Proposta de Teste [novembro - 2017]

Nome:

Ano / Turma: _____

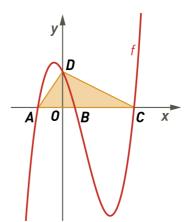
N.º:

Data: ____ / ____ / ____

- Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado.
- A prova inclui um formulário.
- As cotações dos itens encontram-se no final do enunciado da prova.
- **1.** Na igualdade $\sqrt[3]{6} \times 2^{-\frac{4}{3}} = 3^{\frac{1}{3}} \times k$, o valor de k é:
- **(A)** $\sqrt{2}$
- **(B)** $\frac{1}{2}$
- **(D)** $6 \times \sqrt[3]{2}$
- 2. Na figura estão representados, em referencial cartesiano, a função f, definida por $f(x) = x^3 - \frac{5}{2}x^2 - 2x + \frac{3}{2}$ e o triângulo [ACD].

Sabe-se que:

A, B e C são os pontos de interseção do gráfico de f com o eixo Ox;

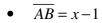


- D é o ponto de interseção do gráfico de f com o eixo Oy;
- o ponto B tem coordenadas $\left(\frac{1}{2},0\right)$.

Por processos exclusivamente analíticos, sem recurso à calculadora, determina a área do triângulo [ACD].

- **3.** Qual das seguintes afirmações é **falsa**?
- **(A)** $\forall x \in [1,3[, (x^2+1)x > 0]$
- **(B)** $\exists x \in]1,3[:(x-2)^{10} \le 0$
- (C) $\forall x \in [1,2], (x-2)^8 (2-x)^7 > 0$ (D) $\forall x \in [1,3], (2-x)^{20} > 0$

4. Na figura está representado um paralelepípedo retângulo. Fixada uma unidade de comprimento e com x > 1, tem-se:

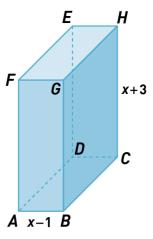


•
$$\overline{CH} = x + 3$$

• o volume do paralelepípedo é dado por: $V(x) = 2x^3 + 5x^2 - 4x - 3$

(V(x)) é expresso em unidades de volume).

4.1. Determina o perímetro da face [ABGF], sabendo que a medida da área dessa face é 60.



4.2. Mostra que: $\overline{BC} = 2x + 1$

5. Considera os polinómios $P(x) = x^3 + 4x^2 + x - 6$ e $Q(x) = x^2 + 2x$.

5.1. Mostra que é verdadeira a proposição:

$$\forall x \in]-2, 0[, Q(x) < 0$$

5.2. Sabe-se que os polinómios P(x) e Q(x) têm uma raiz em comum.

Resolve a inequação $P(x) \ge 0$. Apresenta o conjunto-solução na forma de reunião de intervalos de números reais.

6. Seja *P* um polinómio de grau 3.

Sabe-se que:

• 2 e –1 são zeros do polinómio, sendo –1 um zero duplo;

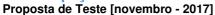
 $\bullet \quad P(1) = 4$

O conjunto-solução da inequação P(x) < 0 é:

(A)
$$]2, +\infty[$$

(C)
$$]-\infty, 2] \setminus \{-1\}$$

(D)
$$]-\infty, -1[$$



7. Em relação a um referencial o.n. xOy considera o ponto A(-1,3). Seja A'o simétrico de A em relação à reta definida pela equação y=1. As coordenadas do ponto A'são:

(A) (-1,3)

(B) (1,-3)

(C) (-1,-1)

- **(D)** (-1, -3)
- **8.** Em relação a um referencial o.n. xOy considera o ponto $P(1-2k, k-3), k \in \mathbb{R}$.
- **8.1.** Para que valores de *k* o ponto *P* pertence ao 3.º quadrante?
- **8.2.** Determina k de modo que P pertença à reta que passa no ponto de coordenadas (3,-2) e é paralela ao eixo Oy.

FIM

	Cotações											
Questões	1.	2.	3.	4.1.	4.2.	5.1.	5.2.	6.	7.	8.1.	8.2	Total
Pontos	15	20	15	20	25	20	25	15	15	15	15	200

Proposta de Resolução [novembro - 2017]

1.
$$\sqrt[3]{6} \times 2^{-\frac{4}{3}} = 3^{\frac{1}{3}} \times k$$

 $\sqrt[3]{2 \times 3} \times 2^{-\frac{4}{3}} = 3^{\frac{1}{3}} \times k$

$$\sqrt[3]{2} \times \sqrt[3]{3} \times 2^{-\frac{4}{3}} = \sqrt[3]{3} \times k$$

$$2^{\frac{1}{3}} \times 2^{-\frac{4}{3}} = k$$

$$2^{-\frac{3}{3}} = k$$

$$2^{-1} = k$$

Resposta: Opção correta (**B**) $\frac{1}{2}$

2.
$$f(0) = \frac{3}{2}$$
. Então, $D(0, \frac{3}{2})$ e $\overline{OD} = \frac{3}{2}$.

 $\frac{1}{2}$ é uma raiz do polinómio $x^3 - \frac{5}{2}x^2 - 2x + \frac{3}{2}$

$$f(x) = \left(x - \frac{1}{2}\right)\left(x^2 - 2x - 3\right)$$

$$f(x) = 0 \Leftrightarrow x = \frac{1}{2} \lor x^2 - 2x - 3 = 0 \Leftrightarrow x = \frac{1}{2} \lor x = \frac{2 \pm \sqrt{4 + 12}}{2} \Leftrightarrow$$

$$\Leftrightarrow x = \frac{1}{2} \lor x = -1 \lor x = 3$$

Então,
$$A(-1,0)$$
, $C(3,0)$ e $\overline{AC} = 4$.

Área do triângulo [ACD]:
$$\frac{\overline{AC} \times \overline{OD}}{2} = \frac{4 \times \frac{3}{2}}{2} = 3$$

Resposta: A área do triângulo [ACD] é 3.

3. É falsa a proposição: $\forall x \in [1,3], (2-x)^{20} > 0$

Repara que $2 \in [1,3]$ e $(2-2)^{20} = 0$.

Resposta: A afirmação falsa é (**D**) $\forall x \in [1,3], (2-x)^{20} > 0$

Proposta de Resolução [novembro - 2017]

4.

4.1. A área da face [ABGF] é dada pela expressão:

$$(x-1)(x+3)$$
, ou seja, x^2-2x-3 .

$$x^2 - 2x - 3 = 60$$
, ou seja, $x^2 - 2x - 63 = 0$.

$$x^2 - 2x - 63 = 0 \Leftrightarrow x = \frac{2 \pm \sqrt{4 + 252}}{2} \Leftrightarrow x = 9 \lor x = -7$$

No contexto apresentado x = 9.

Se x=9, então o perímetro da face [ABGF] é dado por: $2\times(9-1)+2\times(9+3)=40$.

Resposta: O perímetro da face [ABGF] é 40.

4.2. O volume é dado por: $\overline{AB} \times \overline{BC} \times \overline{CH}$.

Assim, \overline{BC} é dado por V(x): [(x-1)(x+3)], ou seja, $(2x^3+5x^2-4x-3)$: (x^2+2x-3)

Resposta: $\overline{BC} = 2x + 1$

5.

5.1.
$$Q(x) < 0 \Leftrightarrow x^2 + 2x < 0 \Leftrightarrow x(x+2) < 0$$

$$Q(x) = 0 \Leftrightarrow x(x+2) = 0 \Leftrightarrow x = 0 \lor x = -2$$

х	-8	-2		0	+∞
X	1	1	I	0	+
x+2	ı	0	+	+	+
Q(x)	+	0	_	0	+

$$Q(x) < 0 \Leftrightarrow x \in]-2,0[$$

Resposta: $\forall x \in]-2,0[,Q(x)<0$

Proposta de Resolução [novembro - 2017]

5.2. As raízes de Q(x) são: 0 e -2.

Como 0 não é raiz de P(x) conclui-se que -2 é raiz.

$$P(x) = (x+2)(x^2+2x-3)$$

$$P(x) = 0 \Leftrightarrow (x+2)(x^2+2x-3) = 0 \Leftrightarrow x = -2 \lor x^2 + 2x - 3 = 0 \Leftrightarrow$$

$$\Leftrightarrow x = -2 \lor x = \frac{-2 \pm \sqrt{4 + 12}}{2} \Leftrightarrow x = -2 \lor x = -3 \lor x = 1$$

$$P(x) \ge 0 \Leftrightarrow (x-1)(x+2)(x+3) \ge 0$$

	-∞	-3		-2		1	+∞
x+3	_	0	+	+	+	+	+
x+2	_	-	_	0	+	+	+
x-1	_	-	_	_	-	0	+
P(x)	-	0	+	0	-	0	+

$$P(x) \ge 0 \Leftrightarrow x \in [-3, -2] \cup [1, +\infty[$$

Resposta: $[-3,-2] \cup [1,+\infty[$

6.
$$P(x) = a(x-2)(x+1)^2$$

$$P(1) = 4 \Leftrightarrow a(1-2)(1+1)^2 = 4 \Leftrightarrow -4a = 4 \Leftrightarrow a = -1$$

$$P(x) = -1(x-2)(x+1)^2 = (2-x)(x+1)^2$$

	-∞	-1		2	+∞
2-x	+	+	+	0	_
$(x+1)^2$	+	0	+	+	+
P(x)	+	0	+	0	_

$$P(x) < 0 \Leftrightarrow x \in]2, +\infty[$$

Resposta: Opção correta (A) $]2,+\infty[$

Proposta de Resolução [novembro - 2017]

7.
$$A(-1,3)$$

O simétrico de A em relação à reta y=1 é o ponto de coordenadas (-1,-1).

Resposta: Opção correta (C) (-1,-1).

8.1. Qual o ponto do 3.º quadrante tem abcissa e ordenada negativas? Assim, tem-se:

$$1 - 2k < 0 \land k - 3 < 0 \Leftrightarrow k > \frac{1}{2} \land k < 3 \Leftrightarrow k \in \left[\frac{1}{2}, 3 \right[$$

Resposta:
$$k \in \left[\frac{1}{2}, 3 \right[$$

8.2. Se a reta é paralela a Oy e passa no ponto (3, -2), então uma equação dessa reta é x = 3. O ponto P(1-2k, k-3) pertence à reta x = 3 se e só se 1-2k = 3, ou seja, k = -1.

Resposta: k = -1

FIM

		Cotações										
Questões	1.	2.	3.	4.1.	4.2.	5.1.	5.2.	6.	7.	8.1.	8.2.	Total
Pontos	15	20	15	20	25	20	25	15	15	15	15	200