualidade do ar interior, é de 0,6 renovações por hora, devendo as soluções construtivas adoptadas para o edifício ou fracção autónoma, dotados ou não de sistemas mecânicos de ventilação, garantir a satisfação desse valor sob condições médias de funcionamento;
- c) O consumo de referência de água quente sanitária para utilização em edifícios de habitação é de 40 litros de água quente a 60°C por pessoa e por dia.

Artigo 17.º

Valores limites das necessidades nominais de energia útil para aquecimento, para arrefecimento e para preparação de águas quentes sanitárias

1 - Até à primeira publicação da portaria referida no n.º 1 do artigo 5.º, os valores limites das necessidades nominais de energia útil para aquecimento de uma fracção autónoma, em kWh/m².ano, dependem dos valores do Factor de Forma (FF) da fracção autónoma e dos Graus Dia (GD) do clima local, e são os seguintes:

a) para
$$FF \le 0.5$$
 $Ni = 4.5 + 0.0395 \text{ GD};$
b) para $0.5 < FF \le 1$ $Ni = 4.5 + (0.021 + 0.037 \text{ FF}) \text{ GD};$
c) para $1 < FF \le 1.5$ $Ni = [4.5 + (0.021 + 0.037 \text{ FF}) \text{ GD}] (1.2 - 0.2 \text{ FF});$
d) para $FF > 1.5$ $Ni = 4.05 + 0.06885 \text{ GD}.$

em que o Factor de Forma (FF) é calculado como indicado no Anexo II do presente

diploma e que dele faz parte integrante e os valores dos Graus-Dias constam do Anexo III do presente diploma e que dele faz parte integrante.

2 - Até à primeira publicação da portaria referida no n.º 1 do artigo 6.º, os valores limites das necessidades nominais de energia útil para arrefecimento de uma fracção autónoma dependem da zona climática do local, e são os seguintes:

a) Zona V ₁ (Norte)	$Nv = 16 \text{ kWh/m}^2.\text{ano};$
b) Zona V ₁ (Sul)	$Nv = 22 \text{ kWh/m}^2$.ano;
c) Zona V ₂ (Norte)	$Nv = 18 \text{ kWh/m}^2$.ano;
d) Zona V_2 (Sul)	$Nv = 32 \text{ kWh/m}^2$.ano;
e) Zona V ₃ (Norte)	$Nv = 26 \text{ kWh/m}^2$.ano;
f) Zona V ₃ (Sul)	$Nv = 32 \text{ kWh/m}^2$.ano;
g) Açores	$Nv = 21 \text{ kWh/m}^2$.ano;
h) Madeira	$Nv = 23 \text{ kWh/m}^2$.ano.

3 - Até à primeira publicação da portaria referida no n.º 1 do artigo 7.º, o limite máximo para os valores das necessidades de energia para preparação das águas quentes sanitárias é o definido pela equação seguinte:

$$Na = 0.081 \cdot M_{AOS} \cdot nd / Ap$$
 (kWh/m². ano)

em que as variáveis correspondem às definições indicadas no Anexo VI do presente diploma e que dele faz parte integrante.

4 - Até à primeira publicação da portaria referida no n.º 1 do artigo 8.º, uma fracção autónoma é caracterizada pelo indicador Ntc, necessidades globais anuais nominais específicas de energia primária, definido pela expressão abaixo indicada, em que os factores de ponderação das necessidades de aquecimento, de arrefecimento e de

preparação de AQS têm em conta os padrões habituais de utilização dos respectivos sistemas relativamente aos padrões admitidos no cálculo de Nic e de Nvc, na base dos dados estatísticos mais recentes:

$$Ntc = 0,1 (Nic/\eta i) F_{pui} + 0,1 (Nvc/\eta v) F_{puv} + Nac F_{pua} (kgep/m^{2}.ano)$$

5 - Cada fracção autónoma não pode ter um valor de Ntc superior ao valor de Nt, calculado com base nos valores de Ni, Nv e de Na especificados nos n.ºs 1 a 3 deste artigo e em fontes de energia convencionadas, definido pela equação seguinte:

$$Nt = 0.9 (0.01 \text{ Ni} + 0.01 \text{ Nv} + 0.15 \text{ Na})$$
 (kgep/m².ano)

6 - Quando um edifício não tiver previsto, especificamente, um sistema de aquecimento ou de arrefecimento ambiente ou de aquecimento de água quente sanitária, considerase, para efeitos do cálculo de Ntc pela fórmula definida no n.º 4 deste artigo, que o sistema de aquecimento é obtido por resistência eléctrica, que o sistema de arrefecimento é uma máquina frigorífica com eficiência (COP) de 3, e que o sistema de produção de AQS é um termoacumulador eléctrico com 50 mm de isolamento térmico em edifícios sem alimentação de gás, ou um esquentador a gás natural ou GPL quando estiver previsto o respectivo abastecimento.

Artigo 18.º

Valores dos requisitos mínimos e de referência das propriedades térmicas da envolvente

- 1 Até à primeira publicação da portaria referida no artigo 9.º, os requisitos mínimos de qualidade térmica nele referidos são os definidos nos n.ºs 1 a 3 do anexo IX do presente diploma e que dele faz parte integrante.
- 2 Sempre que o valor do parâmetro τ, definido no anexo IV do presente diploma e que dele faz parte integrante, for superior a 0,7, ao elemento que separa o espaço interior útil do espaço não-útil aplicam-se os requisitos mínimos definidos para a envolvente exterior.

3 - Até à primeira publicação da portaria referida no n.º 1 do artigo 10.º, os requisitos mínimos de referência que dispensam a verificação detalhada deste regulamento nas habitações unifamiliares com uma área útil inferior a A_{mv} são os definidos no n.º4 do anexo IX do presente diploma e que dele faz parte integrante.

Artigo 19.º

Valores limites para aplicação do regulamento

- 1 Até à primeira publicação da portaria referida no n.º 6 do artigo 2.º, e até 31 de Dezembro de 2005, o valor de referência C_{ref} do custo de construção referido no n.º 6 do artigo 2.º é de 629,53 €/m².
- 2 Até à primeira publicação da portaria referida no n.º 2 dos artigos 5.º e 6.º, o valor de A_{mv} é de 150 m² até 4 de Janeiro de 2006, ou 50 m² após essa data.
- 3 Até à primeira publicação da portaria referida no n.º 2 do artigo 7.º, ficam isentos da demonstração do cumprimento do valor limite de Na as habitações unifamiliares com menos de 150 m² de área útil até 4 de Janeiro de 2006, ou menos de 50 m² após essa data, desde que satisfaçam os requisitos mínimos impostos no n.º 1 do artigo 10º.

Artigo 20.º

Conversão de energia útil para energia primária

- 1 Até à primeira publicação do despacho referido no n.º 2 do artigo 8.º, e pelo menos até
 31 de Dezembro de 2005, utilizam-se os factores de conversão F_{pu} entre energia útil e energia primária a seguir indicados:
 - a) Electricidade: $F_{pu} = 0,290 \text{ kgep/kWh};$
 - b) Combustíveis sólidos, líquidos e gasosos: F_{pu} = 0,086 kgep/kWh;
- 2 Os valores indicados no número anterior devem ser afectados pela eficiência nominal dos equipamentos utilizados para os sistemas de aquecimento e de arrefecimento, ηi e

23

ην, respectivamente, sob condições nominais de funcionamento, podendo ser adoptados os valores de referência abaixo indicados, à falta de dados mais precisos:

a)	resistência eléctrica	1,00;
b)	caldeira a combustível gasoso	0,90;
c)	caldeira a combustível líquido	0,80;
d)	caldeira a combustível sólido	0,60;
e)	bomba de calor (aquecimento)	4,00;
f)	bomba de calor (arrefecimento)	3,00;
g)	máquina frigorífica (ciclo de compressão)	3,00;
h)	máquina frigorífica (ciclo de absorção)	0,80.

ANEXOS

ANEXO I

Espaços com Requisitos de Conforto Térmico

- 1 Para efeitos do disposto no n.º 8 do artigo 2.º deste Regulamento, consideram-se todos os espaços úteis interiores dos edifícios sujeitos à aplicação nominal das condições de referência indicadas no n.º 4 do artigo 4.º.
- 2 Os espaços a seguir indicados, aos quais não se aplicam as condições de referência indicadas no n.º 4 do artigo 4.º, consideram-se espaços não-úteis e não podem ser incluídos no cálculo dos valores de Nic, Nvc e Ntc:
 - a) Sótãos e caves não-habitadas, acessíveis ou não;
 - b) Circulações (interiores ou exteriores) comuns às várias fracções autónomas de um edifício;
 - c) Varandas e marquises fechadas, estufas ou solários adjacentes aos espaços úteis;
 - d) Garagens, armazéns, arrecadações e similares.
- 3 Em casos excepcionais devidamente justificados, podem ser aplicadas as condições de referência indicadas no n.º 4 do artigo 4.º a alguns espaços incluídos na listagem do número anterior, devendo então ser considerados espaços úteis para efeitos de aplicação deste Regulamento e, portanto, incluídos no cálculo dos valores de Nic, Nvc e de Ntc.

ANEXO II

Definições

- a) "Águas Quentes Sanitárias (AQS)", água potável a temperatura superior a 35°C utilizada para banhos, limpezas, cozinha e outros fins específicos, preparada em dispositivo próprio, com recurso a formas de energia convencionais ou renováveis;
- b) "Amplitude térmica diária (Verão)", é o valor médio das diferenças registadas entre as temperaturas máxima e mínima diárias no mês mais quente;
- c) "Área de cobertura", é a área, medida pelo interior, dos elementos opacos da envolvente horizontais ou com inclinação inferior a 60° que separam superiormente o espaço útil do exterior ou de espaços não úteis adjacentes;
- d) "Área de paredes", é a área, medida pelo interior, dos elementos opacos da envolvente verticais ou com inclinação superior a 60° que separam o espaço útil do exterior, de outros edifícios, ou de espaços não úteis adjacentes;
- e) "Área de pavimento", é a área, medida pelo interior, dos elementos da envolvente que separam inferiormente o espaço útil do exterior ou de espaços não úteis adjacentes;
- f) "Área de vãos envidraçados", é a área, medida pelo interior, das zonas não opacas da envolvente de um edifício (ou fracção autónoma), incluindo os respectivos caixilhos;
- g) "Área útil de pavimento", é a soma das áreas, medidas em planta pelo perímetro interior das paredes, de todos os compartimentos de uma fracção autónoma de um edifício, incluindo vestíbulos, circulações internas, instalações sanitárias, arrumos interiores e outros compartimentos de função similar e armários nas paredes;

- b) "Coeficiente de transmissão térmica de um elemento da envolvente", é a quantidade de calor por unidade de tempo que atravessa uma superfície de área unitária desse elemento da envolvente por unidade de diferença de temperatura entre os ambientes que ele separa;
- i) "Coeficiente de transmissão térmica médio dia-noite de um vão envidraçado", é a média dos coeficientes de transmissão térmica de um vão envidraçado com a protecção aberta (posição típica durante o dia) e fechada (posição típica durante a noite) e que se toma como o valor de base para o cálculo das perdas térmicas pelos vãos envidraçados de uma fracção autónoma de um edifício em que haja ocupação nocturna importante, por exemplo, habitações, estabelecimentos hoteleiros e similares, zonas de internamento de hospitais, etc;
- j) "Condutibilidade térmica", é uma propriedade térmica típica de um material homogéneo que é igual à quantidade de calor por unidade de tempo que atravessa uma camada de espessura e área unitárias desse material por unidade de diferença de temperatura entre as suas duas faces;
- l) "C.O.P. "(Coefficient of Performance)", denominação em língua inglesa correntemente adoptada para designar a eficiência nominal de uma bomba de calor;
- m) "Corpo de um edifício", parte de um edifício que tem uma identidade própria significativa, e que comunica com o resto do edifício através de ligações restritas;
- "Eficiência nominal (de um equipamento)", razão entre a energia fornecida pelo equipamento para o fim em vista (energia útil) e a energia por ele consumida (energia final) e expressa em geral em percentagem, sob condições nominais de projecto;
- o) "Energia final", energia disponibilizada aos utilizadores sob diferentes formas (electricidade, gás natural, propano ou butano, biomassa, etc.) e expressa em unidades com significado comercial (kWh, m³, kg,...).

- p) "Energia primária", recurso energético que se encontra disponível na natureza (petróleo, gás natural, energia hídrica, energia eólica, biomassa, solar). Exprime-se, normalmente, em termos da massa equivalente de petróleo (quilograma equivalente de petróleo kgep ou tonelada equivalente de petróleo tep). Há formas de energia primária (gás natural, lenha, Sol) que também podem ser disponibilizadas directamente aos utilizadores, coincidindo nesses casos com a energia final;
- q) "Energia renovável", energia proveniente do Sol, utilizada sob a forma de luz, de energia térmica ou de electricidade fotovoltaica, da biomassa, do vento, da geotermia ou das ondas e marés;
- r) "Energia útil, de aquecimento ou de arrefecimento", é a energia-calor fornecida ou retirada de um espaço interior. É, portanto, independente da forma de energia final (electricidade, gás, sol, lenha, etc.);
- s) "Envolvente exterior", conjunto dos elementos do edifício ou da fracção autónoma que estabelecem a fronteira entre o espaço interior e o ambiente exterior;
- t) "Envolvente interior", fronteira que separa a fracção autónoma de ambientes normalmente não climatizados (espaços anexos não-úteis), tais como garagens ou armazéns, bem como de outras fracções autónomas adjacentes em edifícios vizinhos;
- "Espaço fortemente ventilado", é um local que dispõe de aberturas que permitem a renovação do ar com uma taxa média de pelo menos seis renovações por hora;
- v) "Espaço fracamente ventilado", é um local que dispõe de aberturas que permitem uma renovação do ar com uma taxa média entre 0,5 e 6 renovações por hora;
- x) "Espaço não ventilado", é um local que não dispõe de aberturas permanentes e em que a renovação do ar tem uma taxa média inferior a meia renovação por hora;

- "Espaço não útil", é o conjunto dos locais fechados, fortemente ventilados ou não, que não se encontram englobados na definição de área útil de pavimento, e que não se destinam à ocupação humana em termos permanentes e, portanto, em regra, não são climatizados. Incluem-se aqui armazéns, garagens, sótãos e caves não habitados, circulações comuns a outras fracções autónomas do mesmo edifício, etc. Consideram-se ainda como espaços não-úteis as lojas não climatizadas com porta aberta ao público;
- aa) "Espaço útil", é o espaço correspondente à área útil de pavimento;
- bb) "Estação convencional de aquecimento", é o período do ano com início no primeiro decêndio posterior a 1 de Outubro em que, para cada localidade, a temperatura média diária é inferior a 15°C e com termo no último decêndio anterior a 31 de Maio em que a referida temperatura ainda é inferior a 15°C;
- α) "Estação convencional de arrefecimento", é o conjunto dos 4 meses de Verão (Junho, Julho, Agosto e Setembro) em que é maior a probabilidade de ocorrência de temperaturas exteriores elevadas que possam exigir arrefecimento ambiente em edifícios com pequenas cargas internas;
- dd) "Factor de Forma", é o quociente entre o somatório das áreas da envolvente exterior (A_{ext}) e interior (A_{int}) do edifício ou fracção autónoma com exigências térmicas e o respectivo volume interior (V) correspondente, conforme a fórmula seguinte:

$$FF = (A_{ext} + \Sigma (\tau A_{int})_i) / V$$

em que τ é definido no anexo IV.

ee) "Factor de utilização dos ganhos térmicos", é a fracção dos ganhos solares captados e dos ganhos internos que contribuem de forma útil para o aquecimento ambiente durante a estação de aquecimento;

- ff) "Factor solar de um vão envidraçado", é o quociente entre a energia solar transmitida para o interior através de um vão envidraçado com o respectivo dispositivo de protecção e a energia da radiação solar que nele incide;
- gg) "Factor solar de um vidro", é o quociente entre a energia solar transmitida através do vidro para o interior e a energia solar nele incidente;
- *bh)* "Graus-dias de aquecimento (base 20°C)", é um número que caracteriza a severidade de um clima durante a estação de aquecimento e que é igual ao somatório das diferenças positivas registadas entre uma dada temperatura de base (20°C) e a temperatura do ar exterior durante a estação de aquecimento. As diferenças são calculadas com base nos valores horários da temperatura do ar (termómetro seco);
- ii) "Isolante Térmico", material de condutibilidade térmica inferior a 0,065 W/m.°C, ou cuja resistência térmica é superior a 0,30 m².°C/W;
- *jj)* "Marquises", varandas adjacentes a cozinhas ou outros espaços equivalentes, que dispõem de vãos envidraçados exteriores. As marquises não são consideradas espaços úteis no âmbito da aplicação deste regulamento;
- II) "Mix energético" Distribuição percentual das fontes de energia primária na produção da energia eléctrica da rede nacional. Este valor é variável anualmente, nomeadamente, em função da hidraulicidade;
- mm) "Necessidades nominais de energia útil de aquecimento (Ni_o)", é o parâmetro que exprime a quantidade de energia útil necessária para manter em permanência um edifício ou uma fracção autónoma a uma temperatura interior de referência durante a estação de aquecimento;
- nn) "Necessidades nominais de energia útil de arrefecimento (Nv_c)", é o parâmetro que exprime a quantidade de energia útil necessária para manter em permanência um edifício ou uma fracção autónoma a uma temperatura interior de referência durante a estação de arrefecimento.

- 00) "Necessidades nominais de energia útil para produção de águas quentes sanitárias (Na_c)", é o parâmetro que exprime a quantidade de energia útil necessária para aquecer o consumo médio anual de referência de águas quentes sanitárias a uma temperatura de 60°C;
- pp) "Necessidades nominais globais de energia primária (Ntc)", é o parâmetro que exprime a quantidade de energia primária correspondente à soma ponderada das necessidades nominais de aquecimento (Nic), de arrefecimento (Nvc) e de preparação de águas quentes sanitárias (Nac), tendo em consideração os sistemas adoptados ou, na ausência da sua definição, sistemas convencionais de referência, e os padrões correntes de utilização desses sistemas;
- qq) "Pé-direito", é a altura média, medida pelo interior, entre o pavimento e o tecto de uma fracção autónoma de um edifício;
- rr) "Perímetro enterrado", é o comprimento linear, medido em planta, do contorno exterior de um pavimento ou de uma parede em contacto com o solo;
- ss) "Ponte térmica plana", heterogeneidade inserida em zona corrente da envolvente, como pode ser o caso de certos pilares e talões de viga;
- tt) "Resistência térmica de um elemento de construção", é o inverso da quantidade de calor por unidade de tempo e por unidade de área que atravessa o elemento de construção por unidade de diferença de temperatura entre as suas duas faces;
- uu) "Resistência térmica total", é o inverso do coeficiente de transmissão térmica;
- w) "Sistema de climatização centralizado", sistema em que o equipamento necessário para a produção de frio ou de calor (e para a filtragem, a humidificação e a desumidificação, caso existam) se situa concentrado numa instalação e num local distinto dos espaços a climatizar, sendo o frio ou calor (e humidade), no todo ou em parte, transportado por um fluido térmico aos diferentes locais a climatizar;
- xx) "Sistema de ventilação mecânica", instalação que permite a renovação do ar interior por ar novo atmosférico exterior recorrendo a ventiladores movidos a energia eléctrica;

"Solários (Estufas, Jardins de Inverno)", espaços fechados adjacentes a espaços úteis de uma fracção autónoma, dispondo de uma área envidraçada em contacto com o ambiente exterior e habitualmente destinados à captação de ganhos solares. Os solários (estufas, jardins de Inverno) não são considerados espaços úteis no âmbito da aplicação deste regulamento;

aaa) "Taxa de renovação do ar", é o caudal horário de entrada de ar novo num edifício ou fracção autónoma, para renovação do ar interior, expresso em múltiplos do volume interior útil do edifício ou da fracção autónoma;

bbb) "Temperaturas Exteriores de Projecto", temperatura exterior que não é ultrapassada inferiormente, em média, durante mais do que 2,5% do período correspondente à estação de aquecimento, ou excedida, em média, durante mais do que 2,5% do período correspondente à estação de arrefecimento, sendo portanto as temperaturas convencionadas para o dimensionamento corrente de sistemas de climatização;

cue) "Volume útil interior", é o volume do espaço fechado definido pelo produto da área útil de pavimento pelo pé-direito útil.

Anexo III

Zonamento Climático

- 1 Zonamento climático e dados climáticos de referência
- 1.1 Zonas climáticas

O País é dividido em três zonas climáticas de Inverno, I_1 , I_2 e I_3 e em três zonas climáticas de Verão V_1 , V_2 e V_3 . A delimitação destas zonas é a indicada nos subcapítulos seguintes.

As zonas de Verão estão divididas em Região Norte e Região Sul. A Região Sul abrange toda a área a sul do rio Tejo e ainda os seguintes concelhos dos distritos de Lisboa e Santarém: Lisboa, Oeiras, Cascais, Amadora, Loures, Odivelas, Vila Franca de Xira, Azambuja, Cartaxo e Santarém.

1.2 - Zonas climáticas e dados climáticos de referência do Continente

No quadro III.1 indica-se o zonamento climático discriminado por concelhos e nas figuras III.1 e III.2 apresenta-se a correspondente representação gráfica. Nesse quadro constam, ainda, os seguintes dados climáticos de referência de Inverno e de Verão:

- número de graus-dias de aquecimento (na base de 20°C) correspondente à estação convencional de aquecimento;
- duração da estação de aquecimento;
- temperatura exterior de projecto de Verão;
- amplitude térmica média diária do mês mais quente.

Nos quadros III.2 e III.3 indicam-se as alterações, em função da altitude dos locais, a introduzir relativamente ao zonamento e aos dados climáticos de referência indicados no quadro III.1.

Nos concelhos de Pombal, Leiria e Alcobaça, os locais situados numa faixa litoral com 10 km de largura são incluídos na zona climática de Inverno I₁, e adoptam-se os seguintes dados climáticos de referência:

- número de graus-dias (base de 20 °C): 1500 °C.dias;
- duração da estação de aquecimento: 6 meses.

QUADRO III.1 - Distribuição dos concelhos de Portugal Continental segundo as zonas climáticas e correspondentes dados climáticos de referência

CONCELHO	Zona Climática Inverno		Zona Climática Verão			
		Nº Graus	Duração		Temp ^a	Amplitude
		dias (GD)	estação		ext.	térmica (°C)
		(°C.dias)	aquec.		projecto	
			(meses)		(°C)	
ABRANTES	I2	1630	6,0	V3	36	17
ÁGUEDA	I1	1490	6,7	V1	31	12
AGUIAR DA BEIRA	I3	2430	7,3	V2	32	13
ALANDROAL	I1	1320	6,0	V3	36	17
ALBERGARIA-A-VELHA	I1	1470	6,3	V1	30	11
ALBUFEIRA	I1	1130	5,3	V2	33	14
ALCÁCER DO SAL	I1	1240	5,3	V3	35	16
ALCANENA	I2	1680	6, 0	V2	33	14
ALCOBAÇA	I2	1640	6,3	V1	29	10
ALCOCHETE	I1	1150	5,3	V3	34	13
ALCOUTIM	I1	1270	5,0	V3	34	14
ALENQUER	I1	1410	5,7	V2	33	12
ALFANDEGA DA FÉ	I3	2340	7,7	V2	33	15
ALIJÓ	I3	2500	7,0	V3	34	16
ALJEZUR	I1	1120	5,3	V1	30	10
ALJUSTREL	I1	1260	5,7	V3	35	17
ALMADA	I1	1160	5,3	V1	31	10
ALMEIDA	I3	2540	7,7	V2	33	16
ALMEIRIM	I1	1340	5,7	V3	35	15
ALMODOVAR	I1	1390	5,7	V3	35	16
ALPIARÇA	I1	1360	5,7	V3	35	15
ALTER DO CHÃO	I1	1340	6, 0	V3	36	16
ALVAIÁZERE	I2	1810	6, 0	V3	34	14
ALVITO	I1	1220	5,3	V3	36	18
AMADORA	I1	1340	5,7	V1	31	10

AMARANTE	I2	2040	6,7	V2	33	13
AMARES	I2	1690	7,0	V2	32	14
ANADIA	I1	1460	6,3	V2	32	12
ANSIÃO	I2	1780	6,0	V2	33	14
ARCOS DE VALDEVEZ	I3	2250	6,7	V2	32	14
ARGANIL	I2	2050	7,0	V2	33	14
ARMAMAR	I3	2370	6,3	V3	35	15
AROUCA	I2	2050	7,0	V1	31	12
ARRAIOLOS	I1	1380	5,7	V3	35	17
ARRONCHES	I1	1460	6,3	V3	35	16
ARRUDA DOS VINHOS	I1	1480	5,3	V2	33	11
AVEIRO	I1	1390	6,0	V1	29	9
AVIS	I1	1230	5,7	V3	36	17
AZAMBUJA	I1	1360	5,7	V3	34	13
BAIÃO	I3	2150	6,7	V3	34	13
BARCELOS	I2	1660	6,7	V1	31	12
BARRANCOS	I1	1250	5,7	V3	37	17
BARREIRO	I1	1150	5,3	V2	33	11
BATALHA	I2	1890	6,0	V1	31	13
BEJA	I1	1290	5,7	V3	36	17
BELMONTE	I2	1970	7,7	V2	32	13
BENAVENTE	I1	1180	5,3	V3	34	14
BOMBARRAL	I1	1380	5,7	V1	29	10
BORBA	I1	1500	6,0	V3	36	16
BOTICAS	I3	2600	7,7	V1	31	14
BRAGA	I2	1800	7,0	V2	32	13
BRAGANÇA	I3	2850	8,0	V2	33	15
CABECEIRAS DE BASTO	I3	2180	7,3	V2	32	13
CADAVAL	I2	1530	5,7	V1	31	11
CALDAS DA RAINHA	I1	1500	6,0	V1	30	10
CAMINHA	I2	1930	6,3	V2	32	12
CAMPO MAIOR	I1	1330	6,3	V3	36	17
CANTANHEDE	I1	1470	6,3	V1	31	11
CARRAZEDA DE ANSIÃES	I3	2500	7,7	V2	32	16
CARREGAL DO SAL	I2	1550	7,3	V2	32	14
CARTAXO	I1	1250	5,3	V3	35	14
CASCAIS	I1	1230	6,0	V1	29	8
CASTANHEIRA DE PERA	I3	2310	6,3	V3	34	14
CASTELO BRANCO	I2	1650	6,7	V3	35	15
CASTELO DE PAIVA	I2	1680	7,0	V1	31	13
CASTELO DE VIDE	I2	1620	6,7	V3	35	14
CASTRO D'AIRE	I3	2410	7,0	V2	33	14
CASTRO MARIM	I1	1100	4,7	V3	34	13
CASTRO VERDE	I1	1230	5,7	V3	36	17
CELORICO DA BEIRA	I3	2240	7,7	V1	30	12
CELORICO DE BASTO	I2	1950	7,0	V2	33	13

CHAMUSCA	I2	1550	6,0	V3	35	16
CHAVES	I3	2560	7,3	V2	33	17
CINFÃES	I3	2350	7,0	V2	33	13
COIMBRA	I1	1460	6,0	V2	33	13
CONDEIXA-A-NOVA	I2	1560	6,0	V2	32	13
CONSTÂNCIA	I2	1590	6,0	V3	36	16
CORUCHE	I1	1350	5,7	V3	35	16
COVILHÃ	I3	2250	7,3	V2	32	13
CRATO	I1	1460	6,3	V3	35	15
CUBA	I1	1320	5,7	V3	36	18
ELVAS	I1	1410	6,0	V3	36	17
ENTRONCAMENTO	I1	1470	6,0	V3	35	15
ESPINHO	I2	1530	6,7	V1	29	9
ESPOSENDE	I2	1610	6,7	V1	31	10
ESTARREJA	I1	1420	6,3	V1	29	10
ESTREMOZ	I1	1460	6,0	V3	36	16
ÉVORA	I1	1390	5,7	V3	35	17
FAFE	I2	2090	7,0	V2	32	13
FARO	I1	1060	4,3	V2	32	12
FEIRA	I2	1710	6,7	V1	30	11
FELGUEIRAS	I2	1870	7,0	V2	33	13
FERREIRA DO ALENTEJO	I1	1220	5,7	V3	36	17
FERREIRA DO ZÊZERE	I2	1780	6,0	V3	34	15
FIGUEIRA DA FOZ	I1	1450	6,3	V1	30	10
FIGUEIRA DE CASTELO	I3	2450	8,0	V2	33	16
RODRIGO						
figueiró dos vinhos	I2	2010	6,0	V3	34	14
FORNOS DE ALGODRES	I2	2060	7,7	V1	31	13
FREIXO DE ESPADA À CINTA	13	2370	8,0	V2	33	15
FRONTEIRA	I1	1320	6,0	V3	36	15
FUNDÃO	I2	1990	7,0	V3	34	14
GAVIÃO	I2	1570	6,0	V3	36	17
GÓIS	I3	2190	6,7	V2	33	15
GOLEGÃ	I1	1380	6,0	V3	35	15
GONDOMAR	I2	1620	7,0	V1	30	11
GOUVEIA	I3	2440	8,0	V1	30	12
GRÂNDOLA	I1	1320	5,3	V2	33	14
GUARDA	I3	2500	8,0	V1	31	13
GUIMARÃES	I2	1770	7,0	V2	32	14
IDANHA-A-NOVA	I2	1520	6,7	V3	36	18
ÍLHAVO	I1	1440	6,3	V1	28	9
LAGOA	I1	980	5, 0	V2	32	12
LAGOS	I1	970	5,0	V1	30	10
LAMEGO	I3	2360	6,3	V3	35	15

LEIRIA	I2	1610	6,0	V1	31	12
LISBOA	I1	1190	5,3	V2	32	11
LOULÉ	I1	1330	5,0	V2	33	14
LOURES	I1	1330	5,7	V2	32	11
LOURINHÃ	I1	1310	5,7	V1	28	8
LOUSÃ	I2	1890	6,3	V2	33	14
LOUSADA	I2	1810	7,0	V2	32	13
MAÇÃO	I2	1810	6,3	V3	35	17
MACEDO DE CAVALEIROS	I3	2590	7,7	V2	33	15
MAFRA	I1	1410	6,0	V1	30	9
MAIA	I2	1670	7,0	V1	30	10
MANGUALDE	I2	1970	7,7	V2	32	14
MANTEIGAS	13	3000	8,0	V1	30	12
MARCO DE CANAVEZES	I2	1770	7,0	V2	33	13
MARINHA GRANDE	I1	1500	6,3	V1	28	9
MARVÃO	I2	1820	6,7	V3	34	15
MATOSINHOS	I2	1580	6,7	V1	29	9
MEALHADA	I1	1470	6,0	V2	32	13
MEDA	I3	2360	7,7	V2	33	14
MELGACO	I3	2770	7,7	V1	30	14
MÉRTOLA	I1	1230	5,7	V3	36	16
MESÃO FRIO	I2	1810	6,3	V3	35	14
MIRA	I1	1500	7,0	V1	29	10
MIRANDA DO CORVO	I2	1780	6,0	V2	33	14
MIRANDA DO DOURO	I3	2690	8,0	V2	33	15
MIRANDELA	I3	2270	7,3	V3	34	16
MOGADOURO	I3	2560	8,0	V2	32	14
MOIMENTA DA BEIRA	I3	2620	6,7	V3	34	15
MOITA	I1	1130	5,3	V2	33	12
MONÇÃO	I2	2000	6,7	V2	32	14
MONCHIQUE	I1	1340	5,7	V1	31	11
MONDIM DE BASTO	I3	2450	7,0	V2	33	13
MONFORTE	I1	1430	6,3	V3	35	15
MONTALEGRE	I3	2820	7,7	V1	30	13
MONTEMOR-O-NOVO	I1	1410	5,3	V3	35	17
MONTEMOR-O-VELHO	I1	1410	6,3	V1	31	12
MONTIJO	I1	1260	5,3	V3	34	15
MORA	I1	1270	5,7	V3	36	17
MORTÁGUA	I1	1460	6,7	V2	32	12
MOURA	I1	1310	5,7	V3	37	18
MOURÃO	I1	1290	5,7	V3	37	18
MURÇA	I3	2550	7,3	V2	33	17
MURTOSA	I1	1400	6,3	V1	28	8
NAZARÉ	I1	1480	6,3	V1	28	9
NELAS	I2	1770	7,3	V2	33	15
NISA	I2	1520	6,3	V3	35	15

ODEMIRA I1 1240 5,7 V1 31 13 ODIVELAS I1 1320 5,7 V2 32 11 OEIRAS I1 1230 6,0 V1 30 10 OLEIROS I3 2240 6,7 V3 34 15 OLIVEIROS I1 1010 4,3 V2 32 12 OLIVEIRA DE AZEMÉIS I2 1730 6,7 V1 30 11 OLIVEIRA DE FRADES I2 1830 7,3 V1 31 12 OLIVEIRA DO BAIRRO I1 1410 6,3 V1 30 11 OLIVEIRA DO HOSPITAL I2 1890 7,3 V2 33 15 OURIQUE I1 1300 5,7 V3 34 16 OVAR I1 1480 6,3 V1 29 9 PAÇOS DE FERREIRA I2 1990 7,3 V2 32 13<
ODIVELAS I1 1320 5,7 V2 32 11 OEIRAS I1 1230 6,0 V1 30 10 OLEIROS I3 2240 6,7 V3 34 15 OLHÃO I1 1010 4,3 V2 32 12 OLIVEIRA DE AZEMÉIS I2 1730 6,7 V1 30 11 OLIVEIRA DE FRADES I2 1830 7,3 V1 31 12 OLIVEIRA DO BAIRRO I1 1410 6,3 V1 30 11 OLIVEIRA DO HOSPITAL I2 1890 7,3 V2 33 15 OURIQUE I1 1300 5,7 V3 34 16 OVAR I1 1480 6,3 V1 29 9 PAÇOS DE FERREIRA I2 1990 7,3 V2 32 13 PAMPILHOSA DA SERRA I3 2230 6,7 V3 34
OEIRAS I1 1230 6,0 V1 30 10 OLEIROS I3 2240 6,7 V3 34 15 OLIVEIRA DE I1 1010 4,3 V2 32 12 OLIVEIRA DE FRADES I2 1730 6,7 V1 30 11 OLIVEIRA DO BAIRRO I1 1410 6,3 V1 30 11 OLIVEIRA DO HOSPITAL I2 1890 7,3 V2 33 15 OURIQUE I1 1300 5,7 V3 34 16 OVAR I1 1480 6,3 V1 29 9 PAÇOS DE FERREIRA I2 1990 7,3 V2 32 13 PALMELA I1 1190 5,3 V3 34 15 PAREDES I2 1740 7,0 V1 31 13 PAREDES DE COURA I3 2180 6,3 V2 33 13
OLHÃO I1 1010 4,3 V2 32 12 OLIVEIRA DE AZEMÉIS I2 1730 6,7 V1 30 11 OLIVEIRA DE FRADES I2 1830 7,3 V1 31 12 OLIVEIRA DO BAIRRO I1 1410 6,3 V1 30 11 OLIVEIRA DO HOSPITAL I2 1890 7,3 V2 33 15 OURIQUE I1 1300 5,7 V3 34 16 OVAR I1 1480 6,3 V1 29 9 PAÇOS DE FERREIRA I2 1990 7,3 V2 32 13 PALMELA I1 1190 5,3 V3 34 13 PAMPILHOSA DA SERRA I3 2230 6,7 V3 34 15 PAREDES I2 1740 7,0 V1 31 13 PENACOVA I2 1910 6,3 V2 33
OLHÃO I1 1010 4,3 V2 32 12 OLIVEIRA DE AZEMÉIS I2 1730 6,7 V1 30 11 OLIVEIRA DE FRADES I2 1830 7,3 V1 31 12 OLIVEIRA DO BAIRRO I1 1410 6,3 V1 30 11 OLIVEIRA DO HOSPITAL I2 1890 7,3 V2 33 15 OURIQUE I1 1300 5,7 V3 34 16 OVAR I1 1480 6,3 V1 29 9 PAÇOS DE FERREIRA I2 1990 7,3 V2 32 13 PALMELA I1 1190 5,3 V3 34 13 PAMPILHOSA DA SERRA I3 2230 6,7 V3 34 15 PAREDES I2 1740 7,0 V1 31 13 PENACOVA I2 1910 6,3 V2 33
OLIVEIRA DE AZEMÉIS I2 1730 6,7 V1 30 11 OLIVEIRA DE FRADES I2 1830 7,3 V1 31 12 OLIVEIRA DO BAIRRO I1 1410 6,3 V1 30 11 OLIVEIRA DO HOSPITAL I2 1890 7,3 V2 33 15 OURIQUE I1 1300 5,7 V3 34 16 OVAR I1 1480 6,3 V1 29 9 PAÇOS DE FERREIRA I2 1990 7,3 V2 32 13 PALMELA I1 1190 5,3 V3 34 13 PAMPILHOSA DA SERRA I3 2230 6,7 V3 34 15 PAREDES I2 1740 7,0 V1 31 13 PAREDES DE COURA I3 2180 6,3 V2 33 13 PENACOVA I2 1510 6,3 V2 33<
OLIVEIRA DE FRADES I2 1830 7,3 V1 31 12 OLIVEIRA DO BAIRRO I1 1410 6,3 V1 30 11 OLIVEIRA DO HOSPITAL I2 1890 7,3 V2 33 15 OURIQUE I1 1300 5,7 V3 34 16 OVAR I1 1480 6,3 V1 29 9 PAÇOS DE FERREIRA I2 1990 7,3 V2 32 13 PALMELA I1 1190 5,3 V3 34 13 PAMPILHOSA DA SERRA I3 2230 6,7 V3 34 15 PAREDES I2 1740 7,0 V1 31 13 PAREDES DE COURA I3 2180 6,3 V2 33 13 PENACOVA I2 1910 6,3 V2 33 13 PENAFIEL I2 1750 7,0 V2 32
OLIVEIRA DO BAIRRO I1 1410 6,3 V1 30 11 OLIVEIRA DO HOSPITAL I2 1890 7,3 V2 33 15 OURIQUE I1 1300 5,7 V3 34 16 OVAR I1 1480 6,3 V1 29 9 PAÇOS DE FERREIRA I2 1990 7,3 V2 32 13 PALMELA I1 1190 5,3 V3 34 13 PAMPILHOSA DA SERRA I3 2230 6,7 V3 34 15 PAREDES I2 1740 7,0 V1 31 13 PAREDES DE COURA I3 2180 6,3 V2 33 13 PEDRÓGÃO GRANDE I2 1910 6,3 V2 33 13 PENAGOVA I2 1510 6,3 V2 33 13 PENALVA DO CASTELO I2 2090 7,7 V1 31
OLIVEIRA DO HOSPITAL I2 1890 7,3 V2 33 15 OURIQUE I1 1300 5,7 V3 34 16 OVAR I1 1480 6,3 V1 29 9 PAÇOS DE FERREIRA I2 1990 7,3 V2 32 13 PALMELA I1 1190 5,3 V3 34 13 PAMPILHOSA DA SERRA I3 2230 6,7 V3 34 15 PAREDES I2 1740 7,0 V1 31 13 PAREDES DE COURA I3 2180 6,3 V2 33 13 PEDRÓGÃO GRANDE I2 1910 6,3 V3 34 15 PENACOVA I2 1510 6,3 V2 33 13 PENAFIEL I2 1750 7,0 V2 32 13 PENALVA DO CASTELO I2 2090 7,7 V1 31 <
OURIQUE I1 1300 5,7 V3 34 16 OVAR I1 1480 6,3 V1 29 9 PAÇOS DE FERREIRA I2 1990 7,3 V2 32 13 PALMELA I1 1190 5,3 V3 34 13 PAMPILHOSA DA SERRA I3 2230 6,7 V3 34 15 PAREDES I2 1740 7,0 V1 31 13 PAREDES DE COURA I3 2180 6,3 V2 33 13 PEDRÓGÃO GRANDE I2 1910 6,3 V3 34 15 PENACOVA I2 1510 6,3 V2 33 13 PENAFIEL I2 1750 7,0 V2 32 13 PENALVA DO CASTELO I2 2090 7,7 V1 31 14 PENAMACOR I2 1970 7,0 V3 34 16
OVAR I1 1480 6,3 V1 29 9 PAÇOS DE FERREIRA I2 1990 7,3 V2 32 13 PALMELA I1 1190 5,3 V3 34 13 PAMPILHOSA DA SERRA I3 2230 6,7 V3 34 15 PAREDES I2 1740 7,0 V1 31 13 PAREDES DE COURA I3 2180 6,3 V2 33 13 PEDRÓGÃO GRANDE I2 1910 6,3 V3 34 15 PENACOVA I2 1510 6,3 V2 33 13 PENAFIEL I2 1750 7,0 V2 32 13 PENALVA DO CASTELO I2 2090 7,7 V1 31 14 PENAMACOR I2 1970 7,0 V3 34 16
PAÇOS DE FERREIRA I2 1990 7,3 V2 32 13 PALMELA I1 1190 5,3 V3 34 13 PAMPILHOSA DA SERRA I3 2230 6,7 V3 34 15 PAREDES I2 1740 7,0 V1 31 13 PAREDES DE COURA I3 2180 6,3 V2 33 13 PEDRÓGÃO GRANDE I2 1910 6,3 V3 34 15 PENACOVA I2 1510 6,3 V2 33 13 PENAFIEL I2 1750 7,0 V2 32 13 PENALVA DO CASTELO I2 2090 7,7 V1 31 14 PENAMACOR I2 1970 7,0 V3 34 16
PALMELA I1 1190 5,3 V3 34 13 PAMPILHOSA DA SERRA I3 2230 6,7 V3 34 15 PAREDES I2 1740 7,0 V1 31 13 PAREDES DE COURA I3 2180 6,3 V2 33 13 PEDRÓGÃO GRANDE I2 1910 6,3 V3 34 15 PENACOVA I2 1510 6,3 V2 33 13 PENAFIEL I2 1750 7,0 V2 32 13 PENALVA DO CASTELO I2 2090 7,7 V1 31 14 PENAMACOR I2 1970 7,0 V3 34 16
PAMPILHOSA DA SERRA I3 2230 6,7 V3 34 15 PAREDES I2 1740 7,0 V1 31 13 PAREDES DE COURA I3 2180 6,3 V2 33 13 PEDRÓGÃO GRANDE I2 1910 6,3 V3 34 15 PENACOVA I2 1510 6,3 V2 33 13 PENAFIEL I2 1750 7,0 V2 32 13 PENALVA DO CASTELO I2 2090 7,7 V1 31 14 PENAMACOR I2 1970 7,0 V3 34 16
PAREDES I2 1740 7,0 V1 31 13 PAREDES DE COURA I3 2180 6,3 V2 33 13 PEDRÓGÃO GRANDE I2 1910 6,3 V3 34 15 PENACOVA I2 1510 6,3 V2 33 13 PENAFIEL I2 1750 7,0 V2 32 13 PENALVA DO CASTELO I2 2090 7,7 V1 31 14 PENAMACOR I2 1970 7,0 V3 34 16
PAREDES DE COURA I3 2180 6,3 V2 33 13 PEDRÓGÃO GRANDE I2 1910 6,3 V3 34 15 PENACOVA I2 1510 6,3 V2 33 13 PENAFIEL I2 1750 7,0 V2 32 13 PENALVA DO CASTELO I2 2090 7,7 V1 31 14 PENAMACOR I2 1970 7,0 V3 34 16
PEDRÓGÃO GRANDE I2 1910 6,3 V3 34 15 PENACOVA I2 1510 6,3 V2 33 13 PENAFIEL I2 1750 7,0 V2 32 13 PENALVA DO CASTELO I2 2090 7,7 V1 31 14 PENAMACOR I2 1970 7,0 V3 34 16
PENACOVA I2 1510 6,3 V2 33 13 PENAFIEL I2 1750 7,0 V2 32 13 PENALVA DO CASTELO I2 2090 7,7 V1 31 14 PENAMACOR I2 1970 7,0 V3 34 16
PENAFIEL I2 1750 7,0 V2 32 13 PENALVA DO CASTELO I2 2090 7,7 V1 31 14 PENAMACOR I2 1970 7,0 V3 34 16
PENALVA DO CASTELO I2 2090 7,7 V1 31 14 PENAMACOR I2 1970 7,0 V3 34 16
PENAMACOR I2 1970 7,0 V3 34 16
1 10 100 1,0 1 11 00 17 17 17 17 17 17 17 17 17 17 17 17 17
PENELA I2 1920 6,0 V2 33 14
PENICHE I1 1260 5,7 V1 26 6
PESO DA RÉGUA 12 2040 6,3 V3 35 15
PINHEL I3 2390 7,7 V2 32 15
POMBAL I2 1580 6,0 V2 32 12
PONTE DA BARCA I3 2230 7,0 V2 32 14
PONTE DE LIMA I2 1790 6,3 V2 32 13
PONTE DE SOR II 1440 6,0 V3 36 17
PORTALEGRE I2 1740 6,7 V3 34 14
PORTEL II 1400 5,7 V3 36 17
PORTIMÃO II 940 5,3 V1 31 11
PORTO I2 1610 6,7 V1 30 9
PORTO DE MÓS 12 1980 6,0 V1 31 13
PÓVOA DE VARZIM I2 1570 6,7 V1 30 10
PÓVOA DO LANHOSO I2 1810 7,0 V2 32 14
PROENÇA-A-NOVA I2 1840 6,3 V3 35 16
REDONDO II 1400 6,0 V3 36 17
REGUENGOS DE MONSARAZ II 1310 6,0 V3 37 17
RESENDE I3 2500 6,7 V3 34 14
RIBEIRA DE PENA I3 2600 7,7 V2 32 14
RIO MAIOR I2 1570 6,0 V2 33 13
SABROSA I3 2380 6,7 V3 35 16
SABUGAL I3 2450 7,3 V2 33 16

SALVATERRA DE MAGOS	I1	1250	5,3	V3	35	15
SANTA COMBA DÃO	I1	1420	7,3	V2	32	13
SANTA MARTA DE	I2	2100	6,3	V3	35	15
PENAGUIÃO						
SANTARÉM	I1	1440	5,7	V3	34	14
SANTIAGO DO CACÉM	I1	1320	5,7	V2	32	14
SANTO TIRSO	I2	1830	7,0	V2	32	13
SÃO BRÁS DE ALPORTEL	I1	1460	5,3	V2	33	13
SÃO JOÃO DA MADEIRA	I2	1670	6,7	V1	30	11
SÃO JOÃO DA PESQUEIRA	I3	2310	7,0	V3	34	15
SÃO PEDRO DO SUL	I2	2000	7,3	V2	32	13
SARDOAL	I2	1830	6,0	V3	36	17
SÁTÃO	I3	2310	7,3	V2	32	14
SEIA	I3	2520	7,7	V2	32	14
SEIXAL	I1	1130	5,3	V2	32	11
SERNANCELHE	I3	2600	7,0	V2	33	14
SERPA	I1	1330	5,7	V3	36	17
SERTÃ	I2	1980	6,3	V3	34	16
SESIMBRA	I1	1190	5,3	V2	32	10
SETÚBAL	I1	1190	5,3	V2	33	12
SEVER DO VOUGA	I2	1730	7,0	V1	30	12
SILVES	I1	1180	5,7	V2	33	14
SINES	I1	1150	5,3	V1	28	10
SINTRA	I1	1430	6,0	V1	29	8
SOBRAL DE MONTE	I1	1500	5,7	V2	32	11
AGRAÇO						
SOURE	I1	1490	6,0	V2	32	13
SOUSEL	I1	1290	6,0	V3	36	16
TÁBUA	I2	1620	7,0	V2	33	14
TABUAÇO	I3	2460	6,3	V3	35	15
TAROUCA	I3	2670	6,3	V3	34	15
TAVIRA	I1	1290	4,7	V2	33	13
TERRAS DE BOURO	I3	2420	7,0	V2	32	13
TOMAR	I2	1650	6,0	V3	35	15
TONDELA	I2	1640	7,3	V2	32	12
TORRE DE MONCORVO	I3	2330	8,0	V2	33	15
TORRES NOVAS	I2	1540	6,0	V3	34	14
TORRES VEDRAS	I1	1310	5,7	V1	30	9
TRANCOSO	13	2450	7,7	V2	32	13
TROFA	I2	1670	7,0	V1	30	11
VAGOS	I1	1470	6,7	V1	29	10
VALE DE CAMBRA	I2	2100	7,0	V1	31	12
VALENÇA	I2	1820	6,3	V2	33	13
VALONGO	I2	1750	7,0	V1	31	12
VALPAÇOS	13	2570	7,3	V3	34	17

VENDAS NOVAS	I1	1320	5,3	V3	35	16
VIANA DO ALENTEJO	I1	1300	5,3	V3	36	18
VIANA DO CASTELO	I2	1760	6,3	V1	31	11
VIDIGUEIRA	I1	1300	5,7	V3	36	17
VIEIRA DO MINHO	I3	2240	7,3	V2	32	13
VILA DE REI	I2	1880	6,0	V3	35	16
VILA DO BISPO	I1	960	5,0	V1	29	8
VILA DO CONDE	I2	1590	6,7	V1	30	9
VILA FLOR	I3	2330	7,7	V2	33	16
VILA FRANCA DE XIRA	I1	1220	5,3	V3	34	13
VILA NOVA DA BARQUINHA	I2	1560	6,0	V3	35	15
VILA NOVA DE CERVEIRA	I2	1830	6,3	V2	32	12
VILA NOVA DE FAMALICÃO	I2	1690	7,0	V1	31	12
VILA NOVA DE FOZ CÔA	I3	2210	7,7	V2	33	15
VILA NOVA DE GAIA	I2	1640	6,7	V1	30	10
VILA NOVA DE OURÉM	I2	1750	6,0	V2	33	14
VILA NOVA DE PAIVA	I3	2590	7,0	V2	33	15
VILA NOVA POIARES	I2	1580	6,3	V2	33	13
VILA POUCA DE AGUIAR	I3	2860	7,7	V2	33	15
VILA REAL	I3	2660	7,0	V2	33	15
VILA REAL DE SANTO	I1	1060	4,3	V3	34	12
ANTÓNIO						
VILA VELHA DE RÓDÃO	I2	1510	6,7	V3	35	15
VILA VERDE	I2	1770	6,7	V2	32	13
VILA VIÇOSA	I1	1410	6,0	V3	36	17
VIMIOSO	I3	2570	8,0	V2	33	15
VINHAIS	I3	2830	7,7	V2	33	16
VISEU	I2	1940	7,3	V2	33	14
VIZELA	I2	1760	7,0	V2	32	14
VOUZELA	I2	2010	7,3	V1	31	12

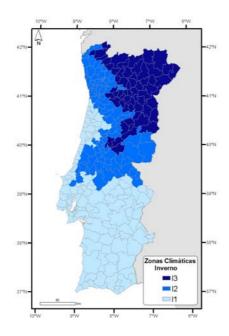


Fig. III3-1 - Portugal Continental. Zonas climáticas de Inverno.

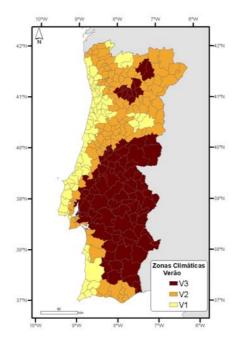


Fig. III3-2 - Portugal Continental. Zonas climáticas de Verão.

Nos concelhos de Pombal e Santiago do Cacém, os locais situados numa faixa litoral com 15 km de largura são incluídos na zona climática de Verão V₁, e adoptam-se os seguintes dados climáticos de referência:

- temperatura exterior de projecto de Verão: 31 °C;
- amplitude térmica média diária do mês mais quente: 10 °C.

No concelho de Alcácer do Sal os locais situados numa faixa litoral com 10 km de largura são incluídos na zona climática de Inverno V2, e adoptam-se os seguintes dados climáticos de referência:

- temperatura exterior de projecto de Verão: 33 °C;
- amplitude térmica média diária do mês mais quente: 13 °C.

QUADRO III.2 - Zonamento climático de Inverno (Portugal Continental)

Alterações em função da altitude dos locais

Zona	Altitude, z, do local (m)					
climática de	~ `	400	<i>γ></i>	600	~ ~	1000
Inverno do		400	ξ -	000	ξ-	1000
concelho	₹ ≤ 600		₹ ≤ 1000			
(segundo o	Zona	Graus-dias	Zona	Graus-dias	Zona	Graus-dias
quadro 1)	climática a	(°C.dias)	climática a	(°C.dias)	climática a	(°C.dias)
	considerar na	(C.uias)	considerar na	(C.uias)	considerar na	(C.dias)
	altitude z	_	altitude z	_	altitude z	_
	indicada	Duração est.	indicada	Duração est.	indicada	Duração est.
	acima	aquec.	acima	aquec.	acima	aquec.
		(meses)		(meses)		(meses)

I1	I2	z + 1500	13	z + 1700	13	z + 1900
		_		_		_
		6,7		7,3		8
I2	I2	Quadro 1	13	<i>χ</i> + 1700	I3	z + 1900
				7,3		8
I3	13	Quadro 1	13	Quadro 1	13	z + 1900
						_
						8

QUADRO III.3 - Zonamento climático de Verão (Portugal Continental).

Alterações em função da altitude dos locais

Zona								
climática de		Altitude, z, do local (m)						
Verão do			1				T	
concelho	₹>	600	₹>	800	₹>	1000	₹>	1200
	η ≤	₹ ≤ 800		₹ ≤ 1000		$z \le 1200$		
	Zona	Temp ^a ext.	Zona	Temp ^a ext.	Zona	Temp ^a ext.	Zona	Temp ^a ext.
	climática a	de	climática a	de	climática a	de	climática a	de
	consi-	projecto	consi-	projecto	consi-	projecto	consi-	projecto
	derar na	(°C)	derar na	(°C)	derar na	(°C)	derar na	(°C)
	altitude z		altitude z		altitude z		altitude z	
	indicada		indicada		indicada		indicada	
	acima		acima		acima		acima	
V1	V1	Quadro 1	V1	30	V1	29	V1	27
V2	V2	Quadro 1	V1	31	V1	29	V1	27
V3	V2	33	V1	31	V1	29	V1	27

1.3 - Região autónoma dos Açores

Zonas climáticas de Inverno

I₁ - locais situados até 600 m de altitude

 $\rm I_2$ - locais situados entre 600 m e 1000 m de altitude

I₃ - locais situados acima de 1000 m de altitude

Para cada local, o número médio de graus-dias de aquecimento (na base de 20°C) da estação convencional de aquecimento pode ser calculado, em função da respectiva altitude, z, pela seguinte expressão:

$$GD_{20}$$
 (est. aquec.) = 1,5 . χ + 650

A duração média da estação convencional de aquecimento, em função da altitude, é dada no quadro III.4.

QUADRO III.4 - Região Autónoma dos Açores.

Duração média da estação convencional de aquecimento

Altitude, z	Duração média
(m)	(meses)
₹≤ 100	4
$100 < z \le 500$	3+0,01 2
z > 500	8

Zona climática de Verão - V1 (Toda a Região Autónoma dos Açores)

Para cada local, a temperatura exterior de projecto de Verão e a amplitude térmica diária do mês mais quente, em função da respectiva altitude, são dadas no quadro III.5.

QUADRO III.5 - Região Autónoma dos Açores. Temperatura exterior de projecto de Verão e amplitude térmica diária do mês mais quente

Altitude, γ	Temperatura exterior de	Amplitude térmica diária
(m)	projecto de Verão (° C)	do mês mais quente (° C)
₹≤ 600	25	6
z > 600	24	9

1.4 - Região Autónoma da Madeira

Zonas climáticas de Inverno

- I1 locais situados até 800 m de altitude
- I2 locais situados entre 800 m e 1100 m de altitude
- I3 locais situados acima de 1100 m de altitude

Para cada local, o número médio de graus-dias de aquecimento da estação convencional de aquecimento pode ser calculado, em função da respectiva altitude, z, pela seguinte expressão:

$$\chi$$
 < 400 m GD₂₀ (est. aquec.) = 2,4 . χ + 50
 χ ≥ 400 m GD₂₀ (est. aquec.) = 1,6 . χ + 380

A duração média da estação convencional de aquecimento, em função da altitude, é dada no quadro III.6.

QUADRO III.6 - Região Autónoma da Madeira.

Duração média da estação convencional de aquecimento

Altitude, z	Duração média
(m)	(meses)
z≤100	0,3
$100 < z \le 700$	8-7,7 (700- z) /600
z > 700	8

Zona climática de Verão - V1 (Toda a Região Autónoma da Madeira)

Para cada local, a temperatura exterior de projecto de Verão e a amplitude térmica diária do mês mais quente, em função da respectiva altitude, são dadas no quadro III.7.

QUADRO III.7 - Região Autónoma da Madeira. Temperatura exterior de projecto de Verão e amplitude térmica diária do mês mais quente

Altitude, γ	Temperatura exterior de projecto de Verão	Amplitude térmica diária do mês mais quente
(m)	(° C)	(° C)
<i>γ</i> ≤ 400	26	6
z > 400	24	9

2 - Energia solar média incidente numa superfície vertical orientada a Sul

Apresentam-se no quadro III.8 os valores de referência da energia solar média incidente numa superfície vertical orientada a Sul na estação de aquecimento.

QUADRO III.8 - Energia solar média mensal incidente numa superfície vertical orientada a Sul na estação de aquecimento

Zona de Inverno	Energia solar média incidente numa superfície vertical orientada a Sul na estação de aquecimento G _{Sul} (kWh/m².mês)
I1	Sgul (KWII) III IIICS)
Continente	108
Açores	70
Madeira	100
I2	
Continente	93
Açores	50
Madeira	80
13	
Continente	90
Açores	50
Madeira	80

3 - Valores médios da temperatura do ar exterior e da intensidade média da radiação solar durante a estação convencional de arrefecimento (Junho a Setembro) - quadro III.9

QUADRO III.9 - Valores médios da temperatura do ar exterior e da intensidade da radiação solar para a estação convencional de arrefecimento (Junho a Setembro)

Zona	hetaatm	N	NE	Е	SE	S	SW	W	NW	Horiz.
V1 N	19	200	300	420	430	380	430	420	300	730
V1 S	21	200	310	420	430	380	440	430	320	760
V2 N	19	200	320	450	470	420	470	450	320	790
V2 S	23	200	340	470	460	380	460	470	340	820
V3 N	22	200	320	450	460	400	460	450	320	800
V3 S	23	210	330	460	460	400	470	460	330	820
Açores	21	190	270	360	370	340	370	360	270	640
Madeira	21	200	300	380	380	320	370	380	300	700

Anexo IV

Método de Cálculo das Necessidades de Aquecimento

1 - Justificação da metodologia de cálculo

As necessidades nominais de aquecimento de uma fracção autónoma de um edifício são a energia útil que é necessário fornecer-lhe para manter permanentemente no seu interior a temperatura de referência definida no artigo 16.º do RCCTE durante toda a estação convencional de aquecimento. Este valor não representa necessariamente o consumo real dessa zona do edifício, já que, em geral, os seus ocupantes não impõem permanentemente situações exactamente iguais às de referência, podendo mesmo ocorrer diferenças substanciais por excesso ou por defeito entre as condições reais de funcionamento e as admitidas ou convencionadas como de referência para efeitos deste Regulamento.

No entanto, mais do que um método de prever necessidades energéticas reais de um edifício (ou de uma fracção autónoma de um edifício), o valor das necessidades nominais, calculado para condições de referência, constitui uma forma objectiva de comparar edifícios desde a fase do licenciamento, do ponto de vista do comportamento térmico: quanto maior for o seu valor, mais frio será o edifício no Inverno, ou mais energia será necessário consumir para o aquecer até atingir uma temperatura confortável.

Este método está definido de acordo com as disposições da norma europeia EN ISO 13790, sendo feitas as adaptações permitidas por essa norma para melhor se ajustar à realidade da construção e da prática de utilização dos edifícios em Portugal. Para simplicidade de cálculo, considera-se todo o edifício (ou fracção autónoma) como uma única zona, todo mantido permanentemente à mesma temperatura de referência.

As necessidades nominais de aquecimento resultam do valor integrado na estação de aquecimento da soma algébrica de três parcelas:

1) Perdas de calor por condução através da envolvente dos edifícios, Q;

- 2) Perdas de calor resultantes da renovação de ar, Q_v;
- 3) Ganhos de calor úteis, Q_{gu} , resultantes da iluminação, dos equipamentos, dos ocupantes e dos ganhos solares através dos envidraçados.

Embora todas estas parcelas sejam, por natureza, fenómenos instacionários, eles serão abordados, no âmbito deste regulamento, na sua formulação média em regime permanente dado que, como serão todas integradas ao longo da estação de aquecimento, os efeitos instacionários compensam-se e podem ser desprezados.

As necessidades anuais de aquecimento do edifício, N_{ic} são calculadas pela expressão seguinte:

$$N_{ic} = (Q_t + Q_V - Q_{gu}) / Ap$$

em que o termo Q_{gu} pode ser substituído, nos termos do capítulo 4.5, pelo resultado produzido pelo programa SLR-P no caso da presença de sistemas especiais, solares passivos, no edifício.

A metodologia de cálculo de cada um dos três termos acima identificados é definida individualmente de seguida.

2 - Perdas de calor por condução através da envolvente

As perdas de calor pela envolvente durante toda a estação de aquecimento (Q_t) , isto é, pelas paredes, pelos envidraçados, pela cobertura e pelo pavimento, devidas à diferença de temperatura entre o interior e o exterior do edifício, resultam da soma de quatro parcelas:

$$Q_{t} = Q_{ext} + Q_{lna} + Q_{pe} + Q_{pt}$$
 (W)

- Q_{ext} perdas de calor pelas zonas correntes das paredes, envidraçados, coberturas e pavimentos em contacto com o exterior;
- Q_{lna} perdas de calor pelas zonas correntes das paredes, envidraçados e pavimentos em contacto com locais não-aquecidos;

Q_{pe} - perdas de calor pelos pavimentos e paredes em contacto com o solo;

Q_{pt} - perdas de calor pelas pontes térmicas lineares existentes no edifício.

2.1 Perdas pela envolvente em zona corrente

2.1.1 – Elementos em contacto com o exterior

As perdas pelas zonas correntes das paredes, envidraçados, coberturas e pavimentos exteriores (Q_{ext}) são calculadas, em cada momento, para cada um desses elementos, pela expressão:

$$Q_{ext} = U .A .(\theta_i - \theta_{atm})$$
 (W)

em que:

U - coeficiente de transmissão térmica do elemento da envolvente (em W/m².ºC);

A - área do elemento da envolvente medida pelo interior (em m²);

 temperatura do ar no interior do edifício (tomada para efeitos do cálculo das necessidades nominais de aquecimento como a temperatura do ar referida no número 4 do artigo 4º deste regulamento) (em °C);

 θ_{atm} - temperatura do ar exterior (em °C).

Durante toda a estação de aquecimento, a energia necessária para compensar estas perdas é, para cada elemento da envolvente exterior, calculada pela expressão:

$$Q_{ext} = 0,024. \text{ U .A. GD}$$
 (kWh)

em que GD é o número de graus-dias de aquecimento especificados para cada concelho no anexo III deste regulamento. O método de cálculo do coeficiente de transmissão térmica, U, é descrito no anexo VII e os valores de U para os elementos construtivos mais comuns encontram-se compilados na publicação do LNEC "Coeficientes de Transmissão Térmica de Elementos da Envolvente dos Edificios".

2.1.2 – Elementos em contacto com locais não-aquecidos

As perdas pelas zonas correntes das paredes, envidraçados e pavimentos que separam um espaço aquecido de um local não-aquecido (Q_{lna}) - por exemplo, armazéns ou arrecadações, garagens, corredores ou escadas de acesso dentro do mesmo edifício, sótãos não-habitados (acessíveis ou não), etc. - são calculadas, para cada um desses elementos, pela expressão:

$$Q_{lna} = U .A .(\theta_i - \theta_a)$$
 (W)

em que:

U - coeficiente de transmissão térmica do elemento da envolvente (em W/m².°C);

A - área do elemento da envolvente medida pelo interior (em m²);

 θ_i - temperatura do ar no interior do edifício (tomada para efeitos do cálculo das necessidades nominais de aquecimento como a temperatura do ar referida no número 4 do artigo 4º deste regulamento) (em °C);

 θ_a - temperatura do ar do local não-aquecido (em °C).

O método de cálculo do coeficiente de transmissão térmica, U, é descrito no anexo VII, em que, para o cálculo de U, se adopta um valor da resistência térmica exterior, R_{se} , igual ao da resistência térmica interior, R_{si} .

A temperatura do ar do local não-aquecido, θ_a , toma um valor intermédio entre a temperatura atmosférica exterior e a temperatura da zona aquecida a que se aplica o Regulamento. Admite-se que a temperatura θ_a toma o valor:

$$\theta_{a} = \theta_{atm} + (1-\tau). (\theta_{i} - \theta_{atm})$$
 (°C)

em que:

 θ_i - Temperatura interior (adimitida como a temperatura do ar referida no número 4 do artigo $4^{\rm o}$)

 θ_{atm} - Temperatura ambiente exterior, °C

 θ_a - Temperatura do local não aquecido, °C

e o valor de τ é dado pela expressão

$$\tau = \frac{\theta_i - \theta_a}{\theta_i - \theta_{atm}}$$

Dada a dificuldade em conhecer com precisão o valor de θ_a sem fixação de alguns parâmetros de difícil previsão dependentes do uso concreto e real de cada espaço, admitese que τ pode tomar os valores convencionais indicados na tabela IV.1 para várias situações comuns de espaços não-aquecidos, calculados com base nos valores de referência dos coeficientes de transmissão térmica da envolvente preconizados neste regulamento e em valores típicos das taxas de renovação de ar que neles ocorrem, sem prejuízo de se recorrer a um cálculo mais preciso baseado na metodologia indicada na norma europeia EN ISO 13789.

Nos termos do artigo 2.º deste regulamento, o método de cálculo pressupõe que, obrigatoriamente, as perdas térmicas sejam calculadas para a envolvente do espaço aquecido, não podendo ser englobados neste quaisquer espaços que, nos termos do anexo I deste regulamento, não serão nem deverão ser aquecidos. Todos os elementos da envolvente que limita o espaço útil devem obedecer sempre aos requisitos mínimos de qualidade térmica em vigor.

Durante toda a estação de aquecimento, a energia necessária para compensar estas perdas é, para cada elemento da envolvente em contacto com um local não-aquecido, calculada pela expressão:

$$Q_{lna} = 0.024. \text{ U .A. GD . } \tau$$
 (kWh)

2.2 Perdas por pavimentos e paredes em contacto com o solo

As perdas unitárias de calor (por ${}^{\circ}C$ de diferença de temperatura entre os ambientes interior e exterior) através dos elementos de construção em contacto com o terreno, L_{pe} , são calculadas pela seguinte expressão:

$$L_{pe} = \sum \psi_{i}.B_{i} \qquad (W/^{\circ}C)$$

onde:

 ψ – é o coeficiente de transmissão térmica linear, em [W/m.°C].

B – é o perímetro do pavimento ou o desenvolvimento da parede, medido pelo interior, em [m].

Na figura IV.1 define-se o princípio de quantificação da transmissão de calor através dos elementos de construção em contacto com o solo. Os valores do coeficiente ψ são apresentados nas tabelas IV.2 para várias geometrias típicas, ou podem ser calculados para situações não previstas usando a metodologia definida na EN 13370.

Durante toda a estação de aquecimento, a energia necessária para compensar estas perdas lineares é, para cada elemento da envolvente em contacto com o solo, calculada pela expressão:

$$Q_{pe} = 0.024 L_{pe} GD \qquad (kWh)$$

em que GD é o número de graus-dias de aquecimento indicado para cada concelho no anexo III deste Regulamento.

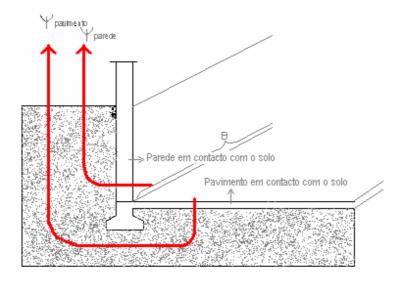


Fig. IV.1 – Elementos de construção em contacto com o solo

2.3 Pontes térmicas

As perdas de calor lineares unitárias (por °C de diferença de temperatura entre os ambientes interior e exterior) através das pontes térmicas, L_{pt}, são calculadas pela seguinte expressão:

$$L_{pt} = \sum \psi_{i} \cdot B_{i} \qquad (W/^{\circ}C)$$

onde:

 ψ_i – é o coeficiente de transmissão térmica linear da ponte térmica j, em [W/m.°C];

 B_j – é o desenvolvimento linear (comprimento) da ponte térmica j, medido pelo interior, em [m].

Para efeitos deste Regulamento, a análise limita-se às pontes térmicas bidimensionais, sendo indicados na tabela IV.3 os valores de ψ correspondentes às situações mais correntes na construção em Portugal. Para outras situações muito distintas destas, poderão ser adoptados valores de ψ calculados por metodologia adequada, segundo a norma EN ISO 10211-1, devidamente justificados pelo responsável pela aplicação deste Regulamento.

Durante toda a estação de aquecimento a energia necessária para compensar estas perdas térmicas lineares é, para cada ponte térmica da envolvente, calculada pela expressão:

$$Q_{pt} = 0.024. L_{pt} GD$$
 (kWh)

3 - Perdas de calor resultantes da renovação do ar

3.1 Metodologia de cálculo

Estas perdas de calor por unidade de tempo correspondentes à renovação do ar interior, Q_{ra} , são calculadas por:

$$Q_{ra} = \rho C_p R_{bb} V (\theta_i - \theta_{atm}) / 3600$$
 (W)

em que:

 ρ - massa volúmica do ar (em kg/m³);

C_p - calor específico do ar (em J/kg.°C);

R_{ph} - número de renovações horárias do ar interior (taxa de renovação nominal);

- V volume interior da fracção autónoma (em m³), ou seja, o produto da área útil de pavimento pelo pé-direito médio;
- θ_i temperatura interior de referência (a temperatura do ar referida no n.º 4 do artigo 4º deste regulamento) (em °C);

 θ_{atm} – temperatura do ar exterior (em °C).

O termo $\frac{\rho C_p}{3600}$ toma o valor de 0,34 W/m³.°C. Daqui resulta então que

$$Q_{ra} = 0.34 \cdot R_{ph} \cdot A_p P_d (\theta_i - \theta_{atm})$$
 (W)

com:

A_p - área útil de pavimento (m²);

P_d - pé direito médio (m).

O valor nominal de R_{ph} a utilizar para a verificação regulamentar é o estabelecido pela metodologia descrita em 3.2.

Durante toda a estação de aquecimento, a energia necessária para compensar estas perdas é calculada pela expressão:

$$Q_v = 0,024.(0,34. R_{ph}. A_p P_d).GD$$
 (kWh)

ou, no caso de a ventilação ser assegurada por meios mecânicos providos de dispositivos de recuperação de calor do ar extraído,

$$Q_v = 0.024 \cdot (0.34 \cdot R_{oh} \cdot A_o P_d) \cdot GD \cdot (1 - \eta_v)$$
 (kWh)

em que GD é o número de graus-dias de aquecimento (indicado para cada concelho no anexo III deste Regulamento) e η_v é o rendimento do sistema de recuperação de calor (ver 3.2.2).

Quando o edifício dispuser de sistemas mecânicos de ventilação, à energia Q_v calculada pela expressão anterior deve ser adicionada a energia eléctrica E_v necessária ao seu funcionamento, que se considera ligado em permanência durante 24 horas por dia, durante a estação de aquecimento:

$$E_v = P_v . 24 . 0.03 M \text{ (kWh)}$$

em que:

- P_v é a soma das potências eléctricas de todos os ventiladores instalados, em W;
- M é a duração média da estação convencional de aquecimento, em meses (ver Anexo III).

No caso de um ventilador comum a várias fracções autónomas, a energia total correspondente ao seu funcionamento deve ser dividida entre cada uma dessas fracções autónomas, numa base directamente proporcional aos caudais de ar nominais correspondentes a cada uma delas.

3.2 Determinação da Taxa de Renovação Horária Nominal

Por razões de higiene e conforto dos ocupantes, é necessário que os edifícios sejam ventilados em permanência por um caudal mínimo de ar. A metodologia de cálculo detalhada nos pontos 3.2.1 e 3.2.2 é baseada na presunção de que, efectivamente, o edifício, ou fracção autónoma, tem características construtivas ou dispositivos apropriados para garantirem, por ventilação natural ou mecânica, a taxa de renovação mínima necessária de $R_{\rm ph} = 0.6~{\rm h}^{-1}$. Podem ser utilizados outros métodos de cálculo tecnicamente adequados para a determinação dos caudais de ventilação, como por exemplo o especificado na norma EN 13465, desde que sejam justificados através de projecto junto da entidade licenciadora e devidamente aprovados.

3.2.1 Ventilação Natural

Sempre que os edifícios estejam em conformidade com as disposições da norma NP 1037-1, o que deve ser objecto de demonstração clara e inequívoca pelo responsável pela aplicação do RCCTE, o valor de R_{ph} a adoptar é de 0,6 h⁻¹. Nomeadamente, as fachadas dos edifícios devem dispor de dispositivos de admissão de ar autoreguláveis, que garantam os caudais nominais especificados nos compartimentos servidos para uma gama de pressões de 10 a 200 Pa, e portas exteriores ou para zonas não-úteis que disponham de vedação por borracha ou equivalente em todo o seu perímetro. Nestes edifícios não pode haver quaisquer meios mecânicos de insuflação ou de extracção de ar, nomeadamente extracção mecânica nas instalações sanitárias. A presença deste tipo de soluções implica a quantificação da taxa de renovação pela metodologia indicada em 3.2.2.

No caso de o único dispositivo de ventilação mecânica presente no edifício ou fracção autónoma ser o exaustor na cozinha, dado que este só funcionará, normalmente, durante períodos curtos, considera-se que o edifício é ventilado naturalmente. Neste e nos restantes casos de edifícios ventilados naturalmente, o valor de R_{ph} é determinado de acordo com o Quadro IV.1, em função da tipologia do edifício, da sua exposição ao vento, e da permeabilidade ao ar da sua envolvente. A qualificação da série de caixilharia utilizada deve ser comprovada por ensaio, sem o que deve ser considerada "Sem Classificação".

Quadro IV.1 - Valores convencionais de R_{ph} (em h⁻¹) para edifícios de habitação

			Permeabili	dade ao ar	das caixilh:	arias (de ac	ordo com l	EN 12207)		Edifícios
Classe de Exposição	Dispositivos de Admissão na fachada	Sem classificação		Classe 1		Classe 2		Classe 3		conformes com NP
		Caixa d	ixa de estore Ca		Caixa de estore		Caixa de estore		Caixa de estore	
		sim	não	sim	não	sim	não	sim	não	
Exp. 1	sim	0,90	0,80	0,85	0,75	0,80	0,70	0,75	0,65	
12лр. 1	não	1,00	0,90	0,95	0,85	0,90	0,80	0,85	0,75]
Exp. 2	sim	0,95	0,85	0,90	0,80	0,85	0,75	0,80	0,70	
11. Д. 2	não	1,05	0,95	1,00	0,90	0,95	0,85	0,90	0,80	0,60
Exp. 3	sim	1,00	0,90	0,95	0,85	0,90	0,80	0,85	0,75	
<u>гл</u> хр. 3	não	1,10	1,00	1,05	0,95	1,00	0,90	0,95	0,85	
Exp. 4	sim	1,05	0,95	1,00	0,90	0,95	0,85	0,90	0,80]
	não	1,15	1,05	1,10	1,00	1,05	0,95	1,00	0,90	

Notas:

- 1. Quando as aberturas de ventilação para admissão de ar praticadas nas fachadas não forem dimensionadas de forma a garantir que, para diferenças de pressão entre 20 Pa e 200 Pa, o caudal não varie mais do que 1,5 vezes, os valores do Quadro IV.1 devem ser agravados de 0,10.
- 2. Quando a área de vãos envidraçados for superior a 15% da área útil de pavimento, os valores do Quadro IV.1 devem ser agravados de 0,10.
- 3. Se todas as portas do edifício ou fracção autónoma forem bem vedadas por aplicação de borrachas ou equivalente em todo o seu perímetro, os valores indicados no Quadro IV.1 para edifícios não conformes com a NP 1037-1 podem ser diminuídos de 0,05.

Para efeitos de aplicação deste Regulamento o grau de exposição é definido do seguinte modo:

Quadro IV.2 - Classes de exposição ao vento das fachadas do edifício ou da fracção autónoma

Altura acima do		Região A			Região B	
solo	I	II	III	I	II	III
< 10 m	Exp. 1	Exp. 2	Exp. 3	Exp. 1	Exp. 2	Exp. 3
10 m a 18 m	Exp. 1	Exp. 2	Exp. 3	Exp. 2	Exp. 3	Exp. 4
18 m a 28 m	Exp. 2	Exp. 3	Exp. 4	Exp. 2	Exp. 3	Exp. 4
>28 m	Exp. 3	Exp. 4	Exp. 4	Exp. 3	Exp. 4	Exp. 4

Notas:

Região - A -Todo o território Nacional, excepto os locais pertencentes a B.

Região - B - Região Autónoma dos Açores e da Madeira e as localidades situadas numa faixa de 5 km de largura junto à costa e/ou de altitude superior a 600 m.

Rugosidade I - Edifícios situados no interior de uma zona urbana.

Rugosidade II. - Edifícios situados na periferia de uma zona urbana ou numa zona rural.

Rugosidade III - Edifícios situados em zonas muito expostas (sem obstáculos que atenuem o vento).

3.2.2 Ventilação Mecânica

No caso dos sistemas em que a ventilação recorre a quaisquer sistemas mecânicos, incluindo os sistemas de extracção nas instalações sanitárias, e com excepção do caso da presença apenas de exaustor na cozinha descrita em 3.2.1, a taxa de renovação horária é calculada com base em $\mathbf{\hat{W}}_f$, o maior dos dois valores de caudal correspondentes ao caudal insuflado $\mathbf{\hat{W}}_{ins}$ ou ao caudal extraído do edifício $\mathbf{\hat{W}}_{ev}$. Em sistemas de caudal variável, o caudal a considerar é o caudal $\mathbf{\hat{W}}_f$ médio diário.

No entanto, mesmo com ventilação mecânica num edifício, a ventilação natural continua a estar presente, em maior ou menor grau, em função do grau de desequilíbrio entre os caudais insuflados e extraídos mecanicamente. Para que a ventilação natural possa ser desprezada, é necessário que a diferença entre aqueles caudais seja superior a 0,1 h⁻¹ no caso de edifícios com exposição Exp 1, 0,25 h⁻¹ no caso de edifícios com Exp 2, e 0,5 h⁻¹ no caso de edifícios com Exp 3 ou 4. Se esta condição não for cumprida, o valor de R_{ph} será determinado de acordo com a expressão

$$R_{ph} = \frac{\mathbf{\hat{V}}_f + \mathbf{\hat{V}}_x}{V}$$

em que $\mathbf{\hat{v}}_{x}$ é o caudal adicional correspondente a infiltrações devidas ao efeito do vento e ao efeito de chaminé. O valor de $\mathbf{\hat{v}}_{x}$, para efeitos regulamentares, no caso de sistemas de

ventilação mecânica equilibrados (caudal insuflado igual ao extraído), deverá ser correspondente a 0,3 h⁻¹ no caso de edifícios com Exp. 1, 0,7 h⁻¹ no caso de edifícios com Exp. 2, e 1 h⁻¹ no caso de edifícios com Exp. 3 ou 4, variando linearmente até 0,1 h⁻¹ para os casos limites de desequilíbrio de caudais de insuflação e de extracção especificados no parágrafo anterior.

Em qualquer edifício com ventilação mecânica, para efeitos deste Regulamento, a taxa de renovação nominal R_{ph} nunca poderá ser inferior a 0,6 h⁻¹, não se considerando neste limite o caudal extraído em exaustores de cozinha, cujo funcionamento é apenas pontual.

4 – Ganhos térmicos úteis na estação de aquecimento

4.1 Metodologia

Os ganhos térmicos a considerar no cálculo das necessidades nominais de aquecimento do edifício têm duas origens:

- i) ganhos térmicos associados a fontes internas de calor (Q_i);
- ii) ganhos térmicos associados ao aproveitamento da radiação solar (Q_s).

Os ganhos térmicos brutos, Q_g, são calculados com base na equação seguinte:

$$Q_{g} = Q_{i} + Q_{s}$$
 (kWh)

Tendo em conta que nem todos os ganhos térmicos brutos se traduzem num aquecimento útil do ambiente interior, dando origem por vezes apenas a um sobreaquecimento interior, os ganhos térmicos brutos são convertidos em ganhos úteis através do factor de utilização dos ganhos térmicos (η), definido no capítulo 4.4 em função da inércia térmica do edifício e da relação entre aqueles e as perdas térmicas totais do edifício:

$$Q_{\sigma n} = \eta Q_{\sigma}$$
 (kWh)

4.2 Ganhos térmicos brutos resultantes de fontes internas

Os ganhos térmicos internos, Q_i, incluem qualquer fonte de calor situada no espaço a aquecer, excluindo o sistema de aquecimento, nomeadamente:

- ganhos de calor associados ao metabolismo dos ocupantes;
- calor dissipado nos equipamentos e nos dispositivos de iluminação.

Os ganhos de calor de fontes internas durante toda a estação de aquecimento são calculados com base na equação seguinte:

$$Q_i = q_i.M.A_p \times 0.720 \tag{kWh}$$

- q_i são os ganhos térmicos internos médios por unidade de área útil de pavimento, em W/m² (quadro IV.3), numa base de 24 h/dia, todos os dias do ano no caso dos edifícios residenciais, e em cada dia em que haja ocupação nos edifícios de serviços;
- M é a duração média da estação convencional de aquecimento em meses (ver Anexo III);
- A_p é a área útil de pavimento, em m².

Quadro IV.3 - Ganhos térmicos internos médios por unidade de área útil de pavimento

Tipo de edifício	$q_i(W/m^2)$
Residencial	4
Serviços, do tipo:	
Escritórios, comércio, restauração, consultórios, serviços de saúde com internamento, etc.	7
Hotéis	4
Outros edifícios com pequena carga de ocupação	2

Os ganhos térmicos de fontes internas são muito variáveis. Poderão ser adoptados valores diferentes dos indicados no quadro IV.3 desde que devidamente justificados e comprovados, e aceites pela entidade licenciadora.

4.3 Ganhos solares brutos

4.3.1 Cálculo dos ganhos solares através dos vãos envidraçados

Para efeitos regulamentares o cálculo dos ganhos solares brutos através dos vãos envidraçados pode ser realizado por uma de duas metodologias:

- i) método detalhado;
- ii) método simplificado.

4.3.1.1 Método detalhado

Na estação de aquecimento, os ganhos solares são calculados pela equação seguinte:

$$Q_{s} = G_{sul} \sum_{j} \left[X_{j} \sum_{n} A_{snj} \right].M$$

- G_{sul} é o valor médio mensal da energia solar média incidente numa superfície vertical orientada a sul de área unitária durante a estação de aquecimento, em kWh/m².mês (ver Anexo III);
- X_i é o factor de orientação, para as diferentes exposições (Quadro IV.4);
- A_{snj} é a área efectiva colectora da radiação solar da superfície n que tem a orientação
 j, em (m²);
- j índice que corresponde a cada uma das orientações;
- n índice que corresponde a cada uma das superfícies com a orientação j;

- M duração da estação de aquecimento, em meses (ver Anexo III).

Quadro IV.4 - Factor de orientação

	Octante N	Octantes NE	Octantes	Octantes	Octante S	Horizontal
		e NW	E e W	SE e SW		
X	0,27	0,33	0,56	0,84	1,00	0,89

São consideradas superfícies horizontais as que têm uma inclinação face ao plano horizontal inferior a 60° e superfícies verticais as restantes. No cálculo da área efectiva colectora das superfícies verticais, para cada uma das orientações, efectua-se o somatório das áreas colectoras situadas nesse octante.

O valor de A_s deve ser calculado vão a vão, ou por grupo de vãos com características idênticas de protecção solar e de incidência da radiação solar:

$$A_s = A F_s F_g F_w g_{\perp}$$

- A é a área total do vão envidraçado, isto é, área da janela, incluindo vidro e caixilho, em (m²);
- F_s é o factor de obstrução (ver 4.3.3);
- F_g é a fracção envidraçada (ver 4.3.4);
- F_w é o factor de correcção devido à variação das propriedades do vidro com o ângulo de incidência da radiação solar (ver 4.3.5);
- g⊥ é o factor solar do vão envidraçado para radiação incidente na perpendicular ao envidraçado e que tem em conta eventuais dispositivos de protecção solar (ver 4.3.2).

4.3.1.2 Método de cálculo simplificado

Para dispensar um cálculo exaustivo dos coeficientes F para cada orientação, o valor do produto F_s . F_g . F_w pode ser considerado igual a 0,46, desde que sejam satisfeitas as seguintes condições:

- Para cada orientação, tendo em conta o ponto médio de cada uma das fachadas do edifício ou da fracção autónoma, não devem existir obstruções situadas acima de um plano inclinado a 20° com a horizontal e também entre os planos verticais que fazem 60° para cada um dos lados da normal ao ponto médio da fachada, a menos de pequenos obstáculos sem impacto significativo, do tipo postes de iluminação, de telefones, ou equivalente;
- Os envidraçados não devem ser sombreados por elementos do edifício, como palas por exemplo, sendo esta aproximação satisfatória quando os elementos horizontais que se projectam sobre a janela têm um comprimento inferior a 1/5 da altura da janela e que os elementos verticais adjacentes às janelas não se projectam mais de 1/4 da largura da janela.

Nestas condições os ganhos solares brutos através dos vãos envidraçados podem ser calculados pela equação:

$$Q_{s} = G_{sul} \sum_{j} [X_{j}.0,46.A_{j}.g_{\perp}] .M$$

4.3.2 Factor solar do vão envidraçado

O factor solar do vão envidraçado (g_⊥) é um valor que representa a relação entre a energia solar transmitida para o interior através do vão envidraçado em relação à radiação solar incidente na direcção normal ao envidraçado.

Para maximizar o aproveitamento da radiação solar, os dispositivos de protecção solar móveis devem estar totalmente abertos e, nessas circunstâncias, é considerado apenas o valor do factor solar do envidraçado. Sempre que seja previsível a utilização de cortinas ou de outros dispositivos de protecção solar que normalmente permanecem fechados durante a estação de aquecimento, estes devem ser considerados no factor solar do vão

envidraçado. Portanto, no cálculo do factor solar de vãos envidraçados do sector residencial, salvo justificação em contrário, deve ser considerada a existência, pelo menos, de cortinas interiores muito transparentes de cor clara (g_{\perp} =0,70 para vidro simples incolor e g_{\perp} =0,63 para vidro duplo incolor).

Na tabela IV.4 são apresentados os valores do factor solar de vários envidraçados típicos sem dispositivos de protecção solar. Para calcular o factor solar de outros envidraçados (g_{\perp}) deve ser seguido o método de cálculo especificado na norma EN 410. No valor de g_{\perp} do vão envidraçado não se considera a obstrução criada pelos perfis, porque esta é considerada através do factor de obstrução F_f .

4.3.3 Factor de obstrução

O factor de obstrução, F_s, varia entre 0 e 1, e representa a redução na radiação solar que incide no vão envidraçado devido ao sombreamento permanente causado por diferentes obstáculos, por exemplo:

- Obstruções exteriores ao edifício: outros edifícios, orografia, vegetação, etc.;
- Obstruções criadas por elementos do edifício: outros corpos do mesmo edifício, palas,
 varandas, elementos de enquadramento do vão externos à caixilharia.

No cálculo de F_s devido a obstruções longínquas consideram-se apenas as existentes no momento do licenciamento e as que estão previstas nos planos de pormenor.

O factor de obstrução pode ser calculado pela equação seguinte:

$$F_s = F_b F_o F_f$$

em que:

 F_h é o factor de sombreamento do horizonte por obstruções longínquas exteriores ao edifício ou por outros elementos do edifício;

- F_o é o factor de sombreamento por elementos horizontais sobrepostos ao envidraçado (palas, varandas);
- F_f é o factor de sombreamento por elementos verticais adjacentes ao envidraçado (palas verticais, outros corpos ou partes do mesmo edifício).

Em nenhum caso o produto X_i . $F_h.F_o.F_f$ deve ser menor que 0,27.

a) Sombreamento do horizonte (F_h)

O efeito do sombreamento de obstruções longínquas exteriores ao edifício ou criadas por outros edifícios vizinhos depende do ângulo do horizonte, latitude, orientação, clima local e da duração da estação de aquecimento. O ângulo de horizonte é definido como o ângulo entre o plano horizontal e a recta que passa pelo centro do envidraçado e pelo ponto mais alto da maior obstrução existente entre dois planos verticais que fazem 60° para cada um dos lados da normal ao envidraçado.

O ângulo do horizonte deverá ser calculado, em cada edifício ou fracção autónoma, para cada vão (ou para grupos de vãos semelhantes) de cada fachada. Caso não exista informação disponível que permita o cálculo do ângulo de horizonte, F_h deve ser calculado por defeito adoptando um ângulo de horizonte de 45° em ambiente urbano ou 20° para edifícios isolados fora das zonas urbanas.

Os valores dos factores de correcção de sombreamento para condições climáticas médias típicas e para a estação de aquecimento, para as latitudes de 33º (para a Região Autónoma da Madeira) e 39º (para o Continente e Região Autónoma dos Açores) e para os oito octantes principais, constam da tabela IV.5. O ângulo do horizonte deverá ser calculado, em cada edifício ou fracção autónoma, para cada vão (ou para grupos de vãos semelhantes) de cada fachada.

b) Sombreamento por elementos verticais e por elementos horizontais sobrepostos ao envidraçado (F_f e F_o)

O sombreamento por elementos horizontais sobrepostos aos vãos envidraçados ou por

elementos verticais (palas, varandas, outros elementos do mesmo edifício) depende do comprimento da obstrução (ângulo da obstrução), da latitude, da exposição e do clima local. Os valores dos factores de correcção de sombreamento para a estação de aquecimento F_f e F_o constam das tabelas IV.6 e IV.7, respectivamente.

Caso não existam palas, para contabilizar o efeito de sombreamento do contorno do vão deve ser considerado o valor 0,9 para o produto F_o . F_f .

4.3.4 Fracção envidraçada

A fracção envidraçada (F_g) traduz a redução da transmissão da energia solar associada à existência da caixilharia, sendo dada pela relação entra a área envidraçada e a área total do vão envidraçado. No quadro IV.5 são apresentados valores típicos da fracção envidraçada de diferentes tipos de caixilharia.

Quadro IV.5 - Fracção envidraçada para diferentes tipos de caixilharia

Tipo de caixilharia	F_g		
	Caixilho sem	Caixilho com	
	quadrícula	quadrícula	
Janelas de alumínio ou aço	0,70	0,60	
Janelas de madeira ou PVC	0,65	0,57	
Fachadas-cortina de alumínio ou aço	0,90		

4.3.5 Factor de correcção da selectividade angular dos envidraçados

O factor de correcção da selectividade angular dos envidraçados (F_w) traduz a redução dos ganhos solares causada pela variação das propriedades do vidro com o ângulo de incidência da radiação solar directa. Para o cálculo das necessidades nominais de aquecimento o factor F_w toma o valor 0,9 para os vidros correntes simples e duplos. Para outras tipos de

envidraçados, devem ser utilizados os valores fornecidos pelos fabricantes com base na EN 410.

4.4 Factor de utilização dos ganhos térmicos

O factor de utilização dos ganhos térmicos (η) é calculado em função da inércia térmica do edifício e da relação (γ) entre os ganhos totais brutos (internos e solares) e as perdas térmicas totais do edifício, conforme representado nas equações ou figura seguintes:

$$\begin{cases} \eta = \frac{1 - \gamma^{a}}{1 - \gamma^{a+1}} & \text{se } \gamma \neq 1 \\ \eta = \frac{a}{a+1} & \text{se } \gamma = 1 \end{cases}$$

$$a = \begin{cases} 1,8 - \text{edifícios com inércia térmica fraca} \\ 2,6 - \text{edifícios com inércia térmica média} \\ 4,2 - \text{edifícios com inércia térmica forte} \end{cases}$$

e

$$\gamma = \frac{\text{Ganhos térmicos brutos}}{\text{Nec. brutas de aquecimento}} = \frac{Q_g}{Q_t + Q_v}$$

Gráfico IV.1

Deve notar-se que valores de γ elevados, que conduzam a valores de η inferiores a 0,8, levam a sérios riscos de sobreaquecimento, pelo que devem ser evitados. Os vãos envidraçados devem dispor sempre de meios eficazes de protecção solar para evitar potenciais sobreaquecimentos na estação de aquecimento.

4.5 Elementos especiais

Quando, num edifício, existirem sistemas especiais (solares passivos) de captação de energia solar para aquecimento, do tipo "paredes de armazenamento térmico" (Sistemas de Ganho Indirecto, tipo Paredes de Trombe sem ventilação), desde que orientados no "quadrante" Sul (Sul geográfico \pm 30°), pode ser utilizada outra metodologia de cálculo, do tipo SLR_P do INETI, ou outro devidamente justificado.

Nessa metodologia, o parâmetro SLR (Ganhos Solares/Perdas Térmicas) é correlacionado

com a denominada "Fracção Solar" para vários tipos de sistemas de Ganho Directo e de Ganho Indirecto, obtendo-se directamente o valor das Necessidades de Aquecimento (Nic).

O cálculo das perdas térmicas e dos ganhos solares é semelhante, devendo ser utilizados os mesmos valores das propriedades dos envidraçados, factores solares e obstruções previstos neste Regulamento.

Em alternativa, o efeito dos sistemas passivos (parede de armazenamento térmico) pode ser simplesmente ignorado, considerando este sistema como um elemento "neutro", não se considerando perdas térmicas através das áreas exteriores das paredes de armazenamento térmico, nem estes componentes ficam sujeitos a requisitos mínimos no valor dos coeficientes de transmissão térmica, pois, no balanço global anual, contribuem de forma positiva para o aquecimento ambiente na estação fria. Continuam, no entanto, obrigados aos requisitos mínimos em termos de sombreamento para não penalizarem o desempenho do edifício no Verão.

5 - Folhas de Cálculo

O método de cálculo descrito neste anexo está organizado, para sistematização da forma de apresentação de resultados, nas Folhas de Cálculo FCIV.1 (1a a 1f) e FCIV.2 que se seguem.

Folhas de Cálculo

Folha de Cálculo FCIV.1a

Perdas associadas à Envolvente Exterior

Paredes exteriores	Area	U	U.A
	(m²)	(W/m ²⁰ C)	(W/°C)
	` ′	,	
		TOTAL	
Davissantas autoriausa	A		11.4
Pavimentos exteriores	Area	U (14// 200)	U.A
	(m²)	$(W/m^{20}C)$	(W/°C)
	_	TOTAL	
		-	
Coberturas exteriores	Area	U	U.A
	(m²)	(W/m ²⁰ C)	(W/°C)
		TOTAL	
		IOIAL	
Paredes e Pavimentos	Perímetro	Ψ	Ψ.В
em contacto com o Solo	B (m)	(W/m°C)	(W/°C)
em contacto com o colo	D (III)	(**/111 0)	(***
		TOTAL	
Pontes Térmicas lineares	Comp	Ψ	Ψ.В
	Comp.	(W/m°C)	
Ligações entre:	(m)	(VV/III°C)	(W/°C)
Fachada com os Pavimentos térreos	1		
Fachada com Pavimentos			
Fachada com Pavimentos intermédios	1		
Fachada com Cobertura inclinada ou Terraço			
Fachada com Varanda			
Duas Paredes verticais			
Duas Paredes verticais Fachada com Caixa de estore			
Duas Paredes verticais Fachada com Caixa de estore Fachada com Padieira, Ombreira ou Peitoril			
Duas Paredes verticais Fachada com Caixa de estore Fachada com Padieira, Ombreira ou Peitoril Outras		TOTAL	
Duas Paredes verticais Fachada com Caixa de estore Fachada com Padieira, Ombreira ou Peitoril		TOTAL	
Duas Paredes verticais Fachada com Caixa de estore Fachada com Padieira, Ombreira ou Peitoril		TOTAL	
Duas Paredes verticais Fachada com Caixa de estore Fachada com Padieira, Ombreira ou Peitoril	(W/°C)	TOTAL	

da Fracção Autónoma

72

Folha de Cálculo FC IV.1b

Perdas associadas à Envolvente Interior

Paredes em contacto com espaços	Area	ΙU		U.A. τ
não-úteis ou edifícios adjacentes	(m²)	(W/m²ºC)	τ	(W/°C)
nao-uters ou edificios adjacentes	(111-)	(VV/IIIC)	(-)	(VV/°C)
		I.	TOTAL	
			TOTAL	
Pavimentos sobre espaços	Area	U	τ	U.A.τ
não-úteis	(m²)	(W/m ²⁰ C)	(-)	(W/°C)
	()	(()	(, 0)
				1
		-		
			TOTAL	
			TOTAL	
Coberturas interiores (tectos	Area	Ιυ	τ	U.A.τ
sob espaços não-úteis)	(m²)	(W/m ²⁰ C)	(-)	(W/°C)
	(,	(,	· · · ·	(111 -)
				1
		-		1
			TOTAL	
			TOTAL	
Vãos envidraçados em contacto	Area	Ιυ	τ	U.A.τ
com espaços não-úteis	(m²)	(W/m ²⁰ C)	(-)	(W/°C)
		- /		- /
			TOTAL	
			TOTAL	
Pontes térmicas (apenas para paredes	Area	K	τ	K.A.fc.τ
de separação para	(m²)	(W/m ²⁰ C)		(W/°C)
espaços não-úteis com $\tau > 0,7$)	()	(()	(
		1		1
			TOTAL	
		44400)		

Perdas pela envolvente interior da Fracção Autónoma

(W/°C) TOTAL	(W/ C) IOIAL
---------------------	----------------

Incluir obrigatoriamente os elementos que separam a Fracção Autónoma dos seguintes espaços:

Zonas comuns en edificios com mais de uma Fracção Autónoma;

Edifícios anexos; Garagens, armazéns, lojas e espaços não-úteis similares;

Sotãos não-habitados.

Folha de Cálculo FC IV.1c

Perdas associadas aos Vãos Envidraçados Exteriores

Vãos envidraçados exteriores	Area (m²)	U (W/m²ºC)	U.A (W/°C)
Verticais:			
Horizontais:	_		
		TOTAL	

Folha de Cálculo FC IV.1d

Perdas associadas à Renovação de Ar

Área Útil de pavimento ((Ap)		(m²)
Pé-direito médio		X	(m)
Volume interior	(V)	=	(m³)
VENTILAÇÃO NATURAL			
Cumpre NP 1037-1?	(S ou N)		se SIM: RPH = 0,6
Se NÃO:			
Classe da caixilharia	(s/c, 1, 2 ou 3)		
Caixas de estore	(S ou N)		Taxa de Renovação nominal:
Classe de exposição	(1, 2, 3 ou 4)		RPH=
Aberturas auto-reguladas?	(S ou N)		
Área de Envidraçados > 15% Ap ?	(S ou N)		Ver Quadro IV.1
Portas exteriores bem vedadas?	(S ou N)		
VENTILAÇÃO MECÂNICA (excluir	exaustor de cozi	nha)	
Caudal de insuflação	V_{ins} - (m^3/h)		V _f =
Caudal extraído	V_{ev} - (m^3/h)		
Diferença entre V _{ins} e V _{ev}	(m³/h)		V =
Infiltrações	(V_x)		(volume int) (RPH)
Recuperador de Calor	(S ou N)		se SIM: $\eta =$ se NÃO: $\eta = 0$
Taxa de Renovação nominal	(mínimo: 0,6)		$(Vf / V + Vx) (1 - \eta)$
Consumo de electricidade para os	ventiladores		(Ev=Pv.24.0,03 M (kWh))
Volume		x	
Taxa de Renovação nominal		x 0,34	
	TOTAL	=	(W/°C)

Folha de Cálculo FC IV.1e

Ganhos Úteis na estação de Aquecimento (Inverno)

Ganhos solares:

Orientação	Tipo	Área	Factor de	Factor Solar	Factor de	Fracção	Factor de	Área	
do vão	(simples		Orientação	do vidro	Obstrução	Envidraçada	Sel. Angular	Efectiva	
envidraçado	ou duplo)	A (m²)	X(-)	g (-)	Fs(-)	Fg (-)	Fw (-)	Ae (m2)	
					Fh.Fo.Ff				
								<u> </u>	
								<u> </u>	
-	\vdash	<u> </u>						<u> </u>	
	Área Efec	tiva Total e	equivalente na	a orientação S	SUL (m²)				
	Dadiacão	Incidente	num onvidrac	ado a Sul (Gs				Х	
	na Zona		num emvioraç İ			o 8 (Anexo III)	ı	, ,	
	na Zuna	<u>!</u>	i	(KVVII/IIIIIIes	s) - uo Quaur) & (Allexo III)	ļ	X	
	Duração	da Estação	do Aguacime	anto	(masas)		ı		
	Duração da Estação de Aquecimento (meses)							<u> </u>	
	Canhoe (Palarae Bru	tos (k\Nh/ano	.1			ı		
Ganhos Solares Brutos (kWh/ano)							<u> </u>		
Ganhos Intern	ios:								
	Ganhos i	nternos mé	dios	(Quadro IV.2)			(W/m ²)	i	
X								i	
	Duração	da Estação	de Aquecime	ento		,	(meses)	i	
	Durayas	uu =o.uy	40 / 19400	,,,,,		Х	(5555)	i	
	Ároa lÍtil	de pavimer	nto		ı	Ŷ	(m ²)	i	
	Alea Ulli	ue pavimei	110			Х	\''' <i>'</i>	i	
					r	0,72	1	i	
						U,12 -	i j	i	
	Canhaal	-tornee Br			r	=	(k)	i	
	Gannos i	nternos Br	utos				(kWh/ano)	i	
Ganhos Totais	s Últeis:								
		0	Colones David					.	
γ =				tos + Ganhos I		os		1	
		Ne	c. Brutas de A	Aquecimento (da FC IV.2)			1	
Inércia do		ļ			γ =			_	
Factor de Utili	zação dos	Ganhos S	olares	(η)				l	
						- -	Х	<u>.</u>	
Ganhos Solare	es Brutos	+ Ganhos I	Internos Brute	os		I		1	
Ganhos Solares Brutos + Ganhos Internos Brutos									
				is Úteis (kWh/		'	=	•	

Folha de Cálculo FC IV.1f

Valor Máximo das Necessidades de Aquecimento (Ni)

FACTOR DE FORMA	
Das FC IV.1a e 1c: (Áreas)	m ²
Paredes Exteriores Coberturas Exteriores Pavimentos Exteriores Envidraçados Exteriores	
Da FC IV.1b: (Áreas equivalentes A. τ)	
Paredes Interiores Coberturas Interiores Pavimentos Interiores Envidraçados Interiores	
Área Total:	
Volume (da FC IV.1d):	
FF	<u> </u>
Graus-Dia no Local (ºC.dia)	
Ni = 4,5 + 0,0395 GD Ni = 4,5 + (0,021 + 0,037 FF) GD	para FF < 0,5 para 0,5 < FF < 1
Ni = [4,5 + (0,021 + 0,037 FF) GD] (1,2 - 0,2 FF Ni = 4,05 + 0,06885 GD) para 1 < FF < 1,5 para FF > 1,5
Nec. Nom. de Aquec. Máximas - Ni (kWh/m²,	ano)

Folha de Cálculo FC IV.2

Cálculo do Indicador Nic

Perdas térmicas associadas a:	(W/°C)
Envolvente Exterior (da FC IV.1a)	
Envolvente Interior (da FC IV.1b)	
Vãos Envidraçados (da FC IV.1c)	
Renovação de Ar (da FC IV.1d)	
Coeficiente Global de Perdas (W/°C)	=
Graus-Dia no Local (ºC.dia)	X
	0,024
Necessidades Brutas de Aquecimento (kWh/ano)	
GanhosTotais Úteis (kWh/ano) (da FC IV.1e)	=
Necessidades de Aquecimento (kWh/ano)	/
Área Útil de pavimento (m²)	,
Nec. Nominais de Aquecimento - Nic (kWh/m².an	·
Nec. Nom. de Aquec. Máximas - Ni (kWh/m².ano)	<

Tabela IV.1

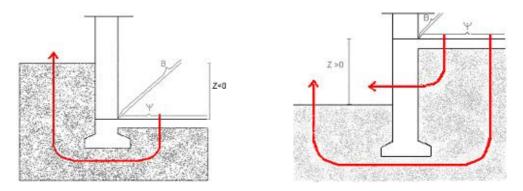
Valores do coeficiente τ (secção 2.1)

Tipo de espaço não-útil		$A_i/A_u^{(1)}$			
Tipo de espac	ço nao-uni	0 a 1	1 a 10	> 10	
1. CIRCULAÇÃO COMUM					
1.1 sem abertura directa pa	ra o exterior	0,6	0,3	0	
1.2 com abertura permanente para o exterior (p.ex., para	a) Área de aberturas permanentes /volume total < 0,05 m²/m³	0,8	0,5	0,1	
ventilação ou desenfumagem)	 b) Área de aberturas permanentes /volume total ≥ 0,05 m²/m³ 	0,9	0,7	0,3	
2. ESPAÇOS COMERCIAIS					
		0,8	0,6	0,2	
3. EDIFÍCIOS ADJACENT	ES				
,		0,6	0,6	0,6	
4. ARMAZÉNS					
		0,95	0,7	0,3	
5. GARAGENS					
5.1 Privada	0,8	0,5	0,3		
5.2 Colectiva	0,9	0,7	0,4		
5.3 Pública		0,95	0,8	0,5	
6. VARANDAS, MARQUISI	ES E SIMILARES (²)				
		0,8	0,6	0,2	
7. COBERTURAS SOBI HABITADO (ACESSÍVE					
7.1 Desvão não ventilado		0,8	0,6	0,4	
7.2 Desvão fracamente ventilado	0	0,9	0,7	0,5	
7.3 Desvão fortemente ventilado	0		1,0		

NOTA: Sempre que $\tau > 0.7$, ao elemento que separa o espaço útil interior do espaço nãoútil aplicam-se os requisitos mínimos definidos no Anexo IX para os elementos exteriores da envolvente (ver n° 2 do art° 18.º do texto regulamentar).

 $\binom{1}{2}$ A_i - área do elemento que separa o espaço útil interior do espaço não-útil

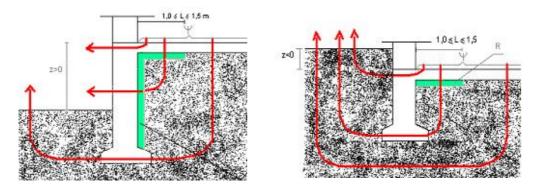
Au - área do elemento que separa o espaço não-útil do ambiente exterior


- (2) Corresponde aos espaços do tipo varandas e marquises fechadas, ou equivalentes, em que a envolvente de separação com os espaços aquecidos deverá satisfazer, obrigatoriamente, os requisitos mínimos de coeficiente de transmissão térmica (U) definidos no Anexo IX.
- (3) Os valores de τ indicados neste ponto aplicam-se aos desvãos não habitados (nãoúteis) de coberturas inclinadas, acessíveis ou não. No caso dos desvãos acessíveis, estes podem não ter qualquer uso ou ser utilizados, nomeadamente, como zona de arrecadações ou espaços técnicos. A Caracterização da ventilação baseia-se nas definições que constam do Anexo II.

Tabelas IV.2 – Coeficientes de transmissão térmica linear

Valores de w para elementos em contacto com o terreno

O coeficiente de transmissão térmica linear, ψ , é função da diferença de nível, z, entre a face superior do pavimento e a cota do terreno exterior. O valor de z é negativo sempre que a cota do pavimento for inferior à do terreno exterior e positivo no caso contrário. Não se contabilizam perdas térmicas lineares de elementos em contacto com o terreno nas seguintes situações:


- espaços não-úteis (locais não-aquecidos);
- paredes interiores separando dois espaços úteis ou um espaço útil e um espaço nãoútil (local não-aquecido), desde que τ < 0,7.

 $Figura\ IV. 2-Pavimento\ em\ contacto\ com\ o\ terreno\ sem\ isolante\ t\'ermico\ .$

Tabela IV.2.1 – Valores de ψ de pavimentos em contacto com o terreno, sem isolante térmico.

Z	Ψ
[m]	[W/m.°C]
< -6,00	0
-6,00 a -1,25	0,50
-1,20 a 0	1,50
0,05 a 1,50	2,50

 $Figura\ IV. 3-Pavimentos\ em\ contacto\ com\ o\ terreno\ com\ isolante\ t\'ermico\ perimetral.$

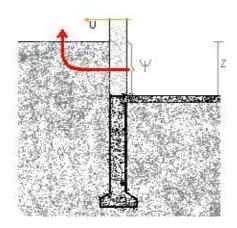


Figura IV.4 – Parede em contacto com o terreno.

Tabela IV.2.3 – Valores de ψ de paredes em contacto com o terreno.

	ψ [W/m.°C]						
Z		Coeficiente de	transmissão té	rmica da parede	U [W/m².°C]		
[m]	0,40	0,64	1,00	1,20	1,50	1,80	
	a	a	a	a	a	a	
	0,64	0,99	1,19	1,49	1,79	2,00	
< -6,00	1,55	1,90	2,25	2,45	2,65	2,75	
-6,00 a -3,05	1,35	1,65	1,90	2,05	2,25	2,50	
-3,00 a -1,05	0,80	1,10	1,30	1,45	1,65	1,75	
-1,00 a 0,00	0,30	0,40	0,50	0,60	0,70	0,80	

Tabelas IV.3 – Coeficientes de transmissão térmica linear

Valores de ψ para pontes térmicas lineares

Consideram-se as seguintes configurações tipo:

- A. Ligação da Fachada com os Pavimentos térreos;
 - Ai Isolamento pelo interior;
 - Ae Isolamento pelo exterior;
 - Ar Isolamento repartido ou isolante na caixa de ar de paredes duplas.
- B. Ligação da Fachada com Pavimentos sobre locais não aquecidos ou exteriores;
 - Bi Isolamento pelo interior;
 - Be Isolamento pelo exterior;
 - Br Isolamento repartido ou isolante na caixa de ar de paredes duplas.
- C. Ligação da Fachada com Pavimentos intermédios;
 - Ci Isolamento pelo interior;
 - Ce Isolamento pelo exterior;
 - Cr Isolamento repartido ou isolante na caixa de ar de paredes duplas.
- D. Ligação da Fachada com Cobertura inclinada ou Terraço;
 - Di Isolamento pelo interior;
 - De Isolamento pelo exterior;
 - Dr Isolamento repartido ou isolante na caixa de ar de paredes duplas.

E. Ligação da Fachada com Varanda;

- Ei Isolamento pelo interior;
- Ee Isolamento pelo exterior;
- Er Isolamento repartido ou isolante na caixa de ar de paredes duplas.

F. Ligação entre duas Paredes verticais;

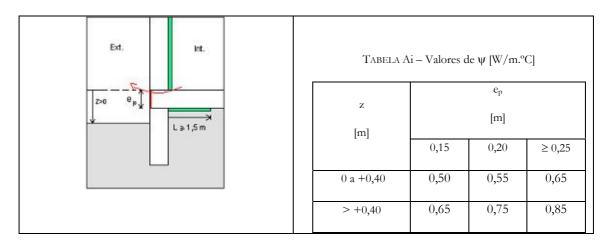
- Fi Isolamento pelo interior;
- Fe Isolamento pelo exterior;
- Fr Isolamento repartido ou isolante na caixa de ar de paredes duplas.

G. Ligação da Fachada com Caixa de estore;

- Gi Isolamento pelo interior;
- Ge Isolamento pelo exterior;
- Gr Isolamento repartido ou isolante na caixa de ar de paredes duplas.

H. Ligação da Fachada com Padieira, Ombreira ou Peitoril;

- Hi Isolamento pelo interior;
- He Isolamento pelo exterior;
- Hr Isolamento repartido ou isolante na caixa de ar de paredes duplas.


Nos quadros seguintes quantificam-se os valores de ψ para as situações mais correntes de pontes térmicas lineares. Nos casos de pontes térmicas lineares não consideradas nesses quadros pode utilizar-se um valor convencional de ψ = 0,5 W/m.°C.

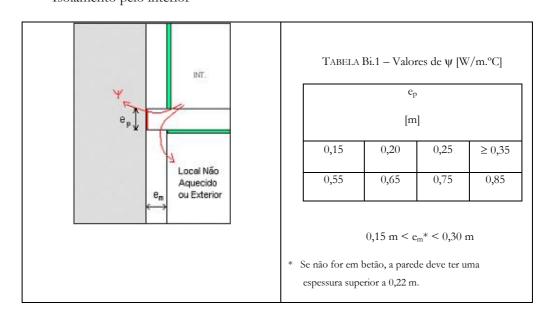
Não se contabilizam pontes térmicas lineares ($\psi = 0$) nos seguintes casos:

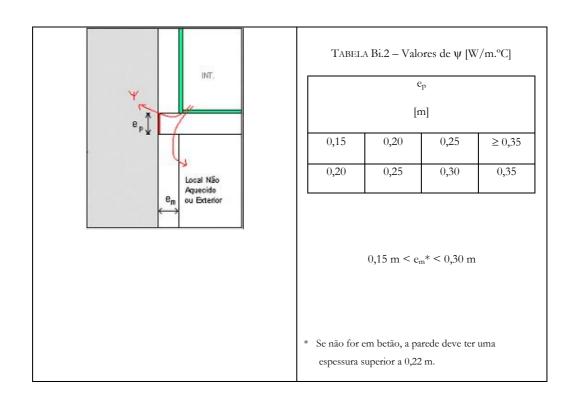

- paredes interiores intersectando a cobertura e pavimentos, quer sobre o exterior, quer sobre espaços não-úteis (locais não-aquecidos);
- paredes interiores separando um espaço útil de um espaço não-útil adjacente desde que τ < 0,7.

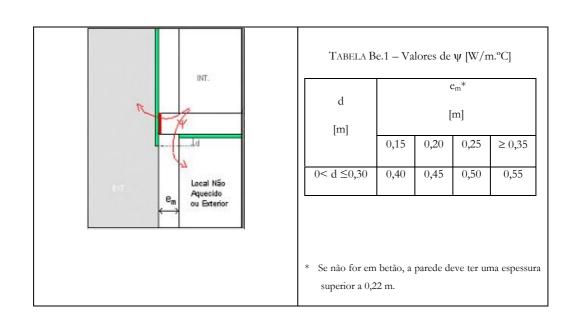
A. Ligação da Fachada com Pavimentos térreos

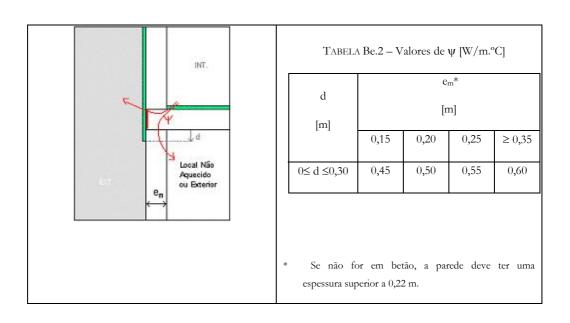

Isolamento pelo interior

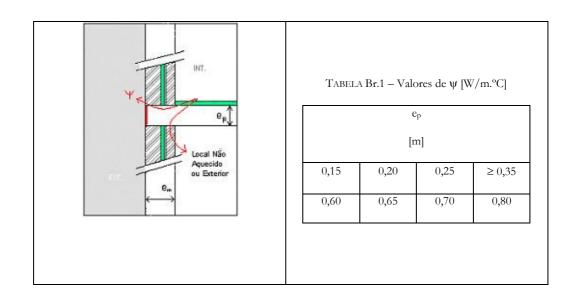
Isolamento pelo exterior




Isolamento repartido ou isolante na caixa de ar de paredes duplas


NOTA: Quando o pavimento térreo não tem isolante térmico, os valores de ψ para Ai, Ae e Ar agravam-se em 50%.


B - Ligação da Fachada com Pavimentos sobre locais não aquecidos Isolamento pelo interior



Isolamento pelo exterior

Isolamento repartido ou isolante na caixa de ar de paredes duplas

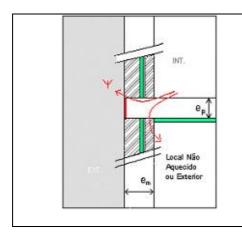
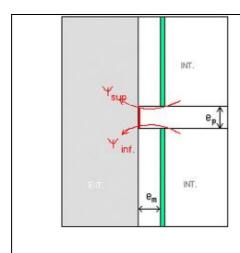



TABELA Br.2 – Valores de ψ [W/m.°C]

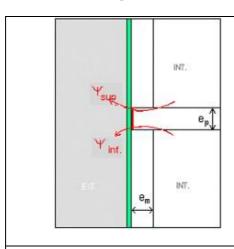
	C	p	
	[r	m]	
0,15	0,20	0,25	≥ 0,35
0,50	0,55	0,60	0,70

C - Ligação da Fachada com Pavimentos Intermédios

Isolamento pelo interior

 ${\rm TABELA}\; Ci - Valores\; de\; \psi_{sup}\; e\;\; \psi_{inf}\; [W/m.^oC]$

- *		e	P	
e _m *		[n	n]	
	0,15	0,20	0,25	≥ 0,35
0,15 a 0,22	0,35	0,40	0,45	0,55
0,22 a 0,30	0,30	0,35	0,40	0,50
≥ 0,30	0,25	0,30	0,35	0,45


Nota: $\psi_{sup.} = \psi_{inf.}$

Para compartimentos contíguos de habitações distintas ψ = $\psi_{\text{sup.}}$ = $\psi_{\text{inf.}}$

Para compartimentos contíguos da mesma habitação ψ = $\psi_{\text{sup.}}$ + $\psi_{\text{inf.}}$

^{*} Se não for em betão, a parede deve ter uma espessura superior a 0,22 m.

Isolamento pelo exterior

Tabela Ce

 $\underline{\psi_{\text{sup}}} = \underline{\psi_{\text{inf}}} = 0.10 \text{ W/m.}^{\circ}\text{C}$

 $0,15 \text{ m} < e_m^* < 0,30 \text{ m}$

* Se não for em betão, a parede deve ter uma espessura superior a 0,22 m.

Nota: $\psi_{sup.} = \psi_{inf.}$

Para compartimentos contíguos de habitações distintas $\psi = \psi_{\text{sup.}} = \psi_{\text{inf.}}$

Para compartimentos contíguos da mesma habitação ψ = $\psi_{sup.}$ + $\psi_{inf.}$

Isolamento repartido ou isolante na caixa de ar de paredes duplas

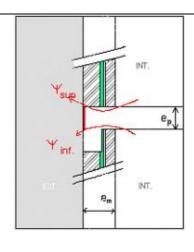
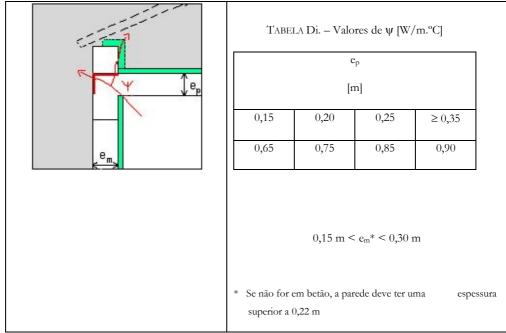


Tabela Cr – Valores de ψ_{sup} e $\;\psi_{inf}$ $[W/m.^{\circ}C]$

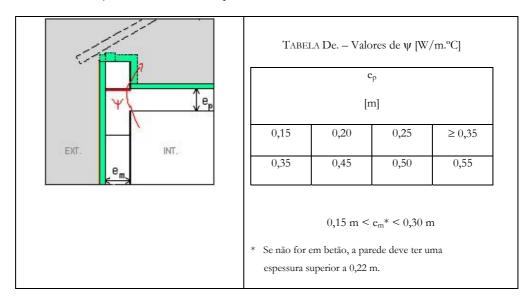
ub.	e _p						
e _m *	[m]						
. ,	0,15	0,20	0,25	≥ 0,35			
≥ 0,30	0,15	0,20	0,25	0,30			

 Se não for em betão, a parede deve ter uma espessura superior a 0,22 m


Nota: $\psi_{\text{sup.}} = \psi_{\text{inf.}}$

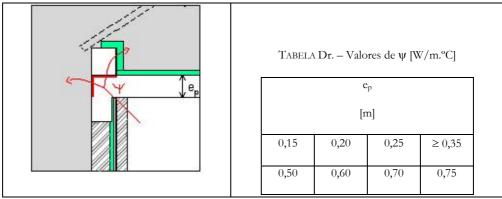
Para compartimentos contíguos de habitações distintas $\psi = \psi_{\text{sup.}} = \psi_{\text{inf.}}$

Para compartimentos contíguos da mesma habitação ψ = $\psi_{sup.}$ + $\psi_{inf.}$


D - Ligação da Fachada com Cobertura Inclinada ou Terraço

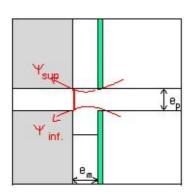
Isolamento pelo interior da parede de fachada e pelo exterior da cobertura

Isolamento pelo exterior


D.e.1) Isolamento contínuo pelo exterior

D. e.2) Isolamento não contínuo

Considerar os valores de ψ da tabela Di.


Isolamento repartido ou isolante na caixa-de-ar da parede de fachada e isolamento pelo exterior da cobertura

E - Ligação da Fachada com Varanda

Isolamento pelo interior

Isolamento pelo exterior

Isolamento repartido ou isolante na caixa de ar de paredes duplas

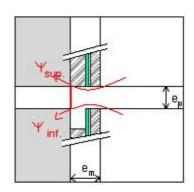
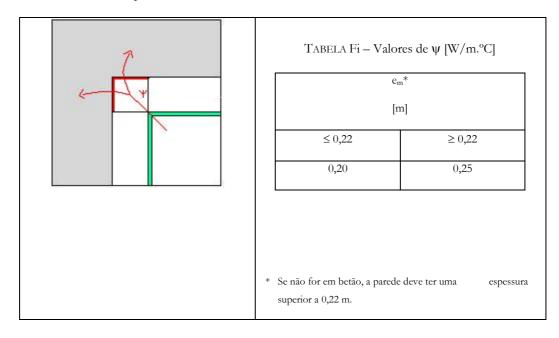


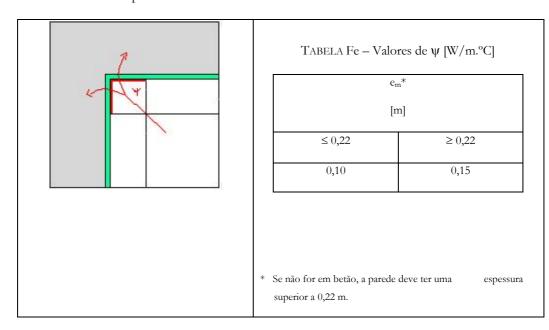
Tabela Ei, Ee e Er – Valores de ψ_{sup} e ψ_{inf} [W/m.°C]

Jr.	e _p						
e _m *	[m]						
[]	0,15	0,20	0,25	≥ 0,35			
*0,15 a 0,22	0,40	0,45	0,50	0,55			
0,22 a 0,30	0,35	0,40	0,45	0,50			
≥ 0,30	0,30	0,35	0,40	0,45			

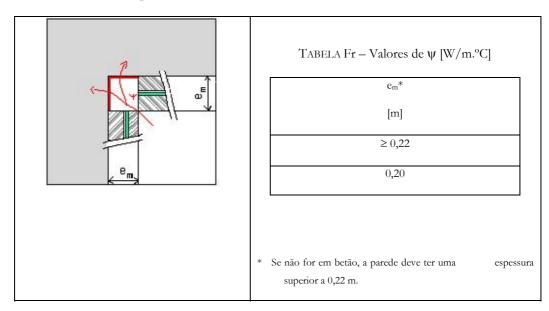
^{*} Se não for em betão, a parede deve ter uma espessura superior a 0,22 m.


Nota: $\psi_{sup.} = \psi_{inf.}$

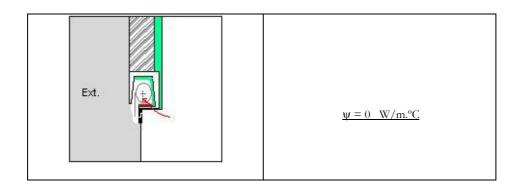
Para compartimentos contíguos de habitações distintas ψ = $\psi_{\text{sup.}}$ = $\psi_{\text{inf.}}$


Para compartimentos contíguos da mesma habitação ψ = $\psi_{\text{sup.}}$ + $\psi_{\text{inf.}}$

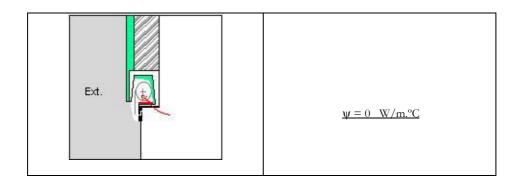
F - Ligação entre duas Paredes verticais


Isolamento pelo interior

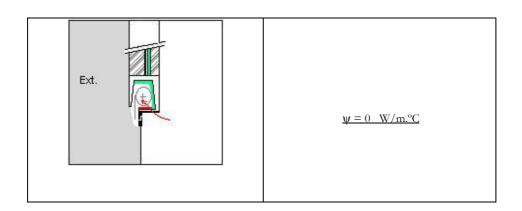
Isolamento pelo exterior



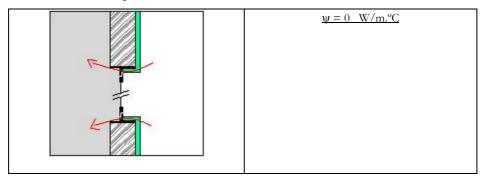
Isolamento repartido ou isolante na caixa-de-ar

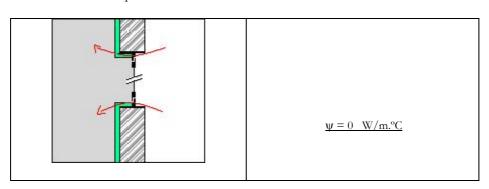


G - Ligação da Fachada com Caixa de estore

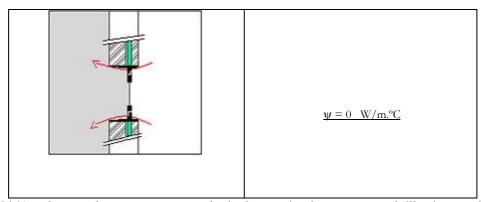

Isolamento pelo interior

Isolamento pelo exterior


Isolamento repartido ou isolante na caixa de ar de paredes duplas


NOTA: A resistência térmica do isolante da caixa-de-estore, R, deve ser maior ou igual a 0,5 m².°C/W. No caso da caixa-de-estore apresentar uma configuração diferente da apresentada considerar $\psi = 1 \text{ W/m.°C.}$

H - Ligação Fachada / Padieira ou Peitoril


Isolamento pelo interior

Isolamento pelo exterior

Isolamento repartido ou isolante na caixa de ar de paredes duplas

NOTA: Se não houver contacto do isolante térmico com a caixilharia considerar o valor de ψ = 0,2 W/m.°C.

Em paredes duplas considera-se que há continuidade do isolante térmico quando este for complanar com a caixilharia.

Tabela IV.4 $Valores~do~factor~solar~dos~envidraçados~(g_{\! \perp})$ $Tabela~IV.4.1-Factor~solar~de~alguns~tipos~de~vidro~(g_{\! \perp v})$

	Tipo	Factor solar
Vidro simples		
Incolor		
	4 mm	0,88
	5 mm	0,87
	6 mm	0,85
	8 mm	0,82
colorido na massa (bronze, cinza, verde)	
	4 mm	0,70
	5 mm	0,65
	6 mm	0,60
	8 mm	0,55
reflectante incolor		
	4 a 8 mm	0,60
reflectante colorido i	na massa (bronze, cinza, verde)	
	4 e 5 mm	0,50
	6 e 8 mm	0,45
Vidro duplo		
incolor + incolor		
	(4 a 8) mm + 4 mm	0,78
	(4 a 8) mm + 5 mm	0,75
colorido na massa -	+ incolor	
	4 mm + (4 a 8) mm	0,60
	5 mm + (4 a 8) mm	0,55
	6 mm + (4 a 8) mm	0,50
	8 mm + (4 a 8) mm	0,45
reflectante incolor +	incolor	
(4	a 8) mm + (4 a 8) mm	0,52
reflectante colorido i	aa massa + incolor	
(4	e 5) mm + (4 a 8) mm	0,40
(6	e 8) mm + (4 a 8) mm	0,35
Tijolo de vidro (incolor e s		0,57

Tabela IV.4.2 - Factor solar de alguns tipos de envidraçados plásticos

Tipo	Factor solar
Policarbonato simples	
incolor cristalino (transparente)	
4 a 6 mm	0,85
8 a 10 mm	0,80
12 mm	0,78
incolor translúcido	
4 a 6 mm	0,50
Policarbonato alveolar incolor	
1 alvéolo	
6 a 8 mm	0,86
10 a 16 mm	0,84
2 alvéolos	
6 a 16 mm	0,82
Acrílico incolor cristalino (transparente)	
4 a 6 mm	0,85
8 a 10 mm	0,80
12 mm	0,78

Tabela IV.5 $\label{eq:Valores} \mbox{Valores do factor de Sombreamento do horizonte} \ (\mbox{\bf F}_{\rm h}) - \mbox{\rm situa}\\ \mbox{\bf cão} \ \mbox{\rm de Inverno}$

1 1 1 · · ·	TT 1 . 1	N.T.	NIE /NIW	E/W	CE /CW/	
Ângulo do horizonte	Horizontal	N	NE/NW	E/W	SE/SW	S
0.	1,00	1,00	1,00	1,00	1,00	1,00
10°	0,99	1,00	0,96	0,94	0,96	0,97
20°	0,95	1,00	0,96	0,84	0,88	0,90
30°	0,82	1,00	0,85	0,71	0,68	0,67
40°	0,67	1,00	0,81	0,61	0,52	0,50
45°	0,62	1,00	0,80	0,58	0,48	0,45
	La	titude 33°	' Madeira		l l	
Ângulo do horizonte	Horizontal	N	NE/NW	E/W	SE/SW	S
0°	1,00	1,00	1,00	1,00	1,00	1,00
10°	1,00	1,00	0,96	0,96	0,97	0,98
20°	0,96	1,00	0,91	0,87	0,90	0,93
	0,88	1,00	0,85	0,75	0,77	0,80
30°	l J					
30° 40°	0,71	1,00	0,81	0,64	0,59	0,58

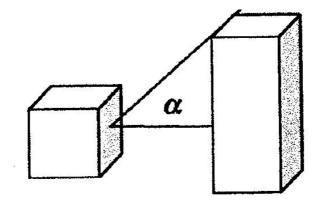
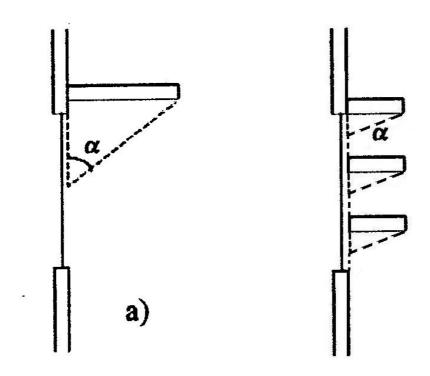



Figura IV.4.5 – Ângulo de horizonte, α , medido a partir do ponto médio do vão envidraçado

Tabela IV.6 $\label{eq:Valores} \mbox{Valores do factor de Sombreamento por elementos horizontais } (\mbox{F}_o)$ $\mbox{situação de Inverno}$

	La	titude 39° Conti	nente e Açore	S		
Ângulo da pala	N	NE/NW	E/W	SE/SW	S	
0°	1,00	1,00	1,00	1,00	1,00	
30°	1,00	0,94	0,84	0,76	0,73	
45°	1,00	0,90	0,74	0,63	0,59	
60°	1,00	0,85	0,64	0,49	0,44	
		Latitude 33°	Madeira			
Ângulo da pala	N	NE/NW	E/W	SE/SW	S	
0°	1,00	1,00	1,00	1,00	1,00	
30°	1,00	0,92	0,82	0,68	0,45	
45°	1,00	0,88	0,72	0,60	0,56	
60°	1,00	0,83	0,62	0,48	0,43	

Secção vertical

 α - ângulo da pala horizontal, medido a partir do ponto médio do $v\tilde{a}o \; envidraçado$

 $\label{eq:Tabela IV.7}$ Valores do factor de Sombreamento por elementos verticais (F_f) — situação de Inverno

Posição da pala	Ângulo	N	NE	Е	SE	S	SW	W	NW
vertical	da pala								
	vertical								
N	00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
<u>β</u>	30°	1,00	1,00	1,00	0,97	0,93	0,91	0,87	0,89
	45°	1,00	1,00	1,00	0,95	0,88	0,86	0,80	0,84
	60°	1,00	1,00	1,00	0,91	0,83	0,79	0,72	0,80
1	0,0	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
<u>β</u>	30°	1,00	0,89	0,87	0,91	0,93	0,97	1,00	1,00
	45°	1,00	0,84	0,80	0,86	0,88	0,95	1,00	1,00
	60°	1,00	0,80	0,72	0,79	0,83	0,91	1,00	1,00
	0,0	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
	30°	1,00	0,89	0,86	0,88	0,85	0,88	0,86	0,89
	45°	1,00	0,84	0,80	0,80	0,76	0,80	0,80	0,84
	60°	1,00	0,80	0,71	0,71	0,65	0,71	0,71	0,80

Secção horizontal

 β - ângulo da pala vertical, medido a partir do ponto médio do vão envidraçado

ANEXO V

Método de Cálculo das Necessidades de Arrefecimento

1 - Justificação da metodologia de cálculo

As necessidades nominais de arrefecimento de uma fracção autónoma de um edifício são a energia útil que é necessário retirar-lhe para manter permanentemente no seu interior a temperatura de referência definida no artigo 16.º deste regulamento durante toda a estação convencional de arrefecimento, isto é, nos meses de Junho a Setembro, inclusive. Este valor não representa necessariamente o consumo real dessa zona do edifício, já que, em geral, os seus ocupantes não impõem permanentemente situações exactamente iguais às de referência, podendo mesmo ocorrer diferenças substanciais por excesso ou por defeito entre as condições reais de funcionamento e as admitidas ou convencionadas como de referência para efeitos deste Regulamento.

No entanto, mais do que um método de prever necessidades energéticas reais de um edifício (ou de uma fracção autónoma de um edifício), o valor das necessidades nominais, calculado para condições de referência, constitui uma forma objectiva de comparar edifícios desde a fase do licenciamento, do ponto de vista do comportamento térmico: quanto maior for o seu valor, mais quente será o edifício no Verão, ou mais energia será necessário consumir para o arrefecer até atingir uma temperatura confortável.

O cálculo preciso das necessidades de arrefecimento de um espaço, dada a natureza altamente dinâmica dos fenómenos térmicos em causa, só é possível por meio de simulação dinâmica detalhada. Este tipo de metodologia é exigido no caso do regulamento dos sistemas de climatização (RSECE), mas a sua complexidade é considerada indesejável para o RCCTE, pelo que, neste Regulamento, se utiliza uma metodologia simplificada de cálculo, devidamente validada a nível europeu, que produz resultados com a aproximação suficiente adequada aos objectivos do RCCTE.

Esta metodologia é complementar à adoptada para o cálculo dos ganhos úteis durante o período de aquecimento (Anexo IV, secção 4.4). Enquanto que, no Inverno, os ganhos úteis contabilizados são aqueles que não provocam o sobreaquecimento do espaço interior, os ganhos não-úteis são, precisamente, os que provocam as necessidades de arrefecimento durante o Verão. Portanto, bastará aplicar a mesma metodologia descrita no Anexo IV para o cálculo da fracção dos ganhos internos e solares úteis, devidamente adaptada às condições interiores e exteriores de Verão, e afectando os ganhos totais no Verão, isto é, os ganhos internos, solares e através da envolvente opaca e transparente, do factor (1-1) definido na referida secção 4.4 do Anexo IV, obtendo-se assim as necessidades nominais anuais de arrefecimento do edifício ou fracção autónoma.

2 - Metodologia de Cálculo

2.1 - Equação de base

As necessidades nominais de arrefecimento de um edifício ou fracção autónoma, Nv_e, são calculados pela expressão seguinte:

$$Nv_c = Qg \cdot (1-\eta) / Ap$$

em que:

- Qg são os ganhos totais brutos do edifício ou fracção autónoma
- η- factor de utilização dos ganhos (secção 4.4. do Anexo IV)
- Ap Área Útil de pavimento

Os ganhos totais brutos são obtidos pela soma das seguintes parcelas:

- a) as cargas individuais devidas a cada componente da envolvente, devidas aos fenómenos combinados da diferença de temperatura interior-exterior e da incidência da radiação solar (Q₁);
- b) as cargas devidas à entrada da radiação solar através dos envidraçados (Q2);

- c) as cargas devidas à renovação do ar (Q₃);
- d) as cargas internas, devidas aos ocupantes, aos equipamentos e à iluminação artificial
 (Q₄).

2.2 - Ganhos pela envolvente

Os ganhos através da envolvente opaca exterior resultam dos efeitos combinados da temperatura do ar exterior e da radiação solar incidente. Para o seu cálculo, adopta-se uma metodologia simplificada baseada na "temperatura ar-sol", que se traduz, para cada orientação, na seguinte equação:

$$Q_{opaco} = U.A.(\theta_{ar-sol} - \theta_i) = U.A.(\theta_{ar} + \frac{\alpha.G}{h_e} - \theta_i)$$
 [W]

em que:

- U Coeficiente de transmissão térmica superficial do elemento da envolvente (em W/m²);
- A Área do elemento da envolvente (em m²);
- θ_{ar-sol} Temperatura ar-Sol (°C);
- θ_i Temperatura do ambiente interior (°C);
- θ_{atm} Temperatura do ar exterior (°C);
- α Coeficiente de absorção (para a radiação solar) da superfície exterior da parede (Quadro V.5);
- G Intensidade de radiação solar instantânea incidente em cada orientação (em W/m^2)
- h_e Condutância térmica superficial exterior do elemento da envolvente, que toma o valor de 25 W/m².°C.

Esta equação pode também ser expressa através de:

$$Q_{opaco} = U.A.(\theta_{ar} - \theta_i) + U.A.(\frac{\alpha.G}{h_e})$$
 [W]

Em termos de toda a estação convencional de arrefecimento, Q_1 é obtido pela integração dos ganhos instantâneos ao longo dos 4 meses em causa (122 dias), o que conduz à seguinte equação final:

$$Q_1 = 2,928 \ U.A.(\theta_m - \theta_i) + U.A.(\frac{\alpha.Ir}{h_e})$$
 [kWh]

em que:

- θ_m Temperatura média do ar exterior na estação convencional de arrefecimento na zona climática de Verão onde se localiza o edifício (ver Anexo III)
- I_r Intensidade média de radiação total incidente em cada orientação durante toda a estação de arrefecimento (ver Anexo III)

Para este cálculo, adoptam-se as condições ambientais de referência definidas pelo artigo 16° deste regulamento. A primeira parcela desta equação corresponde às perdas pela envolvente opaca e transparente devidas apenas à diferença de temperatura entre o interior e o exterior (Folha de Cálculo FCV.1a), enquanto a segunda corresponde aos ganhos solares através da envolvente opaca (FCV.1c).

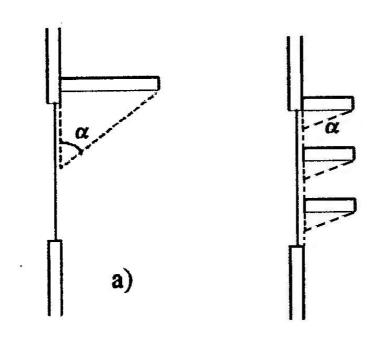
2.3 - Ganhos pelos vãos envidraçados

Para o cálculo dos ganhos solares através dos envidraçados (Folha de cálculo FCV.1b) adoptar-se-á a mesma metodologia definida no Anexo IV:

$$Q_s = \sum_{j} \left[Ir_j \sum_{n} A_{snj} \right]$$

onde Ir é a energia solar incidente nos envidraçados, por orientação (j), conforme Anexo

III, e as demais variáveis tomam o mesmo significado já descrito no ponto 4.3.1 do anexo IV, com excepção do factor de horizonte (F_h), que se considera igual a 1. Devido a relações angulares distintas entre o Inverno e o Verão, no entanto, os factores F_o , F_f e F_w são obtidos, para a estação de aquecimento, dos Quadros V.1 a V.3.


O factor solar do envidraçado deve ser tomado com dispositivos de sombreamento móveis activados a 70%, ou seja o factor solar do vão envidraçado será igual à soma de 30% do factor solar do vidro mais 70% do factor solar do vão envidraçado com a protecção solar móvel actuada, cujos valores são os indicados no Quadro V.4.

São consideradas protecções ligeiramente transparentes as protecções com factor de transparência compreendido entre 5 e 15%, transparentes aquelas em que o factor de transparência está compreendido entre 15 e 25% e muito transparentes aquelas em que o factor de transparência é superior a 25%.

A cor da protecção é definida em função do coeficiente de reflexão da superfície exterior da protecção, complementar do coeficiente de absorção, encontrando-se no quadro V.5 a correspondência com algumas cores típicas, a título ilustrativo.

Quadro V.1 – Valores do factor de sombreamento dos elementos horizontais, $F_{\rm o}$ situação de Verão

	La	titude 39° Contir	nente e Açores	}	
Ângulo da pala	N	NE/NW	E/W	SE/SW	S
0°	1,00	1,00	1,00	1,00	1,00
30°	0,98	0,86	0,75	0,68	0,63
45°	0,97	0,78	0,64	0,57	0,55
60°	0,94	0,70	0,55	0,50	0,52
<u> </u>		Latitude 33°	Madeira		
Ângulo da pala	N	NE/NW	E/W	SE/SW	S
0,0	1,00	1,00	1,00	1,00	1,00
30°	0,97	0,84	0,74	0,69	0,68
45°	0,95	0,76	0,63	0,60	0,62
60°	0,92	0,68	0,55	0,54	0,60

Secção vertical

 α - ângulo da pala horizontal, medido a partir do ponto médio do vão envidraçado.

Quadro V.2 – Valores do factor de sombreamento dos elementos verticais, $F_{\rm f}$ Situação de Verão

Posição da pala	Ângulo	N	NE	Е	SE	S	SW	W	NW
vertical	da pala								
	vertical								
	00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
β)	30°	1,00	0,86	0,95	0,96	0,91	0,91	0,96	1,00
	45°	1,00	0,78	0,93	0,95	0,87	0,85	0,96	1,00
	60°	1,00	0,69	0,88	0,93	0,84	0,77	0,95	1,00
1	0°	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
β	30°	1,00	1,00	0,96	0,91	0,91	0,96	0,95	0,86
	45°	1,00	1,00	0,96	0,85	0,87	0,95	0,93	0,78
	60°	1,00	1,00	0,95	0,77	0,84	0,93	0,88	0,69
	0,0	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
	30°	1,00	0,86	0,90	0,91	0,82	0,91	0,90	0,86
	45°	1,00	0,78	0,92	0,84	0,74	0,84	0,92	0,78
	60°	1,00	0,69	0,86	0,75	0,67	0,75	0,86	0,69

Quadro V.3 – Valores do factor de correcção da selectividade angular dos envidraçados, F_w – situação de Verão

	N	NE/NW	E/W	SE/SW	S
Vidro simples	0,85	0,90	0,90	0,90	0,80
Vidro duplo	0,80	0,85	0,85	0,85	0,75

		Vidro sir	nples		Vidro d	uplo	
Tipo de protecção		Cor da pro	otecção	Cor da protecção			
	Clara	Média	Escura	Clara	Média	Escura	
Protecções exteriores:							
Portada de madeira	0,04	0,07	0,09	0,03	0,05	0,06	
Persiana:							
- réguas de madeira	0,05	0,08	0,10	0,04	0,05	0,07	
- réguas metálicas ou plásticas	0,07	0,10	0,13	0,04	0,07	0,09	
Estore veneziano:							
- lâminas de madeira	-	0,11	-	-	0,08	-	
- lâminas metálicas	-	0,14	-	-	0,09	_	
Estore:							
- lona opaco	0,07	0,09	0,12	0,04	0,06	0,08	
- lona pouco transparente	0,14	0,17	0,19	0,10	0,12	0,14	
- lona muito transparente	0,21	0,23	0,25	0,16	0,18	0,20	
Protecções interiores:							
Estores de lâminas	0,45	0,56	0,65	0,47	0,59	0,69	
Cortinas:							
- opacas	0,33	0,44	0,54	0,37	0,46	0,55	
- ligeiramente transparentes	0,36	0,46	0,56	0,38	0,47	0,56	
- transparentes	0,38	0,48	0,58	0,39	0,48	0,58	
- muito transparentes	0,70	-	_	0,63	_	-	
Portadas de madeira (opacas)	0,30	0,40	0,50	0,35	0,46	0,58	
Persianas de madeira	0,35	0,45	0,57	0,40	0,55	0,65	
Protecção entre dois vidros							
- estore veneziano, lâminas delgadas				0,28	0,34	0,40	

Quadro V.4 – Valores do factor solar de vãos com protecção solar activada a 100%

e vidro incolor corrente (g_{\perp})

O Quadro V.4 lista o factor solar (g_⊥) de vãos envidraçados com os dispositivos de protecção solar mais habituais nos quais são utilizados vidros incolores correntes. Caso sejam aplicados vidros especiais diferentes dos incolores correntes, o factor solar dos vãos envidraçados com dispositivos de protecção solar interiores ou com protecção exterior não opaca é obtido pelas equações 1 ou 2, consoante se trate de vãos com vidro simples ou vidro duplo. Caso exista uma protecção solar exterior opaca (tipo persiana) o valor do factor solar do vão com vidros especiais é obtido directamente do Quadro V.4. Nos vãos protegidos por mais do que uma protecção solar, deve ser utilizada a equação 3 ou 4 considerando apenas as protecções solares existentes do lado exterior até ao interior até à primeira protecção solar opaca.

Vidro simples
$$g_{\perp} = \frac{g_{\perp}' \cdot g_{\perp v}}{0.85}$$
 (1)

Vidro duplo
$$g_{\perp} = \frac{g_{\perp}'.g_{\perp v}}{0.75}$$
 (2)

Vidro simples
$$g_{\perp} = g_{\perp v} \prod_{i} \frac{g_{\perp}'}{0.85}$$
 (3)

Vidro duplo
$$g_{\perp} = g_{\perp v} \prod_{i} \frac{g_{\perp}'}{0.75}$$
 (4)

- g_{\perp} factor solar do vão envidraçado
- g_{\perp} factor solar do vão envidraçado com protecção solar e vidro incolor
- g_{\perp_v} factor solar do envidraçado

Admitir-se-á também o método simplificado, tal como indicado para os ganhos solares na estação de aquecimento, correspondente à consideração de um envidraçado típico médio de cada fachada do edifício ou da fracção autónoma, conforme aplicável, desde que sejam todos semelhantes em termos de protecção solar e em que haja apenas diferenças derivadas da sua localização na fachada.

Quadro V.5 - Cor da superfície exterior da protecção solar

Cor da protecção	Clara	Média	Escura
Coeficiente de absorção solar da superfície exterior da protecção	0,4	0,5	0,8
	Branco	vermelho escuro	Castanho
	Creme	verde claro	verde escuro
Cor	Amarelo	azul claro	azul vivo
	Laranja		azul escuro
	vermelho claro		preto

2.4 - Perdas por ventilação

A metodologia de cálculo é igual à indicada no ponto 3 do Anexo IV. Na realidade, dado que a temperatura média exterior durante toda a estação de arrefecimento (Anexo III) é sempre inferior à temperatura interior de referência, a ventilação é, em média, uma perda, pelo que é contabilizada na Folha de Cálculo FCV.1a.

$$Q_3 = 2,928 (0,34 \cdot R_{ph} \cdot A_p P_d) (\theta_m - \theta_i)$$
 (kWh)

2.5 - Ganhos internos

A metodologia de cálculo é igual à indicada no ponto 4.2 do Anexo IV (Folha de Cálculo FCV.1d).

$$Q_i = 2,928.q_i.A_P \tag{kWh}$$

3 - Folhas de Cálculo

O método de cálculo descrito neste anexo está organizado, para sistematização da forma de apresentação de resultados, nas Folhas de Cálculo FCV.1 a FCV.5 que se seguem.

Folha de Cálculo FCV.1a

Perdas

Perdas associadas às paredes exteriores (U.A)	(FCIV.1a)			(W/°C)
Perdas associadas aos pavimentos exteriores (U.A)	(FCIV.1a)			(W/°C)
Perdas associadas às coberturas exteriores (U.A)	(FCV.1b)		+	(W/°C)
Perdas associadas aos envidraçados exteriores (U.A)	(FCV.1b)			(W/°C)
Perdas associadas à renovação de ar	(FCIV.1d)		+	(W/°C)
Perdas específicas totais		(Q _{1a})	=	(W/°C)
Temperatura interior de referência			25	(°C)
Temperatura interior de referência Temperatura média do ar exterior na estação de arre	efecimento		25 -	(°C)
Temperatura média do ar exterior na estação de arre	efecimento		25	(°C)
Temperatura média do ar exterior na estação de arre	efecimento		=	
Temperatura média do ar exterior na estação de arre	efecimento	(Q _{1a})	= X	(°C)
Temperatura média do ar exterior na estação de arre (Quadro III.9) Diferença de temperatura interior-exterior	efecimento	(Q _{1a})	=	(°C)

Folha de Cálculo FCV.1b

Perdas associadas a Coberturas e envidraçados exteriores

Perdas associadas às coberturas exteriores Coberturas exteriores Área (m²) U (W/m²oC) U.A (W/oC) TOTAL Perdas associadas aos envidraçados exteriores Envidraçados exteriores Área (m²) U (W/m²oC) U.A (W/oC) Verticais: Horizontais:

Nota: O valor de U das coberturas a usar nesta Ficha corresponde à situação de Verão.

TOTAL

Folha de Cálculo FCV.1c Ganhos Solares pela Envolvente Opaca

	POR ORIENTAÇÃO E HORIZONTAL									
Área, A (m²)						 I		 I	1	
	Х	Х	Х	Х	Х	Х	Х	Х	_	
J (W/m ² °C)]	
Conficiente de abourão (Ouadro V.E.)	Х	Х	Х	Х	Х	Х	Х	Х	7	
Coeficiente de absorção, α (Quadro V.5)	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>]	
χ U.A									(W/°C)	
	Х	Х	Х	Х	Х	Х	Х	Χ	-	
nt. de rad. solar na estação de arrefec. (kWh/m²) (Quadro III.9)										
	x 0,04	x 0,04	x 0,04	x 0,04	x 0,04	x 0,04	x 0,04	x 0,04		
	=	=	=	=	=	=	=	=	TOTAL	1
Ganhos solares pela envolvente opaca exterior										(kV

Folha de Cálculo FCV.1d Ganhos Solares pelos Envidraçados Exteriores

POR ORIENTAÇÃO E HORIZONTAL

			3		_			
								¬
								_
Х	X	X	X	Х	X	Х	Х	ר
		<u> </u>				· ·		J
						^	^	7
х	Х	Х	х	Х	Х	х	х	_1
]
Х	Х	Х	х	Х	Х	Х	Х	_ _
								_
=	=	=	=	=	=	=	=	1 , 2,
								(m ²)
Х	X	X	X	X	Х	Х	Х	7
<u> </u>		<u> </u>	<u> </u>		_		_	J TOTAL
			-					(kWh
	1	<u> </u>	<u> </u>					(KW)
	x	x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x	X X	X X	X X

⁽¹⁾ Para dispositivos de sombreamento móveis, considera-se a soma de 30% do factor solar do vidro (Tabela IV.4) e 70% do factor solar do envidraçado com a protecção solar móvel actuada (Quadro V.4)

 $^{^{(2)}}$ Para a estação de arrefecimento o factor de obstrução, F_s , é obtido pelo produto F_0 : F_t dos Quadros V.1 e V.2

Folha de Cálculo FCV.1e

Ganhos Internos

Ganhos internos médios (W/m²) (Quadro IV.3)	
	X
Área útil de pavimento (m²)	
	X
	2,928
	=
Ganhos Internos totais	(kWh)

Folha de Cálculo FCV.1f

Ganhos Totais na estação de Arrefecimento (Verão)

(FCV.1d) (kWh)
(FCV.1c) (kWh)
(FCV.1e) (kWh)
(kWh)

Folha de Cálculo FCV.1g

Valor das Necessidades Nominais de Arrefecimento (Nvc)

Ganhos térmicos totais (FCV.1f)	(kWh)
Perdas térmicas totais (FCV.1a)	(kWh)
γ	
Inércia do edifício	
	1
Factor de utilização dos ganhos solares, η	
	X
Ganhos térmicos totais (FCV.1e)	(kWh)
Necessidades brutas de arrefecimento	(kWh/ano)
Consumo dos ventiladores (se houver, exaustor da cozinha excluído)	(Ev=Pv.24.0,03.122 (kWh))
	TOTAL (kWh/ano)
Área útil de pavimento (m²)	
Necessidades nominais de arrefecimento - Nvo	
Necessidades nominais de arref. máximas - N	•

ANEXO VI

Método de Cálculo das Necessidades de Energia para Preparação das Águas Quentes Sanitárias

1 - Necessidades de energia para preparação das Águas Quentes Sanitárias (Nac)

Para efeitos regulamentares, as necessidades anuais de energia útil para preparação de Águas Quentes Sanitárias (AQS), Nac, são calculadas através da seguinte expressão:

Nac =
$$(Q_a / \eta_a - E_{solar} - E_{ren}) / A_p$$

em que:

- Qa é a energia útil dispendida com sistemas convencionais de preparação de AQS;
- η_a é a eficiência de conversão desses sistemas de preparação de AQS;
- E_{solar} é a contribuição de sistemas de colectores solares para o aquecimento de AQS;
- E_{ren} é a contribuição de quaisquer outras formas de energias renováveis (solar fotovoltaica, biomassa, eólica, geotérmica, etc.) para a preparação de AQS, bem como de quaisquer formas de recuperação de calor de equipamentos ou de fluidos residuais;
- Ap é a área útil de pavimento

A forma de cálculo de cada uma das parcelas da expressão anterior é apresentada nos números seguintes.

2 - Energia dispendida com sistemas convencionais de preparação de AQS (Q₃)

A energia dispendida com sistemas convencionais utilizados na preparação das AQS durante um ano, Q_a , é dada pela expressão seguinte:

$$Q_a = (M_{AOS} \cdot 4187 \cdot \Delta T \cdot n_d) / (3.600.000)$$
 (kWh/ano)

- M_{AQS} é o consumo médio diário de referência de AQS;
- ΔT é o aumento de temperatura necessário para preparar as AQS:
- n_d representa o número anual de dias de consumo de AQS.
- 2.1 Consumo médio diário de referência (M_{AQS})

Nos edifícios residenciais, o consumo médio diário de referência, M_{AQS}, é dado pela expressão

$$M_{AQS} = 40 \text{ litros x n}^{\circ} \text{ de ocupantes}$$

sendo o número convencional de ocupantes de cada fracção autónoma definido no quadro VI.1.

QUADRO VI.1 - Número convencional de ocupantes em função da tipologia da fracção autónoma

Tipologia	Т0	T1	T2	Т3	 Tn
nº de ocupantes	2	2	3	4	 n + 1

Admite-se que os edifícios de serviços sujeitos ao RCCTE são pequenos consumidores de AQS, sendo o respectivo consumo total diário, M_{AQS}, de 100 litros. Todavia serão aceites outros valores (incluindo um valor nulo) devidamente justificados pelo projectista e aceites pela entidade licenciadora.

124

2.2 - Aumento de temperatura (ΔT)

O aumento de temperatura, ΔT , necessário à preparação das AQS toma o valor de referência de 45°C. Este valor considera que a água da rede pública de abastecimento é disponibilizada a uma temperatura média anual de 15°C e que deve ser aquecida à temperatura de 60°C.

2.3 - O número anual de dias de consumo de AQS (n_d)

O número anual de dias de consumo de AQS, n_d, depende do período convencional de utilização dos edifícios e é indicado no quadro VI.2.

QUADRO VI.2 - Número anual de dias de consumo de AQS

Tipo de edifícios	Utilização	Nº de dias	
		de consumo de AQS	
Edifícios residenciais	permanente	365	
Edifícios de serviços	permanente	365	
	encerrado 1 dia por semana	313	
	encerrado 1,5 dias por semana	287	
	encerrado 2 dias por semana	261	

3 - Eficiência de conversão do sistema de preparação das AQS (η_a)

A eficiência de conversão do sistema de preparação das AQS, η_a , é definida pelo respectivo fabricante com base em ensaios normalizados, podendo ser utilizados os seguintes valores de referência na ausência de informação mais precisa:

- termoacumulador eléctrico, com pelo menos 100 mm de isolamento térmico 0,95

- idem, com 50 a 100 mm de isolamento térmico	0,90
- idem, com menos de 50 mm de isolamento térmico	0,80
- termoacumulador a gás com pelo menos 100 mm de isolamento térmico	0,85
- idem, com 50 a 100 mm de isolamento térmico	0,80
- idem, com menos de 50 mm de isolamento térmico	0,70
- caldeira mural com acumulação	
com pelo menos 100 mm de isolamento térmico	0,90
- idem, com 50 a 100 mm de isolamento térmico	0,85
- idem, com menos de 50 mm de isolamento térmico	0,75
- esquentador a gás	0,65

Os valores de η_a devem ser diminuídos de 0,10 se as redes de distribuição de água quente internas à fracção autónoma não forem isoladas com pelo menos 10 mm de isolamento térmico (ou resistência térmica equivalente da tubagem respectiva).

Para outros sistemas de preparação de AQS, nomeadamente sistemas centralizados comuns a várias fracções autónomas de um mesmo edifício, recurso a redes urbanas de aquecimento, etc., a eficiência deve ser calculada e demonstrada caso a caso pelo projectista, sendo aplicáveis, nos ramais principais de distribuição de água quente exteriores às fracções autónomas, os requisitos de isolamento térmico especificados na regulamentação própria aplicável a este tipo de sistemas (RSECE).

Caso não esteja definido, em projecto, o sistema de preparação das AQS, considera-se que a fracção autónoma vai dispor de um termoacumulador eléctrico com 5 cm de isolamento térmico ($\eta_a = 0,90$) em edifícios sem alimentação de gás, ou um esquentador a gás natural ou GPL ($\eta_a = 0,65$) quando estiver previsto o respectivo abastecimento.

4 - Contribuição de sistemas solares de preparação de AQS (E_{solar})

A contribuição de sistemas de colectores solares para o aquecimento da AQS, E_{solar}, deverá ser calculada utilizando o programa SOLTERM do INETI. A contribuição de sistemas solares só pode ser contabilizada, para efeitos deste regulamento, se os sistemas ou equipamentos forem certificados de acordo com as normas e legislação em vigor, instalados por instaladores acreditados pela DGGE, e, cumulativamente, se haver a garantia de manutenção do sistema em funcionamento eficiente durante um período mínimo de 6 anos após a instalação.

5 - Contribuição de outros sistemas de preparação de AQS (E_{ren})

A contribuição de quaisquer outras formas de energias renováveis, E_{ren}, (solar fotovoltaica, biomassa, eólica, geotérmica, etc.) para a preparação de AQS, bem como de quaisquer formas de recuperação de calor de equipamentos ou de fluidos residuais, deverá ser calculada com base num método devidamente justificado e reconhecido, e aceite pela entidade licenciadora.

ANEXO VII

Quantificação dos Parâmetros Térmicos

- 1 Cálculo do coeficiente de transmissão térmica (U)
- 1.1 Princípio de cálculo

O coeficiente de transmissão térmica, U, de elementos constituídos por um ou vários materiais, em camadas de espessura constante, é calculado pela seguinte fórmula:

$$U = \frac{1}{R_{si} + \Sigma_i R_i + R_{se}}$$

em que:

R_i - resistência térmica da camada j (m².ºC/W);

 R_{si} , R_{se} - resistências térmicas superficiais interior e exterior, respectivamente, $(m^2.{}^{\circ}C/W)$.

Tratando-se de camadas de materiais homogéneos, a resistência térmica, Rj é calculada como sendo o quociente entre a espessura da camada j, d_j (m), e o valor de cálculo da condutibilidade térmica do material que a constitui, λ_j (W/m. °C).

Para as camadas não-homogéneas (alvenarias, lajes aligeiradas, espaços de ar, etc...) os valores das correspondentes resistências térmicas devem ser, quer calculados de acordo com a metodologia estabelecida na norma europeia EN ISO 6946 quer obtidos directamente em tabelas. Os valores da condutibilidade térmica dos materiais correntes de construção e das resistências térmicas das camadas não-homogéneas mais utilizadas constam da publicação do LNEC "Coeficientes de Transmissão Térmica de Elementos da Envolvente dos Edifícios".

Os valores das resistências térmicas superficiais em função da posição do elemento construtivo e do sentido do fluxo de calor constam do quadro VII.l.

Quadro VII.1 Resistências térmicas superficiais

	Resistência térmica superficial		
	(m ² .°C/W)		
Sentido do	Exterior	Local não	Interior
fluxo de calor	-	aquecido	-
	R_{se}	(*)	R_{si}
	se	R_{se}	SI
Horizontal (**)	0,04	0,13	0,13
Vertical (***):			
Ascendente	0,04	0,10	0,10
Descendente	0,04	0,17	0,17

- (*) Os valores indicados traduzem o facto de, no caso do cálculo do coeficiente de transmissão térmica de um elemento que separa um local não-aquecido de um local aquecido, se adoptar $R_{\rm se}=R_{\rm si}$
- (**) Aplicável a paredes (até +/- 30° com a vertical)
- (***) Aplicável a coberturas e pavimentos

Os valores das resistências térmicas dos espaços de ar não-ventilados e ventilados são tratados nas secções 1.2.1 e 1.2.2 deste anexo, respectivamente.

A publicação do LNEC "Coeficientes de Transmissão Térmica de Elementos da Envolvente dos Edifícios" contém uma listagem extensa do valor dos coeficientes de transmissão térmica, U, dos elementos de construção mais comuns, obtidos segundo este método de cálculo. Quando um edifício utilize uma solução construtiva não tabelada nessa publicação, o respectivo valor de U deve ser obtido usando os princípios de cálculo descritos nas normas europeias EN ISO 6946 e EN ISO 13789.

1.2 - Resistência térmica dos espaços de ar em elementos construtivos

A resistência térmica de um espaço de ar, R_{ar}, será considerada no cálculo do coeficiente de transmissão térmica se o espaço de ar.

- tiver espessura nominal superior a 5 mm, no caso de elementos pré-fabricados, e a 15 mm, no caso de elementos construtivos realizados em obra;
- for delimitado por duas superfícies paralelas, com emitâncias iguais ou superiores a 0,8
 (caso dos materiais correntes de construção), e perpendiculares à direcção do fluxo de calor;
- tiver uma espessura (na direcção do fluxo de calor) inferior a 1/10 de qualquer das outras duas dimensões.
- não apresentar trocas de ar com o ambiente interior.

A caracterização do grau de ventilação dos espaços de ar faz-se da seguinte forma:

- para as paredes, a partir do quociente entre a área total de orifícios de ventilação, s, em milímetros quadrados, e o comprimento da parede, *L*, em metros;
- para as coberturas e elementos inclinados, a partir do quociente entre a área total de orifícios de ventilação, s, em milímetros quadrados, e a área do elemento em estudo, A, em m².

1.2.1 — Resistência térmica de espaços de ar não-ventilados

No quadro VII.2 apresentam-se os valores da resistência térmica dos espaços de ar nãoventilados, que devem ser adoptados para o cálculo do coeficiente de transmissão térmica, em função da posição e da espessura do espaço de ar, e do sentido do fluxo de calor.

Quadro VII.2

Resistência térmica dos espaços de ar não-ventilados

	Espessura do	Resistência
Sentido do	espaço de ar	térmica
fluxo do calor	(mm)	R_{ar}
		$(m^2.^{\circ}C/W)$
	5	0,11
	10	0,15
Horizontal (*)	15	0,17
	25 a 100	0,18
Vertical (**)	5	0,11
Ascendente	10	0,15
	15 a 100	0,16
	5	0,11
Vertical (**)	10	0,15
Descendente	15	0,17
	25	0,19
	50	0,21
	100	0,22

^(*) Paredes (até +/- 30° com a vertical).

Um espaço de ar que tenha pequenas aberturas para o ambiente exterior pode também ser considerado não-ventilado desde que:

^(**) Coberturas e pavimentos.

- não exista uma camada de isolante térmico entre ele e o exterior;
- as aberturas existentes não permitam a circulação de ar no interior do espaço de ar;
- a relação s/L seja igual ou inferior a 500 mm²/m, no caso de paredes;
- a relação s/A seja igual ou inferior a 500 mm²/m², no caso de elementos horizontais (coberturas ou pavimentos) ou inclinados.

1.2.2 - Resistência térmica de espaços de ar ventilados

Quando o elemento de construção incluir espaços de ar ventilados, o valor do seu coeficiente de transmissão térmica dependerá do grau de ventilação desses espaços.

i) Espaços de ar fracamente ventilados

Um espaço de ar considera-se fracamente ventilado, desde que:

- a relação s/L seja superior a 500 mm²/m e igual ou inferior a 1500 mm²/m, no caso de paredes;
- a relação s/A seja superior a 500 mm²/m² e igual ou inferior a 1500 mm²/m², no caso de elementos horizontais ou inclinados.

Nestes casos a resistência térmica do espaço de ar fracamente ventilado é metade do valor correspondente indicado na tabela VII.2.

Todavia se a resistência térmica do elemento construtivo localizado entre o espaço de ar e o ambiente exterior for superior a 0,15 m².°C/W a resistência térmica do espaço de ar deve tomar o valor de 0,15 m².°C/W.

ii) Espaços de ar fortemente ventilados

Um espaço de ar considera-se fortemente ventilado, desde que:

- a relação s/L seja superior a 1500 mm²/m, no caso de paredes;

a relação s/A seja superior a 1500 mm²/m², no caso de elementos horizontais, ou inclinados.

Nestes casos a resistência térmica do espaço de ar considera-se nula.

Para além disso, no cálculo do coeficiente de transmissão térmica, U, do elemento com um espaço de ar fortemente ventilado adoptam-se as seguintes convenções:

- não se considera a resistência térmica das camadas que se localizam entre o espaço de ar e o ambiente exterior;
- a resistência térmica superficial exterior, R_{se}, toma o valor correspondente da resistência térmica superficial interior, R_{si}, indicado na tabela VII.1.

1.3 - Coeficiente de transmissão térmica de coberturas inclinadas sobre desvão

No caso de coberturas inclinadas sobre desvão o cálculo é efectuado como se indica a seguir, consoante o desvão é habitado ou não.

i) desvão habitado

Neste caso o desvão habitado é considerado um espaço útil aquecido. A determinação das perdas térmicas correspondentes à cobertura é efectuada com base no coeficiente de transmissão térmica do elemento inclinado (vertentes) da cobertura, calculado como referido em 1.1

ii) desvão não habitado (acessível ou não)

No caso dos desvãos não-habitados, acessíveis ou não, eventualmente utilizados como zonas de arrecadação, técnicas ou similares, o desvão é considerado um espaço não-aquecido, com uma temperatura interior de referência nas condições descritas na secção 2.1 do anexo IV.

Para a determinação das perdas térmicas nestas situações procede-se ao cálculo, como referido em 1.1, apenas do coeficiente de transmissão térmica do elemento que separa o espaço interior aquecido do desvão não-habitado e tem-se em consideração o valor correspondente do coeficiente τ indicado na Tabela IV.1 (ver anexo IV).

2 - Quantificação da inércia térmica interior - It

2.1 - *Princípio de cálculo*. - A inércia térmica interior de uma fracção autónoma é função da capacidade de armazenamento de calor que os locais apresentam e depende da massa superficial útil de cada um dos elementos da construção.

A massa superficial útil, M_{si}, de cada elemento de construção interveniente na inércia térmica, é função da sua localização no edifício e da sua constituição, nomeadamente do posicionamento e das características das soluções de isolamento térmico e de revestimento superficial. Podem ser definidos os casos genéricos representados na fig. VII.1.

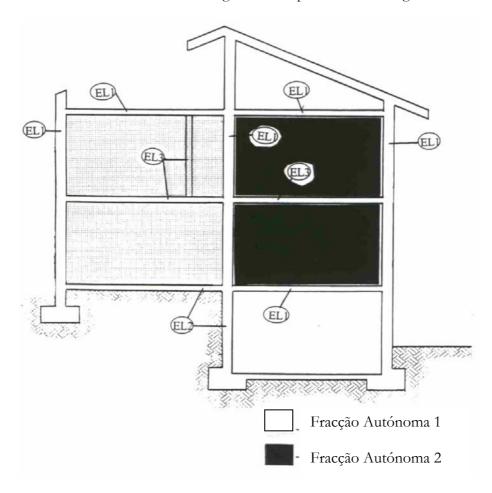


Fig. VII.1 - Identificação dos elementos da envolvente para o cálculo da inércia térmica interior

EL1- Elemento da envolvente exterior, elemento de construção em contacto com outra fracção autónoma ou com espaços não úteis.

Se estes elementos não possuem isolamento térmico, contabiliza-se metade da sua massa total, m_t , $M_{si} = m_t/2$. No entanto, se existir um isolante térmico (material de condutibilidade térmica inferior a 0,065 W/m.°C, com uma espessura que conduza a uma resistência térmica superior a 0,30 m².°C/W) considera-se somente a massa situada do lado interior do isolamento térmico, m_t , $M_{si} = m_t$.

Os valores de M_{si} nunca podem ser superiores a 150 kg/m².

EL2 - Elementos em contacto com o solo.

Se estes elementos não possuem isolamento térmico, contabiliza-se uma massa M_{si} de 150 kg/m². Caso contrário, não se toma em consideração senão a massa interior ao isolamento térmico M_{si} = m_i , sem ultrapassar o limite de 150 kg/m².

EL3 - Elementos interiores da fracção autónoma em estudo (paredes e pavimentos interiores).

Considera-se a massa total do elemento $M_{si} = m_p$ com o limite de 300 kg/m².

Para os elementos de construção da envolvente da fracção autónoma em estudo em que o revestimento superficial interior apresente uma resistência térmica, R, compreendida entre 0,14 e 0,5 m².°C/W, a massa superficial útil, M_{si}, deve ser reduzida (r) para 50% do valor calculado.

Para os elementos interiores à fracção autónoma em estudo, a massa M_{si} será multiplicada por r=0,75 ou 0,50 conforme o elemento tenha revestimento superficial com resistência térmica superior a 0,14 m^{2.} °C/W numa ou em duas faces, respectivamente.

A título de exemplo apresentam-se, em seguida, ordens de grandeza da resistência térmica de alguns revestimentos correntes: Parquet de madeira Revestimento cerâmico Alcatifa espessa com base de borracha Soalho sobre laje com espaço de ar Placas de gesso cartonado e espaço de ar

 $R \le 0.14 \text{ m}^{2 \text{ o}}\text{C/W}$ $0.14 < R \le 0.50 \text{ m}^{2 \text{ o}}\text{C/W}$ $0.14 < R \le 0.50 \text{ m}^{2 \text{ o}}\text{C/W}$

 $0.14 < R \le 0.50 \text{ m}^{2.\text{ o}} \text{C/W}$

 $R \le 0.14 \text{ m}^{2. \text{ o}} \text{C/W}$

Nas figuras VII.2 a VII.6, exemplifica-se a forma de cálculo da massa superficial útil dos elementos mais comuns da envolvente em função da sua localização e da solução de isolamento térmico. A influência dos revestimentos superficiais deve ser considerada adicionalmente, conforme descrito no parágrafo anterior.

A) Paredes exteriores ou em contacto com o solo

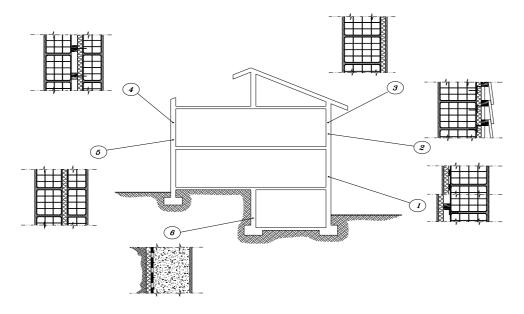


Fig. VII.2

Tipo de parede	$ m M_{si}$	
	Com isolamento	Sem isolamento
1 - isolamento pelo interior, parede simples	0	$m_t/2 \le 150 \text{ kg/m}^2$
2 e 3 - isolamento pelo exterior, parede simples	$m_t \le 150 \text{ kg/m}^2$	$m_t/2 \le 150 \text{ kg/m}^2$
4 e 5 - isolamento no espaço de ar, parede dupla	$m_{pi} \le 150 \text{ kg/m}^2$	$m_{pi}/2 \le 150 \text{ kg/m}^2$
6 - parede em contacto com o solo	$m_t \le 150 \text{ kg/m}^2$	150 kg/m^2

 \boldsymbol{m}_{t} - massa total da parede (do isolamento para o interior);

 m_{pi} - massa do pano interior da parede (do isolamento para o interior).

B) Coberturas

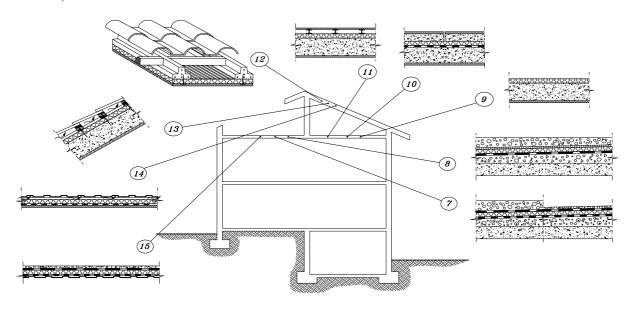


Fig. VII.3

Tipo de cobertura	$ m M_{si}$	
	Com isolamento	Sem isolamento
7 e 8 - terraço, isolamento exterior	$m_t \le 150 \text{ kg/m}^2$	$mt/2 \le 150 \text{ kg/m}^2$
9 a 11 - laje horizontal, sotão não habitável	$m_t \le 150 \text{ kg/m}^2$	$m_t/2 \le 150 \text{ kg/m}^2$
12 a 14 - cobertura inclinada, sotão habitável	$m_t \le 150 \text{ kg/m}^2$	$mt/2 \le 150 \text{ kg/m}^2$
15 - terraço, isolamento interior	0	$m_t/2 \le 150 \text{ kg/m}^2$

 $\mbox{m}_{\mbox{\tiny t}}$ - massa total da cobertura (do isolamento para o interior).

C) Pavimentos exteriores, de separação com espaços não-úteis, ou em contacto com o solo

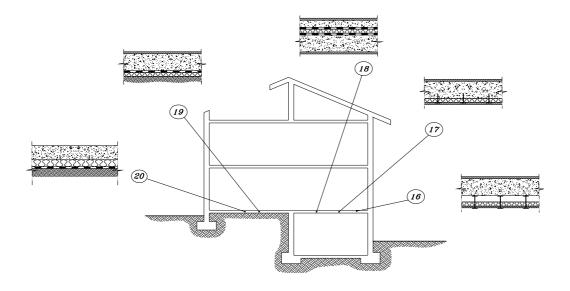
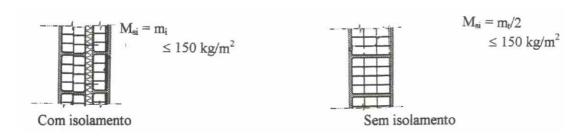


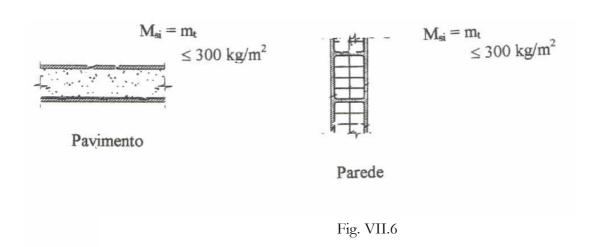
Fig. VII.4

Tipo de pavimento	$ m M_{si}$	
	Com isolamento	Sem isolamento
16 e 17 - isolamento inferior, cave não habitável	$m_t \le 150 \text{ kg/m}^2$	$m_{t}/2 \le 150 \text{ kg/m}^2$
ou ambiente exterior	. 0	·
18 - isolamento intermédio	$m_t \le 150 \text{ kg/m}^2$	$m_t/2 \le 150 \text{ kg/m}^2$
19 e 20 - pavimento em contacto com o solo		
(isolamento sob o pavimento)	$m_t \le 150 \text{ kg/m}^2$	150 kg/m^2

m_t - massa total do pavimento (do isolamento para o interior).

D) Paredes de separação entre fracções autónomas




Fig. VII.5

em que:

m_i - massa do pano interior (do isolamento para o interior) - paredes duplas;

m_t - massa total da parede - paredes simples.

E) Paredes e pavimentos interiores à fracção autónoma

2.2 - Cálculo da Inércia Térmica Interior - A massa superficial útil por metro quadrado de área de pavimento, It, é então calculada pela seguinte expressão:

$$I_t = \frac{\sum M_{si} S_i}{A_p}$$

em que:

 M_{si} massa superficial útil do elemento i (kg/m²);

 S_{i} - área da superfície interior do elemento i (m²);

 A_p - área útil de pavimento (m^2).

O processo de cálculo está esquematizado no quadro VII.5.

As massas dos diferentes elementos de construção podem ser obtidos em tabelas técnicas ou nas seguintes publicações do LNEC: "Caracterização Térmica de Paredes de Alvenaria - ITE 12" e "Caracterização Térmica de Pavimentos Pré-Fabricados - ITE 11", ou ainda noutra documentação técnica disponível.

Nota. - As massas indicadas para pavimentos nas publicações do LNEC acima referidas correspondem aos pavimentos em tosco. As massas correspondentes aos revestimentos podem ser obtidas em tabelas técnicas.

Quadro VII.5

Cálculo da inércia térmica interior - It

Elemento de construção	$\frac{\mathrm{M_{si}}}{\mathrm{(kg/m^2)}}$	S_i (m^2)	Factor de correcção (r)	M _{si} r S _i (kg)
Laje de tecto			` '	
Laje de pavimento				
Paredes da envolvente da fracção autónoma em estudo				
Paredes enterradas				
Pavimentos enterrados				
Pavimentos interiores				
Paredes interiores				
			Total	
Área útil do pavimento	$_{p}, A_{p}, (m^{2})$			/
Massa superficial útil	por m ² c	de área d	e	=
pavimento, I _t (kg/m ²)				

Segundo o valor encontrado para It definem-se três classes de inércia de acordo com o quadro VII.6.

Quadro VII.6

Classe de Inércia térmica interior

Classe de inércia	Massa superficial útil por metro	
	quadrado da área de pavimento (kg/m²)	
Fraca	It < 150	
Média	150 ≤ It ≤400	
Forte	It > 400	

ANEXO VIII

Fichas para Licenciamento

Para requerer as licenças de construção e de utilização, deverá ser preenchido para cada edifício um conjunto de Fichas, conforme o modelo anexo, juntamente com os documentos anexos nelas referidos:

Licença de Construção - Fichas 1 a 3

Licença de Utilização - Ficha 4

As habitações unifamiliares abrangidas pelo disposto no artigo 10° deste regulamento ficam dispensadas da apresentação da página 2 da Ficha 1, bem como da Ficha 2, aquando do pedido de emissão de licença de construção.

144

FICHA 1

REGULAMENTO DAS CARACTERÍSTICAS DE COMPORTAMENTO TÉRMICO DE EDIFÍCIOS (RCCTE)

Demonstração da Conformidade Regulamentar para

Emissão de Licença de Construção

Câmara Municipal de
Edifício
Localização
N° de Fracções Autónomas (ou corpos)
Para cada Fracção Autónoma* ou corpo, incluir:
☐ Ficha 2 - Levantamento Dimensional
☐ Ficha 3 - Comprovação de Satisfação dos Requisitos Mínimos ⁺
☐ Fichas FCI e FCV (Anexos IV e V do RCCTE)

^{*} Se houver duas ou mais fracções autónomas (FA) exactamente iguais, é suficiente elaborar um único conjunto de Fichas para cada grupo de FA iguais.

⁺ Em alternativa, pode ser submetida uma única Ficha 3, comum para todas as Fracções Autónomas de um mesmo edifício, mesmo que haja mais do que uma FA distinta.

<u>Técnico Responsável</u> :
Nome
Inscrito na:
Ordem dos Arquitectos, com o nº
Ordem dos Engenheiros, com o nº
Assoc. Nac. dos Eng.ºs Técnicos com o nº
Data

Anexos:

- Termo de Responsabilidade do Técnico Responsável, nos termos do disposto na alínea
 e) do nº1 do artigo 13º do RCCTE.
- 2. Declaração de reconhecimento de capacidade profissional para aplicação do RCCTE, emitida pela Ordem dos Arquitectos, da Ordem dos Engenheiros ou da ANET.

(pag 1 de 2)

Mapa de Valores Nominais para o Edifício

Zona Climática	<u>I</u>	V	Altitude	m
Graus-dias	°C.dia	Duração Aquec Me	eses Temp.	de Verão °C

Fracção	Ap	Taxa	Nic	Ni	Nvc	Nv	Nac	Ntc	Nt
Autónoma Nº		Ren.	(kWh/	(kWh/	(kWh/	(kWh/	(kWh/	(kgep/ m².ano)	(kgep/ m².ano)
	(m ²)	(RPH)	m².ano)	m².ano)	m².ano)	m².ano)	m².ano)	m².ano)	m².ano)
								ng 2 de 2)	

(pag 2 de 2)

FICHA 2 REGULAMENTO DAS CARACTERÍSTICAS TÉRMICAS DE COMPORTAMENTO TÉRMICO DE EDIFICIOS

LEVANTAMENTO IEMENSIONALE CARA CTERIZA ÇÃO TERMICA (PARA UMA UNICA FRACÇÃO AUTONOMA)

(ou para um corpo de um edificio) EDIFICIO/2E Area Utilde Panimento m Pé Diseito Médio (ponderado)..... Elementos Comentes da Envolvente Elementos em Contacto com o Solo Сопир. (W/mPC) PAVIMENT 08 PAVIMENTOS sobmexterior sobre área xão-útil PAREDES Total # **FAREDES** Pontes Ténnicas Exteriores (total) (ver quadro) Соптр. Interiores (W/m.*C) FACHADA COM Total PAVIMENTO: térm o COBERTURAS intermédios terraço sobne locais xão desvão aqueridos ou não-ventlado exteriores ventilado inclinadas FACHADA COM: sob área não-útil Total peisoril/padieira COEFICIENTE DE ABSORÇÃO - 0. LIGAÇÃO ENTRE PAREDE COBERTURA DUAS PAREDES PAREDES AREAS (m) POR ORIENTAÇÃO (descrição sumária e valor U) NE E SE S SW W INW Total Ν VAOS ENVIDRAÇADOS (especificarinchindo o tipo de protecção s dar e valor S0) ENVIDRAÇADOS

HORIZONTAIS

FICHA 3

REGULAMENTO DAS CARACTERÍSTICAS DE COMPORTAMENTO TÉRMICO DE EDIFÍCIOS (RCCTE) DEMONSTRAÇÃO DE SATISFAÇÃO DOS REQUISITOS MÍNIMOS PARA A ENVOLVENTE DE EDIFÍCIOS

Fracção Autónoma		
Inércia térmica		
a) U máximo	<u>Valores</u>	Máximos Regulamentares:
Soluções adoptadas		
	Fachadas ext.	W/m².°C
	Coberturas ext W/m².°0	С
	Pavim. s/ ext	W/m².°C
	Paredes interiores	W/m².°C
	Pavim. inter.	W/m².°C
	Cobert. inter.	W/m².°C
	Pontes Térm.	W/m².°C
b) Factores Solares dos Env	vidraçados <u>Valores</u>	Máximos Regulamentares:
Soluções adoptadas - Ve	rão	
tipo do protocoão solor		

tipo de protecção solar	
tipo de protecção solar	
c) Pontes térmicas planas:	Valores Máximos Regulamentares: U
da Soluções adoptadas	
W/m².°C	W/m².°C
W/m².°C	W/m².°C
W/m².°C	W/m².°C
Juntar pormenores construtivos definidores térmica:	de todas as situações de potencial ponte
☐ caixas de estore (se existirem)	
☐ ligações entre paredes e vigas	
☐ ligações entre paredes e pilares	
☐ ligações entre paredes e lajes de pavimen	to
☐ ligações entre paredes e lajes de cobertur	a
☐ paredes e pavimentos enterrados	
☐ montagem de caixilharias.	
☐ Técnico Responsável:	
Nome	
Data	
Assinatura	

(pag 1 de 1)

FICHA 4

REGULAMENTO DAS CARACTERÍSTICAS DE COMPORTAMENTO TÉRMICO DE EDIFÍCIOS (RCCTE)

Demonstração da Conformidade Regulamentar para Emissão de Licença de Utilização

Construção conforme projecto	S/N				
Técnico Responsável pela Direcção Técnica da Obra:					
Nome Morada					
Membro dacom o nº:					
Data					

Anexos:

- Termo de Responsabilidade do Técnico Responsável pela Direcção Técnica da Obra, nos termos do disposto na alínea e) do nº1 do artigo 14º do RCCTE.
- 2. Declaração de reconhecimento de capacidade profissional do técnico responsável pela construção do edifício, emitida pela respectiva Associação Profissional.
- 3. Cópia do Certificado Energético emitido por entidade do SNCEQAIE.

ANEXO IX

Requisitos Mínimos de Qualidade Térmica para a Envolvente dos Edifícios

1 - Coeficientes de transmissão térmica máximos admissíveis

Nenhum elemento da envolvente de qualquer edifício pode ter um coeficiente de transmissão térmica em zona corrente, U, superior ao valor correspondente no Quadro IX.1.

Quadro IX.1

Coeficientes de transmissão térmica superficiais máximos admissíveis de elementos opacos

 $(U-W/m^{2o}C)$

	Zona climática(*)		
Elemento da envolvente	Il	I2	I3
Elementos exteriores			
em zona corrente (**):			
Zonas opacas verticais	1,8	1,60	1,45
Zonas opacas horizontais	1,25	1,00	0,90
Elementos interiores			
em zona corrente: (***)			
Zonas opacas verticais	2,00	2,00	1,90
Zonas opacas horizontais	1,65	1,30	1,20

- (*) Ver anexo III
- (**) Incluindo elementos interiores em situações em que τ>0,7
- (***) Para outros edifícios e zonas anexas não úteis

2 - Zonas não correntes da envolvente

Nenhuma zona de qualquer elemento opaco da envolvente, incluindo zonas de ponte térmica plana, nomeadamente pilares, vigas, caixas de estore, pode ter um valor de U, calculado de forma unidimensional na direcção normal à envolvente, superior ao dobro do dos elementos homólogos (verticais ou horizontais) em zona corrente, respeitando sempre, no entanto, os valores máximos indicados no Quadro IX.1.

3 - Factor solar máximo admissível

Nenhum vão envidraçado da envolvente de qualquer edifício com área total superior a 5% da área útil de pavimento do espaço que serve, desde que não orientado a Norte (entre Noroeste e Nordeste), pode apresentar um factor solar correspondente ao vão envidraçado com o(s) respectivo(s) dispositivo(s) de protecção 100% activo(s) que exceda os valores indicados no Quadro IX.2.

Quadro IX.2

Factores solares máximos admissíveis de vãos envidraçados com mais de 5% da área útil do espaço que servem

	Zona climática (*)			
	Vl	V2	V3	
Classe de inércia térmica (**):	: Factor solar			
Fraca	0,15	0,15	0,10	
Média	0,56	0,56	0,50	
Forte	0,56	0,56	0,50	
(*) Vor apoxo III				

- (*) Ver anexo III.
- (**) Ver anexo VII.

4 - Valores de referência para dispensa de verificação detalhada do RCCTE em habitações unifamiliares com área útil menor que A_{mv}

Para serem dispensados de verificação detalhada dos requisitos deste regulamento, nos termos do disposto nos artigos 5°, 6° e 8° do regulamento, os edifícios de habitação unifamiliar com área útil inferior a A_{mv} devem satisfazer cumulativamente as seguintes condições:

- a) nenhum elemento opaco da envolvente, em zona corrente, pode ter um coeficiente de transmissão térmica superior ao valor correspondente ao indicado no Quadro IX.3, obedecendo também ao limite estabelecido pelo número 2 deste anexo em termos de valores locais para as zonas de ponte térmica plana;
- b) as coberturas terão de ser de cor clara;
- c) a inércia térmica do edifício terá de ser média ou forte;
- a área dos vãos envidraçados não pode exceder 15% da área útil de pavimento do edifício;
- e) os vãos envidraçados com mais de 5% da área útil do espaço que servem, e não orientados no quadrante Norte, devem ter factores solares que não excedam os valores indicados no Quadro IX.4.

Quadro IX.3

Coeficientes de transmissão térmica de referência

(U-W/m²oC)

	Zona climática(*)			
I1	I2	I3	RA(**)	
0,70	0,60	0,50	1,40	
0,50	0,45	0,40	0,80	
1,40	1,20	1,00	2,00	
1,00	0,90	0,80	1,25	
4,3 0	3,30	3,30	4,3 0	
	0,70 0,50 1,40 1,00	11 I2 0,70 0,60 0,50 0,45 1,40 1,20 1,00 0,90	Il I2 I3 0,70 0,60 0,50 0,50 0,45 0,40 1,40 1,20 1,00 1,00 0,90 0,80	

- (*) Ver anexo III
- (**) Regiões Autónomas da Madeira e Açores, apenas para edifícios na zona I1
- (***) Para outros zonas anexas não úteis
- (****) Valor médio dia-noite (inclui efeito do dispositivo de protecção nocturna) para vãos envidraçados verticais os vãos envidraçados horizontais consideram-se sempre como se instalados em locais sem ocupação nocturna

Quadro IX.4

Factores solares máximos admissíveis em envidraçados

com mais de 5% da área útil do espaço que servem

Zona climática

Vl V2 V3

0,25 0,20 0,15

NOTA: Estes valores do factor solar são correspondentes ao vão envidraçado com o(s) respectivo(s) dispositivo(s) de protecção 100% activo(s).

NOTA JUSTIFICATIVA

a) Sumário a publicar em Diário da República

Aprova o Regulamento das Características de Comportamento Térmico dos Edifícios.

b) Síntese do conteúdo do projecto

- A nova versão do RCCTE assenta no pressuposto de que uma parte significativa dos edifícios virão a ter meios de promoção das condições ambientais nos espaços interiores, quer no Inverno, quer no Verão, e impõe limites aos consumos que decorrerão dos seus potenciais existência e uso;
- Nesta sua reformulação, o RCCTE dispõe de mecanismos mais efectivos de comprovação de conformidade regulamentar, e aumenta as penalizações, pecuniárias e em termos profissionais, para os casos de incumprimento;
- Aumenta também o grau de exigência de formação profissional dos técnicos que podem vir a ser responsáveis pela comprovação dos requisitos deste regulamento, por forma a aumentar a sua competência e dar mais credibilidade e probabilidade de sucesso à satisfação dos objectivos pretendidos com este Decreto-Lei;
- Pretende-se ainda dar cumprimento à aplicação da Directiva 2002/91/CE, de 16 de Dezembro de 2002, publicada em 4 de Janeiro de 2003, relativa ao desempenho energético dos edifícios, que, entre outros requisitos, impõe aos Estados-membros o estabelecimento e actualização periódica de regulamentos para melhorar o comportamento térmico dos edifícios novos e reabilitados, obrigando-os a exigir, nestes casos, com poucas excepções, a implementação de todas as medidas pertinentes com viabilidade técnica e económica.

c) Necessidade da forma proposta para o projecto

A forma de Decreto-Lei decorre de se estar a regular matéria da competência do Governo e de se revogar diploma com igual dignidade legal.

d) Audições obrigatórias, nos termos da Constituição ou da lei, com indicação das datas de realização e resumo das respectivas conclusões

Pela Portaria n.º 1484/2002 (2.ª série), de 25 de Setembro de 2002, publicada no Diário da República, 2.ª série, n.º 234, de 10 de Outubro de 2002, foi criada, no âmbito da Comissão de Revisão e Instituição de Regulamentos Técnicos, a Subcomissão de Regulamentação de Eficiência Energética em Edifícios (REEE), a funcionar no Conselho Superior de Obras Públicas e Transportes (CSOPT).

Em cumprimento do n.º 3 da portaria supra referida, foram nomeados, por despacho de Sua Excelência o Ministro das Obras Públicas, Transportes e Habitação, os membros da REEE (despacho n.º 21 871/2002 (2ª série), de 26.9.2002, publicado no Diário da República, 2.ª série, n.º 234, de 10 de Outubro de 2002).

No seio da Subcomissão de Regulamentação de Eficiência Energética em Edifícios foram conduzidos os trabalhos de revisão do Regulamento das Condições Térmicas em Edifícios, pelo que o presente projecto de diploma foi elaborado e concertado com as seguintes entidades: representantes da Faculdade de Engenharia da Universidade do Porto, Faculdade de Arquitectura da Universidade Técnica de Lisboa; Escola Superior de Tecnologia da Universidade do Algarve; Instituto Nacional de Engenharia e Tecnologia Industrial; Instituto Superior Técnico; associações representativas do sector, Associação Nacional dos Municípios Portugueses, Direcção-Geral de Energia; Instituto de Meteorologia; Laboratório Nacional de Engenharia Civil; Ordem dos Arquitectos; Ordem dos Engenheiros.

Foram ouvidos os órgãos de governo próprio das Regiões Autónomas.

e) Participação ou audição de outras entidades, com indicação resumida das respectivas conclusões

Não aplicável

f) Actual enquadramento jurídico da matéria objecto do projecto e as razões que aconselham a alteração da situação existente

O presente projecto de diploma impõe que o RCCTE seja actualizado em termos de um nível de exigências adequado aos actuais contextos social, económico e energético, promovendo um novo acréscimo de qualidade térmica dos edifícios no próximo futuro. Para maior flexibilidade de actualização destes objectivos em função dos progressos técnicos e dos contextos económicos e sociais, este regulamento é estruturado por forma a permitir a actualização dos valores dos requisitos específicos, fixados de forma periódica pelos Ministérios que tutelam o sector.

g) Análise comparativa entre o regime jurídico em vigor e o regime jurídico a aprovar

Não aplicável

h) Identificação expressa da legislação a alterar ou a revogar e eventual legislação complementar

Revoga o Decreto-Lei n.º 40/99, de 6 de Fevereiro

i) Identificação expressa da necessidade de aprovação de regulamentos para a concretização e execução do acto normativo em causa e da entidade a que compete a instrução do procedimento regulamentar

Não aplicável

j) Avaliação sumária dos meios financeiros e humanos envolvidos na respectiva execução a curto e médio prazos

Não aplicável

1) Articulação com o Programa do Governo

Não aplicável

m) Articulação com políticas comunitárias

Dar cumprimento à Directiva 2002/91/CE, de 16 de Dezembro de 2002, publicada em 4 de Janeiro de 2003, relativa ao desempenho energético dos edificios, que, entre outros requisitos, impõe aos Estados-membros o estabelecimento e actualização periódica de regulamentos para melhorar o comportamento térmico dos edificios novos e reabilitados, obrigando-os a exigir, nestes casos, com poucas excepções, a implementação de todas as medidas pertinentes com viabilidade técnica e económica.

n) Nota destinada à divulgação junto da comunicação social

Foi hoje aprovado o Regulamento das Características de Comportamento Térmico dos Edifícios.

Com o presente diploma, pretende-se que o referido Regulamento seja actualizado em termos de um nível de exigências adequado aos actuais contextos social, económico e energético, promovendo um novo acréscimo de qualidade térmica dos edifícios no próximo futuro.

No contexto internacional, também, há um consenso de que é necessário melhorar a qualidade dos edifícios e reduzir os seus consumos de energia e as correspondentes emissões de gases que contribuem para o aquecimento global, ou efeito de estufa. Portugal obrigou-se a satisfazer compromissos neste sentido quando subscreveu o acordo de Quioto, tendo o correspondente esforço de redução das emissões de ser feito por todos os sectores consumidores de energia, nomeadamente, pelo dos edifícios.

Também a União Europeia, com objectivos semelhantes, publicou em 4 de Janeiro de 2003 a Directiva 2002/91/CE, de 16 de Dezembro de 2002, relativa ao desempenho energético dos edifícios, que, entre outros requisitos, impõe aos Estados-membros o estabelecimento e actualização periódica de regulamentos para melhorar o comportamento térmico dos edifícios novos e reabilitados, obrigando-os a exigir, nestes casos, com poucas excepções, a implementação de todas as medidas pertinentes com viabilidade técnica e económica. A Directiva adopta também a obrigatoriedade da contabilização das necessidades de energia para preparar as águas quentes sanitárias, numa óptica de consideração de todos os consumos de energia importantes, sobretudo, neste caso, na habitação, com um objectivo específico de favorecimento da penetração dos sistemas de colectores solares ou outras alternativas renováveis.

Nota Justificativa sobre a Necessidade e Urgência de Aprovação do Regulamento das Características de Comportamento Térmico dos Edificios

Da Necessidade:

1 - Portugal já tem, desde 1990, instrumentos legais que impõem uma qualidade mínima dos edifícios do ponto de vista térmico – Decreto-Lei n.º 40/90, de 6 de Fevereiro (Regulamento das Características do Comportamento Térmico) e o Decreto-Lei n.º 118/98, de 7 de Maio (Regulamento dos Sistemas Energéticos e de Climatização dos Edifícios).

Contudo, e apesar do benefício que representou para o parque construído nacional a introdução de tais regulamentos, a sua aplicação nem sempre tem sido cumprida e não há uma fiscalização adequada por parte das entidades licenciadoras

- 2 A entrada em vigor da Directiva n.º 2002/91/CE, de 16 de Dezembro, a partir de 1 de Janeiro de 2006, cujo diploma de transposição é agora também submetido a aprovação pelo Ministério das Actividades Económicas, vem criar mecanismos de reforço da aplicação dos regulamentos acima referidos, ao mesmo tempo que supõe ser acompanhada pela existência de uma regulamentação com o nível de exigência correspondente. Felizmente tal pode ser acautelado pelo MOPTC no âmbito do CSOPT e aqueles dois regulamentos foram entretanto revistos na perspectiva da sua articulação com a Directiva num clima de grande concertação e consenso
- 3 Com efeito este Regulamento é o resultado de um amplo e aturado consenso entre os vários agentes económicos e profissionais do sector no seio de uma Subcomissão a funcionar no Conselho Superior de Obras Públicas e Transportes, com representantes da Faculdade de Engenharia da Universidade do Porto, Faculdade de Arquitectura da Universidade Técnica de Lisboa; Escola Superior de Tecnologia da Universidade do Algarve; Instituto Nacional de Engenharia e Tecnologia Industrial; Instituto Superior Técnico; associações representativas do sector, Associação Nacional dos Municípios Portugueses, Direcção-Geral de Energia; Instituto de Meteorologia; Laboratório Nacional

de Engenharia Civil; Ordem dos Arquitectos; Ordem dos Engenheiros.

4 - Quanto à nova versão do Regulamento das Características de Comportamento Térmico dos Edifícios (RCCTE), ela assenta no pressuposto de que uma parte significativa dos edifícios virão a ter meios de promoção das condições ambientais nos espaços interiores, quer no Inverno, quer no Verão, e impõe limites aos consumos que decorrerão dos seus potenciais existência e uso.

Nesta sua reformulação, o RCCTE dispõe de mecanismos mais efectivos de comprovação de conformidade regulamentar, e aumenta as penalizações, pecuniárias e em termos profissionais, para os casos de incumprimento.

Aumenta também o grau de exigência de formação profissional dos técnicos que podem vir a ser responsáveis pela comprovação dos requisitos deste regulamento, por forma a aumentar a sua competência e dar mais credibilidade e probabilidade de sucesso à satisfação dos objectivos pretendidos com este Decreto-Lei.

5 - O projecto de diploma aqui apresentado, responde por inteiro aos objectivos de coerência invocados para as políticas públicas.

Primeiro, porque se trata de revisão de legislação já em aplicação e que, por isso, dispõe de uma medida dos limites e das ambições que é legítimo apontar à nova legislação;

Segundo, porque está associada à problemática da energia o que significa matéria que envolve custos e aspectos procedimentais associados a uma directiva recente sobre certificação energética dos edifícios e cuja implementação se coloca entre nós no próximo futuro;

Terceiro, porque se dirige ao projecto, à auditoria pós-ocupacional e à manutenção, matérias articuladas de maneira coerente com a formação específica de profissionais a ser conduzida pelas Ordens (Arquitectos, Engenheiros) e ANET (Engenheiros Técnicos) e a lançar antes do fim deste ano;

Quarto, porque imbrica com a certificação energética dos edifícios que, nos termos da nova directiva europeia, envolve a auditoria e a manutenção dos sistemas de climatização, abrindo uma perspectiva de serviços neste domínio a um amplo espectro de instituições nacionais.

6 - Na verdade, e em paralelo com este Regulamento e com o Regulamento dos Sistemas Energéticos de Climatização de Edifícios, irá ser implementada a Certificação Energética obrigatória para os edifícios, que irá permitir a confirmação de que todos os edifícios cumprirão efectivamente a regulamentação e que informará todos os compradores ou utilizadores de qual a qualidade térmica do edifício que vão adquirir ou arrendar. O Estado irá, assim, proporcionar uma escolha mais bem informada a todos os cidadãos sobre o produto que procuram.

Da Urgência:

A urgência da aprovação deste diploma decorre da urgência que comporta a transposição da Directiva n.º 2002/91/CE, de 16 de Dezembro de 2002 já que este Regulamento em conjunto com o Regulamento das Características de Comportamento Térmico dos Edifícios e o diploma que transpõe a Directiva constituem a estrutura de base coerente da regulamentação energética do parque construído nacional conduzindo a edifícios mais saudáveis, mais confortáveis e energeticamente mais eficientes, isto, é sem que agravem as emissões de CO₂.