

DRILLSHIP DESIGN INNOVATIONS MARTECH, 06 JULY 2016

J. Mendonça Santos – Project Manager - GustoMSC

HISTORY

1862

Start of Gusto Shipyard (The Netherlands)

1977

Start of Marine Structure Consultants B.V. (Sliedrecht)

1978

Start of Gusto Engineering (Schiedam)

1988

IHC Caland completes the repurchase of all Gusto Engineering and MSC shares

2003

Start of GustoMSC alliance

2011

Start of GustoMSC B.V.

2012

GustoMSC acquired by Parcom Capital, management & staff (as of November 2012)

OFFSHORE ENERGY PRODUCT PORTFOLIO

Oil & Gas

Renewable Wind

Associated Equipment

VESSELS & SEMI-SUBMERSIBLES

SEMI-SUBMERSIBLES

FLOATING FOUNDATIONS

RACK & PINION JACKING SYSTEM

SYSTEMS

X-Y SKIDDING SYSTEM

PELICAN (1960) PIONEERING WITH DP& INTEGRATED DRILLING SYSTEMS - 1ST OF 12 RIGS

6[™] OF 16 RIGS

NARIE

IN RING

NOBLE

1.0 1

NOBLE DON TAYLOR

CHALLENGING THE EXISTING FLEET

Technical and commercial drivers for innovations

- Capabilities for deeper water, complex wells
 - Higher hook loads require new hoisting and rig solutions
 - Significant step in rig loading capability supporting complex well programs
 - Large, dedicated deck areas and storage volumes
 - Increasing drilling efficiency to reduce total well cost
 - New drilling techniques, handling solutions and automation
 - Combining drilling and naval architectural considerations increasing overall rig efficiency
- Hull performance
 - Reduce fuel consumption (environment and cost)
 - Accommodate large moon pools for multiple activity
- Overall safety and redundancy

MAGELLAN COMPLEX WELLS ULTRA DEEP WATER

RKABLE

DECK AREA

IMPI

7,500 M² 8 RAM BOPS 15,000 FT

Principal dimensions

Class 3 (enhanced)

MAXIMIZING

UPTIME

TRS

HIGHER PRESSURE

20,000

WAXH

WATER DEPTH

11

LARGE VARIABLE LOAD

37,500 T

INTEGRATING INDUSTRY INNOVATIONS EQUIPMENT FLEXIBILITY

- Traditional derrick drawworks capacities are limiting growth
- Different solutions are developed in the industry to meet the future demands
- Solutions are integrated in the design to ensure performance of both drilling package, as floating rig

STRAIGHTFORWARD HANDLING PRINCIPLES, LARGE SUPPORT AREAS, MULTIPLE ACCESS

SUBSEA HANDLING AUX WELL CENTER MAIN WELL CENTER RISER HANG OFF

HULL PERFORMANCE DESIGN CHALLENGES

- Hull resistance \rightarrow increase speed/ reduce fuel consumption
 - reduction of cost and decrease environmental footprint
- Drilling activity →large moonpool to facilitate multiple and simultaneous drilling activities
 - well centers and hang off positions
- Utilize CFD design capability and model tests to develop solutions

HULL PERFORMANCE

Original hull

Optimized hull -12%

DESIGN ENABLING FUNCTIONALITY

REGULAR MOONPOOL

VERSION LO2_10

- Efficient equipment handling and moonpool functionality requires a large moonpool
- In large moonpools standing waves (sloshing) may occur:
 - Added resistance decreases speed and adds fuel cost
 - Possible green water may cause unsafe situation for equipment and personnel
- Sloshing mitigation device to be developed
 - No submerged mechanical components
 - No protruding parts limiting riser angle
 - Integrated in structure

CALLIRRHOE MOONPOOL (PATENT PENDING)

- Multiple ideas and working principles were designed and CFD tested
- Best performing design proved to significantly reduce sloshing, limit resistance and keep drag force variation limited → subject to model testing for CFD validation

MODEL TESTS MOONPOOL ANTI SLOSHING DEVICE AT 14 KNOTS SHIP SPEED

DESIGN H

CALLIRRHOE MOONPOOL PERFORMANCE

- Reduction of moonpool sloshing achieved with Callirrhoe
 moonpool technology [patent pending]
 - Total resistance at 14 knots is 18% lower than conventional moonpool with mitigation device
 - Increasing speed and fuel saving potential
 - Minimizing risk on green water increasing safety
 - Structurally integrated solution

thruster retrieval system (patented) UPTIME

- Innovative technology enabling operational time on location → more uptime
- Thruster maintenance planning taken out of the critical path
- Rack and pinion jacking system
 - Canister mounted thruster (any make or type)
 - Retract to save cost on fuel in transit
 - Retrieving enabling on site maintenance work

MAGELLAN INNOVATIONS CREATING THE RIG OF THE FUTURE INNOVATIVE DESIGN APPROACH AREA & ACCESSIBILITY

> INTEGRATING INNOVATIONS OF 3rd PARTIES HOISTING SYSTEM FLEXIBILITY

INNOVATIVE DEVELOPMENTS CALLIRRHOE MOONPOOL

INNOVATIVE EQUIPMENT THRUSTER RETRIEVAL SYSTEM

THANK YOU FOR YOUR KIND ATTENTION

WWW.GUSTOMSC.COM

THE PIONEERS OF OFFSHORE ENGINEERING

© Copyright GustoMSC B.V. 2016. All rights reserved.