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Preface 

Over the last twenty years, there has been increased interest in using 
multicultural themes throughout the mathematics curriculum. This 
worthy goal is not an easy one for the mathematics classroom teacher 
because information of this type requires research. It is challenging to 
bring this information to students in a way that is meaningful to the 
mathematics curriculum. 

In 1972, I began publishing multicultural math puzzles to reinforce 
basic skills in elementary algebra. My experience has been that 
materials of this kind bring various cultures to the classroom and 
provide an interesting way to reinforce math skills. 

Multicultural material suitable for more advanced classes such as 
geometry, intermediate algebra, analysis, or calculus hasn't been 
widely available. As I pondered the idea of bringing a multicultural 
dimension into these courses, it was very clear to me that teaching 

. time was at a premium. With students being taken out of class for 
field trips, class activities, counseling, and so on, I realized that it was 
impractical to introduce multicultural themes as a distinct lesson in 
advanced classes. It seemed to me that the most practical way to deal 
with the proposition that multicultural material could be incorporated 
into all math classes was to develop a series of posters recognizing 
mathematical achievements of various cultures. In this way teachers 
could have interesting materials to decorate their rooms, to 
accomplish multicultural content objectives, and to focus on their own 
curriculum, without getting into topics that would be difficult to 
connect to their objectives. As a consequence, I developed and 
published the Math of Mexico poster in 1980. Since then, many more 
international mathematics posters have been added to the series, 
recognizing the mathematical achievements of Africans, Chinese, 
Japanese, Indians, Native Americans, and others. Thus, at the present 
time, the poster series has not only met the original goal of providing 
multicultural references to all levels of math students, but has been 
an effective method of introducing the global history of mathematics. 

© 2001 Key CWTiculum Press 
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Through my research in developing the poster series, it became 
apparent that more topics could be developed for teachers to use with 
the curriculum. The poster format did not provide the space needed to 
present all of these topics. My aim is to add resource books to the 
international mathematics poster series to provide more depth of 
information for teachers to use with their students. 

I wish to take this opportunity to thank all of my benefactors who 
contributed to my education. In particular, I wish to thank the Sisters 
of the Presentation at St. Patrick's Elementary School in San Jose, 
California, and the Jesuit fathers at Bellarmine College Preparatozy 
and Santa Clara University. 

Lawrence W. Swienciki, Ph.D. 

Santa Fe, New Mexico 

June 29, 2000 
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Suggested lAses 

When using multicultural material in a mathematics class, keep in 

mind your basic curriculum objectives. Multicultural themes can be a 

tool to motivate students, like the other tools you use to expand class 

activities such as math puzzles, math games, individual or group 

math projects, and student work at the chalkboard. 

As teachers, we prepare students for the next mathematics class they 

take, while helping them to meet career challenges, and to appreciate 

the contributions of all cultures to our present-day knowledge. 

Multicultural content will enhance a mathematics class when it is 

presented in an interesting way for all students and especially when it 

reinforces the mathematics curriculum. 

The Ambitious Horse: Ancient Chinese Mathematics Problems 

complements the international mathematics poster Math of China 

offered by Key Curriculum Press. This book focuses on ancient and 

medieval Chinese mathematics. There is a broad range of topics in 

this book that can serve a variety of needs for teachers and students. 

There are sections that deal with elementary level, secondary level, 

and college level mathematics. Topics in this book were chosen 

to make it possible for teachers and students to use Chinese 

mathematics that can be connected to modern curriculum. In fact, 

this volume is designed to be reproducible for instructional purposes. 

Elemental""y and Middle School Level 

At the elementary and middle school level, teachers can find 

topics on the base-10 number system, operations on the Chinese 

calculating board. For example, "Calculator Rod Addition" is a 

manipulative activity-very much like a game-that can increase 

understanding of place value. Also, the seven-piece puzzle is another 

manipulative activity that promotes basic skills in geometry. 

A teacher at the elementary school level will find the -presentation in 

this book well-suited for the elementary school environment where 

curriculum is generally more integrated than secondary or college 

level curriculum. Topics presented in this book integrate 

mathematics, history, art, and culture. 

© 2001 Key Curriculum Press vii 
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t-ligh. Sch.ool Level 

Several topics relate directly to the subjects of elementary algebra, 
geometry, and intermediate algebra. Teachers can find applications 
with traditional lessons or activities in such classes. Moreover, 
students have opportunities to solve problems with alternate 
methodologies. For example, the problem ''The Ambitious Horse" 
provides a Chinese solution that is different from most Western 
explanations of problems on arithmetic series. That students can 
view multiple methods of solving a given problem is valuable in 
developing critical thinking-this experience encourages them to be 
more reflective. 

College Level 

There are problems involving the solution of polynomial equations 
of arbitrary degree from the area of algebra known as the theory of 
equations. Problems are developed in number theory related to 
operations with modular arithmetic. These and other topics can be 
especially valuable in a history of mathematics class or for students 
preparing to become teachers. 

Mathematics Projects 

Some topics in this book can be used for individual or group activity 
projec;ts-in particular, the topics on extracting roots or solving 
polynomial equations. Another project taking the students outdoors 
involves the ancient Chinese mathematics of surveying. 

t-lome Sch.ool ol"' Specialized Sch.ools 

Home schooling has become more popular in recent years. With this 
resource book, parents can provide their children a broad range of 
historical mathematics that is fundamentally sound. The material in 
this book offers opportunities for projects or activities. 

Some Chinese-American students attend special classes on Chinese 
culture because they or their parents value the opportunity to learn 
about their cultural heritage. This book can be used by teachers 

offering such classes or by students studying at home, self-directed 
or assisted by parents or family. 

© 2001 Key Cuni.culum Press 



Below. 

The Great Wall of China is 
the most spectacular wall 
ever built. The central 
part stretches 1,500 miles 
across northern China 
from the Yellow Sea to the 
central Asian desert. This 
symbol of China was built 
by General Meng Tian on 
orders from the first 
emperor of China, 
Qin Shihuangdi, who 
unified China in 221 B.c. 
General Meng linked 

earlier walls together to 
make the Great Wall. 

© 2001 Key Curriculum Press 
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"31 I I hi" - IV\9 XI Zl Z I 

The inventions of paper (second to first 
centuries B.c.). printing with wooden blocks 
(eighth century). and movable type (eleventh 
century) are accolades to China's writing 
tradition. This tradition, the longest and most 
continuous of any nation, defmes Chinese 
culture more than any other characteristic. 

Two anecdotes demonstrate how important 
the writing tradition is to the Chinese people. 
First, in ancient China to carelessly throw 
paper with writing into the street was 
considered disrespectful to the written word. 

Second, as late as the 1930s in Beijing, 
public trash containers bore the 

phrase Jing xi zi zhf-"Respect 
and save written paper." 

Scientists have discovered 
Neolithic cultures in China 
dating before 6000 B.c., but the 
earliest written history begins 

with the late Shang dynasty 
(approximately 1250 to 1050 B.c.) 

with inscriptions on oracle bones 
and cast bronze artifacts. 

The writing tradition of China is 
very different from that of other 
cultures, and it has enjoyed a 

unity and continuity for thousands of years. 
Chinese graphs are composed of two parts: a 
signific or radical, indicating the general 
category to which the word belongs; and a 

1 
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phonetic, which gives its approximate sound. 
Only a small portion of these complex graphs 
were originally actual pictures, such as a 
horse or a flag. 

In spite of the stability of Chinese writing, 
China's long history before unification in 
221 B.c. was subject to intense wars that 
destroyed the written records of the defeated. 
Therefore much early evidence for the history 
of writing has been lost. Fortunately, new 
archaeological discoveries have provided 
historians and scientists with fresh material 
for understanding the history of the 
formation of numerals. Some discoveries even 
suggest that basic Chinese numerals appear 
scratched on pottery dating from 5000 B.c. 

The concept of counting is elementary in any 
culture. Scientists have not provided a complete 
history of the development of numerals in China, 
but it is ancient and parallels the development of 
writing over thousands of years. There is also 
evidence that growth of the numeral system was 
subject to change and variations. For example, 
coins cast during the second century B.c. and 
used for hundreds of years bear numerals that 
are now discontinued in Chinese writing. 

On the Math of China poster, the numerals 
displayed in the 40 boxes of the poster 
represent the traditional or literary method of 
writing Chinese numerals. However, four 
major types of numerals have developed in 
China: a traditional or literary form, a 
business or legal form, a calculating rod 
form, and an abbreviated form. The symbols 
in the center of the Math of China poster, the 
Ba Gua, are not numerals but, rather, 
mathematical permutations of the symbols 
for the Chinese concepts of yin and yang. 

Above. 

Shang dynasty characters 
were inscrtbed on 
divination bones and cast 
bronze artifacts as early as 
1250-1050 B.C. 

© 2001 Key Curriculum Press 



Above. 

yi 
er 

san 
si 
wu 
liu 
qi 
ba 
jiu 
shi 
bai 

qian 
wan 

The romanized names for 
the Chinese numerals: (top 
to bottom) 1 through 10, 
100, 1,000, and 10,000. 

At right. 

The three examples 
illustrate the property of 
place value. The Chinese 
use a special character 
for place value. Modern 
Hindu-Arabic notation 
uses position to show 
place value. 

© 2001 Key Cuniculum Press 
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Trad itio~al 

Chinese numerals, just as our own 

Hindu-Arabic symbols, are based on 
powers of 10. Although they can be written 
from left to right, the traditional form is 
to write them vertically from top to bottom. 
Some of the most commonly used numerals 

are illustrated in the student instruction 
charts on pages 5 and 6. 

To write other numerals, such, as multiples of 

10, the symbols from 1 to 10 are employed 
with the idea of place value. For example, 
think of 60 as 6 X 10. In the Chinese system, 

put the character for 6 over the character for 
10 to represent 60 as shown below. 

To write the numeral for 600, think of 600 as 
6 X 100. Similar to the previous example, 

write the 6 over the 100 symbol in the 
Chinese system as shown below. 

Numerals such as 6,000 follow the same 

pattern. Think of 6,000 as 6 X 1,000. For 
Chinese numerals, write 6 over 1,000 as 

illustrated below. 

__L_.. 

/\ 

+ 
60 

__L_.. 

/\ 

600 

__L_.. 

/\ 

6,000 

3 
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To write numerals such as 250, think of 250 
as (2 X 100) + (5 X 10). In the Chinese system, 
start at the top with 2 over the 100. Continue 
under the 100 with the 5 over the 10. This is 
shown at the bottom of the page. 

To write four-digit numerals such as 1 ,492, 
think of 1,492 as (1 X 1,000) + (4 X 100) + 
(9 X 10) + 2. The Chinese representation 
follows the same pattern as the last example 
and is illustrated below. 

LiJI\9 Symbol 
fo~ Ze~o 

If 1,066 is written as the sum of powers of 10, 
then 1,066 = (1 X 1,000) + (0 X 100) + 
(6 X 10) + 6. However, the Chinese did not 
always have a zero in their system of 
mathematics. Think of 1,066 as (1 X 1,000) + 
(6 X 10) + 6. To help the reader quickly 
understand that a multiple of 10 follows the 
1,000, the symbol$ is placed between the 
1,000 and the 6 symbol as illustrated below. 

T- -=r a !ill ~ 
A ____.__ 

1i JL /" 
--t-

+ 
--(- ____.__ 

/" 

250 1,492 1,066 

Above. 

During the Ming dynasty 
(1368-1644), the Chinese 
character ling was adopted 
as zero in writing numerals 
in both traditional and 
accountant forms. The 
ancient meaning of ling is 
the small droplet of water 
left on a plant or some 
object after a rainstorm. 
It is speculated that the 
name was applied to the 
Sanskrit 0 introduced in 
the previous dynasty, the 
Song (96Q-1279). 

At left. 

The three examples 
illustrate more complex 
Chinese numerals. The 
example for 1,066 has a 
symbol that acts as a zero 
but is not a numeral. It 
can be understood as a 
Chinese punctuation 
symbol. The numeral 0 
came from India. However, 
it was not introduced into 
Chinese mathematics 
until the middle of the 
thirteenth century A.D. 

© 2001 Key Curriculum Press 



Below. 

Dragon design from 
the Tang dynasty 
(618-907 A.D.) 

© 2001 Key Curriculum Press 
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J f"lstrV\cti o"' Chart 

Below are characters commonly used in 

writing Chinese numerals. You can use this 

chart as a reference to form the more complex 

examples found in some of the exercises. 

1 2 3 4 

)\ 1i 
___r_... 

/\ 

5 6 7 8 

+ 
9 10 100 1,000 

+ -i-· -t-
-- . ·--·--

11 12 13 14 

5 
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Mo~e Complex E-xamples 

The characters in the diagram below represent 
symbols that are more complex than those found 
on page 5. You can use this chart to analyze the 
construction of Chinese numerals. It can also 
help you complete the exercises that follow. 

+ 
1i 

15 

+ 
20 

-
a ---
-f-
li 
125 

8 
~ ,-~ 

101 

+ 
----'--
/\ 

16 

---
+ 
30 

rm 
a 
}L 
+ 
I~ 

498 

-=r 
--I:; 
a 
II9 
+ 

1,740 

17 

rm 
+ 
40 

-[; 
8 
...L.... 

/"'-

+ 
760 

=f-
/\. 
~ _,, 
+-

1,860 

+ 
i\. 

18 

1i 
+ 
50 

800 

-=r 
1L a 
II9 
+ 
li 

1,945 

© 2001 Key Curriculum Press 



Below. 

Ancient Chinese graph for 
long life (shou). 

© 2001 Key Cuniculum Press 
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Exel"'cise 1 

Use the charts on pages 5 and 6 as a guide in 
writing the modern Hindu-Arabic equivalents 
to the Chinese numerals below. For each 
window, write the answer in the box below 
the Chinese characters. 

i\ __t__... 

/\ 

D D D D 

+ 
~ + -
~ 

D D D D 

+ 1i -:r-u 
_ _L.. 

lm + 
/'-

-I-
1i. 

1L 
8 
1L 
+ 
1L 

D D D D 

- ~ -

Ef 
~ -n 
-

-T-
-t:; 
H 
--l; 

t 
/' 

/'\ 

s 
i\ 
+ 
--1:: 

-'-T-
::IL u 
/\. 
-+-----

D D D D 

7 
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Exe..-cise 2 

In each window below, there is either a 
Chinese or Hindu-Arabic numeral. Convert 

each numeral to the other writing system. Fill 

in the empty spaces above or below the given 
characters. 

2 

+ 
14 

li 

100 

-.,-... 
/~ 

~ 
/"'-

--J-

40 

__I__... 

/\ 

45 

1,975 

1,860 

5 

70 

i\ 
8 

1,492 

Below. 

Ancient CWnese graph for 
joy (le). 

© 2001 Key Curriculum Press 
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C;<el"cise 3 

The example below demonstrates the property of place value~ The Chinese 
numeral inside the window is written as a sum of powers of 10 and as a 
single numeral in modern Hindu-Arabic notation. Complete Exercises a-f 
found below and on page 10. 

Example 

= OJ X 103 + ~ X 102 

-
-=r--
::tL +[!] X 101 + !}] X 10° 

8 
--l:::; 
+- = OJ X 1,000 +~ X 100 

li 
+[!] X 10+ [!] = 11,9751 

a. = D X 103 + D X 102 

-
-=r--
::tL +D X 101 +·D X 10° 

8 
f\. = 
+- D X 1,000 +D X 100 

-
-

+D X 10+ D = 

b. = D X 103 + D 
X 102 

-
-=r--
--l:::; +D X 101 + D X 10° 

E3 
lm 
+- D X 1,000 +D X 100 

+D X 10+ D = 

© 2001 Key Cuniculum Press 9 
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c. = D 
X 103 + D 

X 102 

1i 
-=r- +D X 101 + D X 10° 
::JL 
El --
--t- D X 1,000 +D X 100 

::JL 
+D X 10+ D = 

d. = D X 103 + D 
X 102 

---
.:::p +D X 101 + D X 10° 
::h~ 
8 
1m 
-+-

= D X 1,000 +D X 100 

li 
+D X 10+ D = 

e. 
D X 103 + D X 102 

+D 
-- X 101 + D X 10° 
-=f 
)\ = D X 1,000 +D X 100 

"Ef 
+D X 10+ D = 

f. = 
D X 103 + D 

X 102 

+D X 101 + D X 10° -1:: 
-=r-
1m 

= 
D X 1,000 +D X 100 

s 
::JL 
+ -
-

+D X 10+ D = 

10 © 2001 Key Curriculum Press 
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<SxeJI'cise 4 

Complete the multiplication grid below. Multiply the corresponding 
numbers and write the answers in the spaces provided. The rectangular 
spaces will allow you to write Chinese characters vertically. 

- - [Zg ~li 
- ,_ -t i\ )L - - - /\ ~ -

-

-~-

--

-
-

[Zg + 
-

-

1i. 

_._ 
/\ 

-t 

i\ 

)L 

Multiplication grid 

© 2001 Key Curriculum Press 11 
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The E.mperol-" 15 

Last Will 
In 1662 the great emperor Kangxi ascended 
the throne of the Manchu, or Qing, dynasty 
(1644--1911). His reign brought military unity 
to China. He greatly favored the continuation 
of learning from the Ming dynasty. However, 
he allowed corrupt officials to remain in office 
and was indecisive in declaring his heir to the 
throne of China. 

Legend has it that before his death, Kangxi 
designated his favorite son, the fourteenth, to 
be his heir. He wrote the will and named his 
fourteenth son to take his place upon his 
death. The will was hidden in a secret spot 
behind a royal tablet. 

The emperor's secret was discovered by his 
fourth son, Yongzheng. He formed a 
conspiracy with his uncle to alter the will. A 
kung-fu master was employed to climb to the 
hidden location and change the will to read 
the fourth son instead of the fourteenth. This 
change was easily made because the will was 
not written with formal or legal numerals. 
The left column at right shows what Kangxi 
wrote: "Give reign to fourteenth prince." 
Notice the traditional numerals for fourteen 
are used. The ten numeral was easily altered 
by drawing a horizontal line on the top and 
adding a hook to the vertical line. This 
creates the graph yu meaning "to." The new 
form, shown in the right column, has the 
meaning "Give the throne to fourth prince." 

Below. 

Left column designates 
the fourteenth son as heir 
to the throne of China in 
traditional literary form of 
numerals. Right column 
names the fourth son in 
the same way. 

1-!f. 1-, 
{sL fll 
+T 
12::912::9 

© 2001 Key Curriculum Press 



Below. 

Left column designates the 
fourteenth son as heir to 
the throne of China using 
formal, or accountant, 
numerals. Right column 
names the fourth son in the 
same manner. 

1-~ 1-~ 
fft fft 
fEr T 
:R~ :R~ 

© 2001 Key Curriculum Press 

The Ambitious Horse: Ancient Chinese Mathematics Problems 

ChiJt\ese Legal NvnV\erals 

When Kangxi died, Yongzheng the fourth son 

became emperor. Thus, China's history had 

been changed by the misuse of writing simple 

numeral characters. 

If Kangxi had been careful in making his will, 

he would have used formal, or accountant, 

numerals. For legal documents, China had 

centuries before developed special characters 

to prevent such fraud. Shown in the caption 

at left is the legal method the emperor could 

have chosen. The left column designates the 

fourteenth prince as heir, while the right 

column designates the fourth prince. 

At the bottom of the page, two examples of 

writing numerals are given in both traditional 

and accountant form. Compare these 

numerals to the example of 101 on page 6. 

Notice the ling zero symbol is used only once 

in 1,001. This is another indication that the 

symbol is not a true mathematical zero, but 

a punctuation symbol indicating that place 

value is being skipped between numerals. 

T
~ 

1,001 

--
=r 
~ 
-

+ 
1,01{) 

Traditional 

~ 
·....1..-

S::f .. 

1,001 1,010 

Accountant 

"Daxie shumu zi" 

13 
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The Calculati~-19 

Rods of 
Ancient China 

For at least 2,000 years, Chinese 
mathematicians used an amazing system of 
calculating rods to solve a wide range of 
problems. Originally the rods were large, 
but a variety of types developed over the 
centuries. A classic set might consist of 
271 small bamboo pieces about 4 em long 
and 0.5 em in diameter. Red pieces 
represented positive numbers, and 
black ones stood for negative numbers. 
The illustration depicts their use 
on a rectangular grid called a 
counting board. 

Calculating rod numerals are 
based on the decimal system 
with a set of nine digits. 
Oracle bone inscriptions 
suggest that the Shang 
Chinese were the first known 
people to possess such a system in 
the ancient world. The nine digits are defined 
in Figure 1 on page 15. Mathematicians used 
two forms: one for odd powers of 10, another 
for even powers of 10. This system served as 
a check against error and made the numerals 
easier to read. Unlike the literary form for 
Chinese numerals, there are no special 
symbols for place value for calculating rod 
numerals. The rod numerals use position for 
place value and are read from left to right. 

Below. 

The abacus is generally 
associated with the 
mathematics of China. 
However, this device was 
not widely used before the 
fourteenth century. 
Calculating rods form the 
background for an 
understanding of ancient 
and other historical 
mathematics in China. 

© 2001 Key Curriculwn Press 
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Chil!\ese Rod N tAmerals 

Ones, Hundreds, Ten Thousands 

II Ill 1111 IIIII T lf llf ll1f 
Tens, Thousands, Hundred Thousands 

-- --
FIGURE 1 

Two examples of writing rod numerals are shown in Figure 2. Notice the 

sevens in the rod numerals for 1, 776 are written in two ways because one 

of the numerals is a multiple of 100 and the other is a multiple of 10. 

1,776 365 

llf :::b T Ill l_ IIIII 
FIGURE 2 

The numerals in Figure 2 are not customarily written on paper. Instead, 

they are rods of bamboo, ivory, iron, or wood placed on a grid called a 

counting board. The far right column of the grid represents the ones place 

value. The column to the left of the ones is the tens. The pattem of place 

value for other columns proceeds in the same form as does the modern 

decimal system for whole numbers. 

© 2001 Key Curriculum Press 15 
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The numerals in Figure 2 posed no problem in writing on paper with rod 
numeral symbols, but when writing numerals such as 3,605 or 17,760 we 
do not know how to deal with the zero. On the counting board, there is no 
difficulty because a blank square is left for the zero. It wasn't until the 
eighth century A.D. that the 0 symbol from India was introduced into 
China. Ever since the Ming dynasty ( 1368-1644), the 0 has been utilized 
when writing out rod numerals on paper. In Figure 3, rod numerals for 
3,605 and 1 7, 760 are shown as they appeared in documents after the 
late Ming period. 

17,760 3,605 

llfd:TO Ill _l 0 IIIII 
FIGURE 3 

Rod numerals are designed to be used for mathematics in the same way 
that the abacus or modern calculator is used to speed computation. 
Calculating rods are placed on a counting board from left to right. 
Operations such as addition, subtraction, multiplication, division, and 
fmding square roots or even higher roots are made easier. Ancient Chinese 
mathematicians were able to solve many advanced algebraic problems 
with this tool. 

The Chinese through the fourteenth century were ahead of most other 
peoples in mathematics. At that time no country had developed a 
convenient symbolic notation. Instead, problems were usually written out 
in words. The counting board with the rod numerals made it possible to 
solve advanced problems without the use of symbolic notation. However, 
in time this feature became a limitation to Chinese mathematics. China 
needed a symbolic notation to carry it beyond the glorious achievements 
of its past. 
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Rod N LAmeral 

Operatio~s 
Rod numeral operations on the counting board often involved more than 

one person. Numbers were called out by one individual, and a second 

person placed or moved the calculating pieces on the board. Because the 

number of operations left on the board at any one time was limited to the 

size of the board, steps were generally replaced through the solution of the 

problem. In our explanation of the calculating rods, the ordinary use of this 

device has a different style than it does on paper. It is suggested that you 

make a simple grid on paper. Using flat toothpicks for rod numerals, 

manipulate the pieces on the board for the various problems. In this way 

you sense the power of this calculating tool. 

CalcLAiatiJI\g Rod 
Additiolt\ 

The examples shown in Figures 1 and 2 on page 18 demonstrate the 

operation of addition with the calculating rods. The first example, 

345 + 271, shows the result, 616, on the third row of the counting board. 

The rod numerals are aligned in the same manner as in modern arithmetic. 

In the second example, 4,809 + 718 = 5,527. The 4,809 has a zero in the 

tens place. On the counting board, Figure 2 illustrates the rod numerals for 

4,809 on the first line with a blank space where the zero occurs. Otherwise, 

the second example follows the same pattern as the first. Try this process 

with a column of numbers to be summed. But, instead of filling up the 

rows with symbols, ask someone to call out the numbers to you. In this 

way you will sense the speed of not writing down all the numerals. You 

can change the partial sums as the process continues_ in the same way 

it was done in ancient China. 
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18 

Examples 

Ill ----
II .L. -
T -

345 + 271 = 616 

FIGURE 1 

- m ---
1f -

- IIIII - -- ---

4,809 + 718 = 5,527 

FIGURE 2 

IIIII 
I 
T 

nn 
m 
1f 

Below. 

Tang dynasty symbol 
for long life. 
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::::::1§ II I 
Above. 

The Song dynasty 
(96D-1279) introduced 
monograms formed of rod 
numerals useful for table 
entries. The rod numeral 
for 4,716 is shown in 
monogram form. 

© 2001 Key Curriculum Press 
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Calcvtlating Rod 

Svtbt~actioll\ 

The example of subtraction comes from 

the Song dynasty. The mathematician 
Qin Jiushao wrote the subtraction 
problem 1,4 70,000 - 64,464 = 1 ,405,536 in 

his book Shushujiuzhang (Computational 

Techniques in Nine Chapters). published in 
1247, as shown at the bottom of the page. 

In Figure 3 on page 20, the same problem is 
represented on the counting board with the 
rod numerals. Notice in Qin Jiushao's writing 
of the results on paper, the ling symbol 0 was 

used. Furthermore, the book illustrates the 
fact that at various times and locations in 
China, some mathematicians used varied 

forms of rod numerals such as the crossed 

rods for the numeral 4. Try the problem on 
the counting board yourself. The problem 

requires you to borrow. What is the simplest 
method of borrowing using the rod numerals? 

In Figure 4 on page 20, another example of 

a subtraction problem is displayed on a 
counting board for you to verify. In Figures 5 

and 6, the subtraction problems are displayed 
on the counting board, but you will have to 

fill in the boxes below the boards in modern 
Hindu-Arabic notation. 

I lTOOOO 
T X llll.l X 
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Examples 

I - Tr --- = llf .1. IIIII -
T - 1111 .L 1111 - .l Ill - 1111 -

- -
IIIII I - - T - - -- - -- - IIIII - I - -

1,470,000- 64,464 = 1,405,536 9,875- 6,324 = 3,551 

FIGURE 3 FIGURE 4 

Exercise 1 

llf l1f .l llf .1. mr ala l1f -- lr - IIIII - -- -- - II .1. Ill ----
lr .l I - Ill -- - lr - IIIII - -

FIGURE 5 FIGURE 6 
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6xel"'cise 2 

The problems below provide you with practice recognizing the rod 
numerals. Use Figure 1 on page 15 as a guide to complete the boxes. If the 
rod numerals are represented on a single row of the counting board, write 
the modern Hindu-Arabic numerals in the box to the right of the problem. 
For the Hindu-Arabic numerals given in the box, fill in the counting board 
row with rod numerals. 

a. = 

b. = 

c. 1,249 

d. 8,203 

e. 1=1 l.iiTI = 

f. = 8,772 

g. = 42,365 

h. lmr lj_ITI lui 
i. = 294,786 

j. - llfl lml=lmri-LI = 
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Exe~cise 3 

Complete the following addition or subtraction problems with rod 
numerals. Each problem is written in modern Hindu-Arabic numerals 
below the counting board. Fill in the appropriate squares with rod numeral 
symbols, and complete the problem by adding or subtracting on the board. 
Verify your answers with ordinary arithmetic. 

- li1I j_ - IIIII - -- m j_ II -

a. 798,325 + 3,862 b. 396,055 + 10,309 

- Ill j_ 1111 - 1111 --

c. 897,538- 336.424 d. 472,935 - 129,476 
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Exercise 4 

In this exercise, rod numeral problems involving addition or subtraction are 

displayed on calculating-board grids. Convert each problem into modern 

Hindu-Arabic notation by filling in the box below the grid with appropriate 

numerals and operation symbols. 

a. 
1111 T 1lf 

b. 
I ...L Ill ..l T 

Ill 
- ..l... lT - ..i 1111 - Ill 

...L II IIIII - I - mr - Ill -

c. 
lT ...!... l1f T --

d. 
lT ..i ..l... 1111 --

..i mr - 1111 - I ..l 1J1I -
lT - mr - II lT ...L II ..l Ill -
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The Cha~iot 
D~ive~ 

Ancient Chinese mathematicians compared 
multiplication to the work of a chariot driver. 
The word for multiplication, cheng, had the 
general meaning "to ride on something," such 
as a charioteer commanding a team of 
horses. The mathematician was considered 
to be in control of the partial sums in the 
process of multiplication. In this way of 
thinking, multiplication was a shortcut for 
carrying out repeated additions. 

AV\cieV\t ChiV\ese 

M~Aiti pi icatioV\ 

Two examples of multiplication with 
calculating rods are shown with the use of 
detailed diagrams over the next few pages. 
However, you can understand the process 
better by making a square grid and 
using flat toothpicks for calculating 
rods. Although there is no 
standard size grid, 
use a grid with 
seven rows and 
seven columns for 
the examples. 

----

SHANG WEI 

ZHONG WEI 

Tfft 
X/A WEI 

Above. 

The three basic terms in 

Chinese multiplication are 
shang wei, multiplier; 
zhong wet, product; 
xta wet, multiplicand. 
These three terms appear 
on Chinese mathematical 
commentaries but are 
not written on the 
counting board. 
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Example 1 

The sequence of three board patterns on page 26 illustrates the 
multiplication of 49 X 25. The first caption of the problem contains the 
commentary marks for the operations. The multiplier, 49, is placed at the 
top right on the board. At the very bottom of the board, the multiplicand, 
25, is placed. Note that its last digit, 5, aligns with the first digit, 4, in 
the multiplier. This alignment is the usual way of starting the problem. 
The partial products and partial sums are done between the top and 
bottom rows. 

In the second caption, the 4 in the multiplier and the entire multiplicand 
are more heavily framed for emphasis in the explanation. The 4 in the 
multiplier is applied to the 25 of the multiplicand. The first product, 
4 X 2 = 8, is obtained. The 8 is written in the second row directly 
above the 2 because the place value position on the board makes the 
product really 40 X 20 = 800. In the diagram this is annotated at the 
left of the second row. In daily practice it is not necessary to think of the 
actual place value. The product is always written above the digit in the 
multiplicand. If the product has two digits, an additional column space 
to the left is used. 

Next, multiply the 4 in the multiplier and the 5 in the multiplicand: 
4 X 5 = 20, two digits. The zero, which is not marked on the board, 
aligns with the 5 in row three. The 2 must be written to the left of the 
zero position. The side note in the figure justifies this process since 
40 X 5 = 200. 

In the last caption, the pieces are moved to show the first partial sum in 
row two. The multiplicand is moved to the right one space. Notice that the 
multiplicand does not change symbols when its column position is moved. 
No notation change occurs because the operations are performed between 
the first and last rows. 

In the last caption, the 9 in the multiplier is heavily framed with the 
multiplicand to indicate which numbers are used next. 9 X 2 = 18. 
Write 18 in row three above the 2 digit of the multiplicand. But 18 has 
two digits. Therefore, enter 8 above the 2 and 1 to the left. Next 
multiply 9 times 5. Enter 45 in row four. Add rows two, three, and 
four to obtain the final sum, 1 ,225. 
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Problem: 49 X 25 

multiplier 

Note: Last digit of 
multiplicand is aligned 

with first digit of 
multiplier. 

multiplicand 

2 X 4 = 8 (20 X 40 = 800) 

5 X 4 = 20 (5 X 40 = 200) 

8 + 2 = 10 (800 + 200 = 1,0 

2 X 9 = 18 (20 X 9 = 180) 

5 X 9 = 45 

00) _____.., 

Answer: 1,000 + 180 + 45 = 1,225 

--

----

IIIII 

-

-

-

1IIJ l:.1il 

+ 1il 

r& 

- mr ---
TIT 
II 

- IIIII -

- mr ---

I ...1.. --
IIIII -

II - IIIII 

- IIIII 
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Example 2 

The second example of multiplication with calculating rods is 736 X 298. 
The process is shown in four captions beginning at the bottom of this page. 
The pattern is similar to the first example but involves larger numbers. The 

explanation is condensed. 

The caption below shows the given problem with the multiplier at the 
top and the multiplicand at the bottom. Note the alignment of first 
and last digits. 

In the second caption, at the top of page 28, the 7 is multiplied over the 
multiplicand. The three partial products are entered in rows two, three, 
and four. The three rows are added. The partial sum is entered in row five. 

In the third caption, the multiplicand is shifted to the right one space. 
The pieces are moved, with the partial sum from the previous diagram 
entered in row two. Next, 3 in the multiplier operates on the multiplicand. 
The three partial products are entered and summed. Row five is the 

second partial sum. The latter sum is carried to row two of the last 

caption on page 28. 

In the fourth caption, the multiplicand is moved one last time to the right. 

The 6 in the multiplier operates on the multiplicand. The three partial 

products are entered and summed to get the final answer in line five. 

Problem: 736 X 298 

multiplier--------....-

Note: Last digit of multiplicand 

is aligned with first digit of 
multiplier. 

multiplicand ----------:1~ 
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2 X 7 = 14 (200 X 700 = 140,000) ---

9 X 7 = 63 (90 X 700 = 63,000) ---~ 

8 X 7 = 56 (8 X 7,000 = 5,600) ___ _...... 

140,000 + 63,000 + 5,600 = 208,600 _ ____,.,... 

first partial sum 208,600 -------.. 

3 X 2 = 6 (30 X 200 = 6,000) ___ ,___.. 

3 X 9 = 27 (30 X 90 = 2,700) -----

3X8=24 (30X8=240)-----• 

6,000 + 2,700 + 240 + 208,600 = 217,540 ......... 

second partial sum 217,540 ------.. 

6 X 2 = 12 (6 X 200 = 1,200) -----.. 

6X9=54 (6X90=540)-----~ 

6XB=48-----------..... 

217,540 + 1,200 + 540 + 48 = 219,328 ~ 

-

--

--

--

--

--

1111 

T -----
.L --

II ::!: 

.L 
-
l. 
-

I .1. -
II 

I .1. 

-

I ..L --

Tr - T --

T 
T 

m 

1f - T -
T 

Tr 
II ---

IIIII ----
.L m -

Tr - T 
IIIII ---
II 

IIIII ----- TIT ---
Ill - m -
II ..L m -
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Below. 

Confucius or Kong Qiu 
(551-4 79 B.C.) was China's 
most influential teacher. He 
trained his students in the 
"Six Arts," one of which 
was mathematics. He 
considered his work a 
failure because he could 
not reform the politics of 
his time. But his teaching 
through the work of his 
students has had a 
monumental effect on 
Chinese life for many 
centuries. 
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Exel"cise 1 

Each counting board below has a 
multiplication to be performed. Write down 
in modern numerical symbols what the 
problem is. Then use the calculating rods 
on a counting board to perform the 
multiplication. Check your answer by 
ordinary multiplication or with a calculator . 

- lf ..llli: 

+ {31: 

..L lT rill: == 
a. The product the board is set for you to 

solve is -------------

1111 .l IIIII ..l{:il: 

+ru: 

m .l lT rill: 

b. The product the board is set for you to 

solve is -------------

Ill m ..llli: 

+ru: 

mr - II rill: 

c. The product the board is set for you to 

solve is -------------
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SeveJI1-Piece 

Pvtzzle 
The Seven-Piece Puzzle is an ancient Chinese 
amusement that has remained popular 
through the centuries. The puzzle, 
traditionally made of wood, consists of 
seven wooden polygons neatly fitted 
together to form a square. The figure at 
right illustrates what the pieces are. 

The object of the puzzle is to rearrange the 
pieces in different shapes. You can make a 
model and experiment with the pieces to 
see what shapes you can make. The 
dimensions of the pieces are provided 
below. The numbers correspond to the 
pieces in the figure for future reference. 

Piece 1: square with unit side 

Pieces 2 al'ld 3: isosceles right triangle 
with unit legs 

Piece 4: isosceles right triangle 
with hypotenuse of 
2 units 

Piece 5: parallelogram with unit 
base and unit height 

Pieces 6 al'ld 7: isosceles right triangle 
with legs of 2 units 

Above. 

Ancient Chinese characters 
representing the classic 
Seven-Piece Puzzle. 
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Below. 

Shou, symbol for longevity, 
from a nineteenth-century 
sUk robe of a mandarin. 
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Ex:e,....cises: SeveV\-Piece Pv.zzle 

l. In the figure shown on page 30, the 
pieces are separated and rearranged to 
form the shaded figure of a person with 
a fan. Use the model you constructed to 
create this figure. 

2. What is the area of the figure you 
constructed in the first question above? 
Express your answer in square units. 

3. Arrange the Seven-Piece Puzzle to form 
the shaded figures of a kangaroo and a 
crane shown below. What is the area of 
the kangaroo figure in square units? 
What is the area of the crane figure in 

square units? 

4. Write a statement about the area of the 
three figures you constructed from the 
Seven-Piece Puzzle. Write a hypothesis 
for a general case. 

Kangaroo 

Crane 
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Exel"'cise with the Dog 

1. Arrange the Seven-Piece Puzzle to 
make the figure of the dog shown 
at right. What is the area of the figure 
in square units? 

2. Form any pattern you like with the 
Seven-Piece Puzzle, but make the 
pattern a single closed region. 

3. Estimate the distance around the figure. 
Define this as the perimeter. 

4. Can you increase or decrease the 
perimeter by sliding the pieces along 
their common edges while still 
maintaining a single closed region? 

5. From Question 4, estimate the minimum 
possible perimeter. Make a sketch of the 
original figure and the new one with the 
minimum perimeter. 

6. From Question 4, estimate the maximum 
possible perimeter. Make a sketch to 
compare with the one in Question 4. 

7. Arrange the pieces differently to make a 
figure with less perimeter than the figure 
in Question 5, or with greater perimeter 
than the figure in Question 6. 

8. What arrangement of the seven pieces 
produces the smallest possible 
perimeter? What is this perimeter? 

9. What arrangement of the seven pieces 
produces the largest possible perimeter? 
What is this perimeter? 
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LV 
b 

b 

h 

b 

b ............................. :....·-----.....,.... 

~ ••• ,,h 
.....::;... ____ ____,.; ...................... ~..!. .. 

b 
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ChiV\ese 

DissectioV\s 
Dissection can be used to discover 

formulas for the areas of geometric 

figures such as parallelograms, 

triangles, trapezoids, and other 

polygons. For example, starting with 

the formula for the area of a 

rectangle as the product of its base 

and altitude, the formula for the 

area of a parallelogram follows easily 

by dissection. 

At the left a parallelogram is 

depicted. To find a formula for its 

area, A , dissect the parallelogram 
p 

along the segment representing its 

altitude to obtain a trapezoid and a 

right triangle. Can you state what 

the area of a parallelogram is? Use 

the diagrams at left to prove your 

formula. 

From the parallelogram the area 

formula for a triangle easily follows . 

Dissect the parallelogram along one 

of its diagonals. Use the formula 

that you derived and refer to the 

diagram at left to prove that the area 

of a triangle is 

1 
A= -bh 

t 2 
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Classic Theo~em 
One of the fundamental theorems of Euclidean 
geometry is that the sum of the interior angles 
of any triangle is 180 degrees. A simple proof 
can be made using dissection. 

In the figure to the right, a triangle is given. 
You will prove that LA+ LB + LC = 180°. 
Draw any triangle ABC and proceed with 
the following construction. 

1. Construct segment MN so that M 
and N are midpoints of segments 
AC and BC, respectively. 

2. Construct segments MX and NY 
_perpendicular to segment AB. 

3. Label for simplicity the three 
interior angles as shown in the 
second figure as L1, L2, L3. 

4. By dissection, MMX, D..MCN, and 
ABYN can be separated and 
reflected over MX, MN, and NY, 

respectively, to form the rectangle 
MNYX in the third figure. 

From the last figure: Prove that L 1, 
L2, and L3 form a straight angle. 
In other words, the reflected images 
of points A, B, and C are the same 
and on AB. Therefore, L1 + L2 + 
L3 = 180°. Why? Finally, LA+ 

LB+ LC= 180°. Why? 

c 

A~B 
c 

M~N 
A;{j ~B 

X y 

c 
M .. ·················· .... N 

...··tN;?r····· .... . A , ....... __ ............ ,B 
X y 
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12:_~ 
A b B 

1 

D c 

I 1:\B A E 

D c 

A 

) 
t 

\F \B 
c 
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6xel-'cises: Dissectiol'\ 

1. Find the formula for the area of a 
trapezoid in three ways: by dissecting 
along a diagonal, through its bases, and 
along its median. Refer to the first three 
diagrams on the left. 

2. Sketch an obtuse triangle like the one on 
the bottom at left. Apply the dissection 
procedure to show that the sum of the 
interior angles in an obtuse triangle is 
180 degrees. 

3. Use the figure on page 34 to show that 
the area of a triangle is one-half the 
product of its base and altitude. 

4. Show that the area of a rhombus is 
one-half the product of its diagonals. 

5. Show that the area of a regular pentagon 
is one-half the product of its apothem 
and perimeter. 
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Jnscl"'ibed Squal"'e 

Theo~e»'\ 
The Jiuzhang suanshu (Nine Chapters of Mathematical Art) is China's oldest 
mathematical text and it's the most important one from ancient times. This 
classic text was started in the Western Han dynasty and was completed in 
the early years of the Eastern Han dynasty (circa 50-100 A.D.), but it 
represents a mathematical tradition that echoes back to the period of the 
Zhou dynasty (founded during the eleventh century B.c.). It qecame the 
fundamental text on which subsequent Chinese mathematicians were to 
write commentaries. From the Nine Chapters of Mathematical Art comes the 
following geometrical theorem about the side of a square inscribed in any 
right triangle. Can you prove it? 

The Theo~em 
The length of the side of a square inscribed in a right triangle is the 
quotient of the product and the sum of the legs. 

Given: Right triangle ABC with inscribed square CDEF 
AC = b; BC = a; DC = s 

ab 
Prove: s = a + b 

A 

B 

D c 
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Liu Hui was one of the great mathematicians of ancient China. He lived 
during the Three Kingdoms period when China was ruled by three separate 
monarchies (220-280 A.D.). Little is known about Liu Hui's personal life, 
but he lived in the northern kingdom of Wei. From his Commentary on the 

Nine Chapters of Mathematical Art (263 A.D.). Liu Hui provides us with the 
following creative solution to the inscribed square problem on page 36. 

E B 

~~ 
b 

tF Dl 
s 3 
~ G~--~----~A~~---WC 

----- b ------a -
Liu Hui's figure with additional modern notation 

In the figure, right triangle ABC with inscribed square is given. Duplicate 
right triangle ABC and rotate it to form rectangle ACBE with base a and 
altitude b. 

Duplicate two triangles of region 2 and one square of region 3. Arrange the 
copies to form rectangle CDFG with base a + b and altitude s. 

We defme .A(R) as the area of region R. Give the reasons for the following 
algebraic steps. 

1. .A(ACBE) = ab 

2 . .A(CDFG) = .A(ACBE) 

3. .A(CDFG) = s(a + b) 

4. s(a + b) = ab 
ab 

5. s= a+ b 0.6.D. 
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As a comparison to Liu Hui's solution for the inscribed square problem 

on page 36, we provide a typical modern Western approach based on 

Aristotle's principle that the whole is equal to the sum of its parts. The 
steps are outlined below. You are asked to supply the reasons. 

Given: Right triangle ABC with inscribed square CDEF 

AC = b; BC = a; DC = s 
ab 

Prove: s = a+ b 

.A(R) = area of region R 

1 . .A(MDE) + .A(~EFB) + .A(Sq. CDEF) = .A(MBC) 

2 . .A(MDE) = a - s . 5 = as - 52 
2 2 

3. .A(~EFB) = b - s . s = bs - 52 
2 2 

4 . .A(Sq. CDEF) = s2 

5. .A(MCB) = ab 
2 

6. 
as-52 

+ 
bs- 52 +s2 = ab 

2 2 2 

7. as - ~ + bs - s2 + 2s2 = ab 

8. as+ bs = ab 

9. s(a +b)= ab 

10. 
ab 

0.6.D. s= 
a+b 

A D 

B 
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F~om the A~cie~t 

-f-lail\ Dyll\as+y 
Han Gaozu was the first emperor and founder of the 
Western Han dynasty (208 s.c.-8 A.D.). He reigned 
from 206 to 195 B.c. This period was impressive for 
the development of art, literature, and science as well 
as philosophy, political and social organization and 
the opening up of the Silk Road leading to commerce 
with the Roman Empire. From this time comes the 
Jiuzhang suanshu (Nine Chapters of Mathematical 

Art}, China's oldest mathematical text and its most 
important one from ancient times. From the 
Nine Chapters of Mathematical Art comes the 
following geometrical theorem about the diameter 
of a circle inscribed in any right triangle. Can 
you prove it? 

Han Gaozu, based on a 
Ming painting 

Jnsc~ibed Ci~cle Theo~em 

The diameter of a circle inscribed in a right triangle is the quotient of twice 
the product of the legs and the sum of the three sides. 

Given: Right triangle ABC with inscribed circle 0 
of diameter d; AC = b; BC = a; AB = c 

Prove: d = 2 ab 
a+b+c 
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40 

Liu Hui provides another creative solution from his Commentary on the 

Nine Chapters of Mathematical Art (263 A.D.). We present his solution to the 

inscribed circle problem from page 39. 

FIGURE 2 

H G 

[1 : I : lilllffi[t]i 
E._ a b c F 

FIGURE 3 

In Figure 1, right triangle ABC with inscribed circle is given. We have 
drawn the radii perpendicular to the sides of the triangle and two of the 

three segments between the center and the vertices of the triangle. The 
parts are labeled for convenience. The triangles marked as 1 are congruent, 
and so are the triangles marked as 2. (Can you prove it?) 

Copy right triangle ABC. Rotate and translate the copy to form rectangle 
ABCD in Figure 2. 

Double Figure 2 and rearrange the pieces using translation and rotation to 
make rectangle EFGH in Figure 3. 

We define .:A(R) as the area of region R. Give the reasons for the following 

algebraic steps. 

1. .:A(ABCD) = ab 

2. .:A(EFGH) = 2ab 

3. .:A(EFGH) = d(a + b + c) 

4. d(a + b + c) = 2ab 

2ab 
Q.E.D. 5· d= a+ b+ c 
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Weste~V\ SoiLAtioV\ 

In contrast to Liu Hui's Chinese dissection solution for the inscribed circle 
problem on page 39, we provide a typical modern Western solution. Can 
you provide the reasons? 

Given: Right triangle ABC with inscribed circle 0 
of diameter d; AC = b; BC = a; AB = c; OP = r 

2ab 
Prove: d = a + b + c 

A(R) = area of region R 

1. A(Sq. CMO.Pj + A(MM'O) + A(MNO) + A(ABNO) 
+ A(ABPO) = A(AABC) 

ab 2 (AM)(r) (AN)(rj (BN)(r) (B.Pj(rj 
2 · r + 2 + 2 + 2 + 2 =-

2 

3. But AM = b - r; AN = x; BN = c- x; BP = a-r 

2 (b- r)r xr (c- x)r (a -r)r ab 
4 · r + 2 + 2 + 2 + 2 = 2 

5. 2r2 + br- r2 + xr+ cr- xr+ ar- ~ = ab 

6. br+ cr+ ar= ab 

7. r(a + b +c) = ab 

ab 
8. r= ---

a+b+c 

9. But d= 2r 

0 d= 2ab 
1 · a+b+c 
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B 

a 

-b-
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The Meast1re of 
f-leaveV\ 

China's oldest book, combining mathematics 
with astronomy, is the Zhoubi suanjing (Zhou 

Dynasty Computation with the Gnomon), 

finalized during the first century A.D. The two 

scholars Chen Zi and his student Rong Fang 
discuss the movements of the sun. Their 

conversation leads to the problem of 
calculating the height of the sun above the 
earth. Although the astronomy at that time 
was based on the assumption that the earth 
was flat, their solution demonstrates how 
ancient Chinese mathematicians used 

dissection to solve problems with right 
triangles. The problem, using modern 

algebraic notation, is defined below and 

on page 43 with the accompanying Figure 1. 
Can you derive this formula? 

The Pl'"oblem 

The sun at point A is directly over point C on 

the earth. Rays of light strike two vertical 
poles, or gnomon, of equal height h at 
locations S and T. They are a distance d 

apart. At the same time of day, the shadow 
lengths of the poles are recorded as s = SG 

1 

and s = TB. Show that t-1 = AC, the height of 
2 

the sun above the earth, is given by the 

formula 
hd 

t-1 = (s - s ) + h 
2 1 

Below. 

Ancient Chinese gnomon 
tower used to measure the 
shadows cast by the sun. 
This drawing is adapted 
from Joseph Needham's 
Science and CivUisation in 
China, vol. 3, plate XXXI. 
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Below. 

Ancient Chinese surveyors 
with measuring pole, 
plumb line, and 
counting board. 

© 2001 Key Curriculum Press 
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Defil'\itiol'\s fol" Meo.sv.l"e of 
t-leo.vel'\ P!"oblem 

t-1 = AC, height of sun above earth 

d = ST, distance between poles 

5 = sa. shadow length at first pole 
1 

5 = TB, shadow length at second pole 
2 

h = ES = FT, height of pole, or gnomon 

S, location of first pole 

T, location of second pole 

G, first viewing point 

B, second viewing point 

A 

c s G T 

FIGURE 1 

B 
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t--low t--ligh Js 
the StAn? 

To derive the formula for the height of the 
sun above the earth on page 42, we use the 
Chinese dissection method. In Figure 2 
below, we impose a rectangular grid of lines 
over the diagram of Figure 1 and label it as 
shown. The properties are summarized in the 
given. Take note of the fact that FI is added 
to the figure so that FI is parallel to EG. The 
steps are outlined on page 45. Think carefully 
through them and justify each step. 

Given: PN II BC through E, K, F. J 

AM II BC through Q, U, L, W 

PN .L QS; PN .L UG .L LT; PN .L WI 

FIIIEG. 

A Q u L w 
···············r·············r·············[·············r······················· 

. . . . . . . . . . 

p 

c s G T I 

FIGURE 2 

M 

B 

Below. 

Ancient Chinese smveyor 
with measuru1g square. 
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Below. 

Ancient Chinese smveyor 
with sighting board. 
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Pt<oof 

I. Define .A(PESC), .A(QUKE), .A(LWJF), 

A(PFTC), .A(IMNF) as the areas of the 
regions defined by the vertices inside the 
parentheses. 

2. .A(PESC) = A(QUKE) = .A(LWJF) 

3. .A(PFTC) = .A(IMNF) 

4. A(PFTC)- A(PESC) = 
A(LMNF) - A(LWJF) 

5. A(EFTS) = A(WMNJ) 

6. But A(EFTS) = hd and 
A(WMNJ) = (AP)(JN) 

7. hd = (AP) (JN) 

8. But JN= s - s 
2 1 

9. hd = (AP) (s - s ) 
2 1 

10. AP= hd 
(s - s) 

2 1 

11. 
hd 

t-l=( . )+h s - s 
2 1 

Q.E.D. 
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The Sea JslaJI\d 
The Jiuzhang suanshu (Nine Chapters of 

Mathematical Art) is China's oldest book on 
mathematics. In 263 A.D., Liu Hui wrote a 
famous commentary on it in which he added 
nine problems on the topic of surveying. His 
methods became the basis of Chinese 
surveying for the next 1,000 years. So 
important were the nine problems 
considered that they were made into a 
separate book at the beginning of the Tang 
dynasty (618-907 A.D.) The book was given 
the title Haidao suanjing (Sea Island Canon 

of Mathematics) because the very first 
problem required a distant observer to 
determine the size and distance of an island 
from the seashore. 

The Pv-oblem 

There is a sea island an unknown distance 
from the seashore. Someone wants to know 
how far away the island is and how high 
is its mountain peak. An observer erects 
two 30 ft poles 1 , 000 ft apart so that the 
mountain peak and the two poles are 
aligned. When the observer steps back 
123 ft from the first pole, he sights the 
mountain peak from the ground: the top 
of the pole and the mountain peak align. 
When the observer steps back 127ft from 
the second pole, he makes another sighting 
of the summit of the mountain so that the 
top of the second pole and the mountain 
peak align as viewed from the ground. 

The solution begins on page 4 7. 
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Sea JslaV\d SoiV\tiOV\ 

To solve the problem, refer to Figure 1 below. We shall use modern 
algebraic notation, but you should use the classical dissection approach 
of ancient China. Unlike the original problem, we shall obtain a general 
formula into which you can substitute the specific numbers. Use the 
definitions below and superimpose a rectangular grid on Figure 1 as 
shown in Figure 2 on page 48. Label the points accordingly. Justify each 
step of the proof. 

D = SC, distance to sea island 

t-1 = AC, height of mountain peak above 
sea level 

d = ST. distance between poles 

5 = SG, distance between pole and 
1 

first observation 

5 = TB, distance between pole and 
2 

second observation 

h = ES = FT, height of pole 

S, location of first pole 

T, location of second pole 

G, first viewing point 

B, second viewing point 

FIGURE 1 
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Given: PN II BC through E, K, F, J 

AM II BC through Q, U, L, W 

PN .l QS; PN .l UG; PN .l LT; PN .l WI 

FI JjEG. 

A Q U L W M 
---·--- --------·· ···· ··-·:···-····-··-----·1·-······i····------·······r···· ···t 

p :F j :N 
·········· ····:·········: . . 

c s G T I B 

FIGURE 2 

P..-oof 
1. Define A(PESC), :A(QUKEJ, A(LWJF), A(PFTC), 

A(LMNF) as the areas defined by the vertices inside 
the parentheses. 

2. A(PESC) = A(QUKEJ = :A(LWJF) 

3. A(PFTC) = :A(LMNF) 

4. A(PFTC)- :A(PESC) = :A(LMNF)- A(LWJF) 

5. A(EFTS) = A(WMNJ) 

6. But :A(EFTS) = hd and A(WMNJ) = (AP)(JN) 

7. hd = (AP)(JN) 

8. But JN = s - s 
2 1 

9. hd = (AP} (s2 - s) 

hd 
10. AP = 

(s - s ) 
2 1 

hd 
11. H = ( ) + h s - s 

2 1 

12. (CS)(ES) = (SG)(AP} 

13. But CS = D, ES = h, SG = s 
1 

d·s 
14. D = 1 H = 7,530 ft; D = 30,750 ft 

(s - s) 
2 1 
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Alt\cielt\t Chi 1!\ese 

Philosoph}' 
Ancient Chinese teachers from the Zhou dynasty (1045-246 B.c.) said that 
there were two complementary principles in nature: the Yin and the Yang. 

Yin and Yang are usually understood as deriving out of the formless, 
unitary Dao (Tao). so it is the Dao that is the origin of all things. Yin and 

A 

Yang are "complementary," rather than 
"opposing," for there is Yin in Yang and Yang 
in Yin. It is the ethereal material energy or 
force (q~ that actually composes things in 
the universe, whereas Yin and Yang can be 
understood as the "principles" of things
although "principle" was not a term used in 

L the Zhou dynasty. The symbol for the 

B 

yin-yang is shown in the figure at left. 

In the figure, arc (AXO) and arc ( OYB) form 
semicircles with diameters equal to the 
radius of circle 0. Two interesting 
mathematical properties can be shown: 

(1) the area of region R equals the area of 
region S; (2) the length of the curved path from A to B through points X, 0, 

and Yequals one-half the circumference of the circle 0. The basic 
definitions follow with a geometric proof for you to complete on page 50. 

Defi 1-1 itio1-1s 

1. Let .A(R), .A(S) be the areas of regions RandS, respectively. 

2. Let f'(AXO), .A(OYB), .A(ALB), and .A(AMB) be the areas of respective 
semi-circles. 

3. Let L(AXO) and L( OYB) be defined as arc lengths of respective 
semicircles. L(AXOYB) is the length of the curved path from A to B 

through points X, 0, and Y. 
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\!in-\!ang P...-oof 

C\iven (Statements) P..-ove (Reasons) 

1. Circle 0 with diameter AB; 1. 
semicircles AXO and OYB with 

AB 
diameters equal to 2 . 

2. .:A(S) = A(AXO) + .:A(ALB) -.:A( OYB); 2. 
.:A(R) =A( OYB) + A(AMB) - A(AXO) 

3. .:A(AXO) = .:A( OYB); 3. 
.:A(ALB) = .:A(AMB) 

4. .:A(R) = A(AXO) + .:A(ALB) - .:A( OYB) 4. 

5. A(S) = A(R) Q.E.D. 5. 

6. L(AXOYB) = .L(AXO) + L( OYB) 6. 

AB 7. 7. L(AXO) = 1r 4; 

AB 
L(OYB) = 1r-

4 

AB AB 8. 
8. L(AXOYB) = 1r- + 1r-

4 4 

1T 9. 
9. L(AXOYB) = 2 (AB) 

1 10. 
10. L(AXOYB) = 2 (circumference) 

Q.E.D. 
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Th~ee A 

D 

Regions 

© 2001 Key Curriculum Press 

Given: Circle 0 with diameter AD 
containing points A, B, C, D 
such that AB = BC = CD; 

semicircles: AXB; AYC; BHD; CID. 

Prove: .:A(R) = .:A(S) = .:A(T); 

L(AXBHD) = L(AYCID). 

J 1'\st...-ucti o 1'\S 

1. Study the Three Regions Yin-Yang 
figure, what is given, and what you 
need to prove in the problem. Use the 
suggestions that follow to help you 
construct a proof. 

2. State the formulas for the area and 
circumference of a circle. 

3. Develop a set of algebraic steps from 
the given to the prove. 

4. Translate the algebraic steps into a 
formal proof by asking yourself for the 
reasons in each step. 

5. Decide whether you need any additional 
theorems or defmitions between steps. 
Supply the needed steps in your proof. 

51 



The Ambitious Horse: Ancient Chinese Mathematics Problems 

52 

AV\other Case of 

}!iVl-}!aV\9! 
Given: Circle 0 with diameter AD 

containing points A, B, C, D 

such that AB = OB = OC = CD; 

semicircles: AXB; AYO; AZC; CJD; 
OID;BHD. 

Prove: A(R) = A(S) = A(T) = A(U); 

L(AXBHD) = L(AYOID) 

= L(AZCJD). 

JV\stl"'uctioV\s 

1. Study the Four Regions figure, what 
is given, and what you need to prove 
in the problem. Use the suggestions 
that follow to help you construct 
a proof. 

2. State the formulas for the area and 
circumference of a circle. Apply the 
formulas to the four paths and the 
four regions of area. 

3. Develop a set of algebraic steps from 
the given to the prove. 

4. Translate the algebraic steps into a 
formal proof by asking yourself for the 
reasons in each step. 

5. Decide whether you need any additional 
theorems or definitions between steps. 
Supply the needed steps in your proof. 

A 

D 

ResioV\s 
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A~bit~a~y 
A 

D 
Point 

© 2001 Key Curriculum Press 

c:\ene~al 

}!i It\-}!alt\9! 
Given: Circle 0 with diameter AD containing 

points A, P, D; 

Prove: 

semicircles: AXP; PYD. 

1 
L(AXPYD) = 21t(AD) 

Study the Arbitrary Point figure, what is 
given, and what you need to prove in the 
problem. When you write the formulas for 
the semicircular arc lengths, use AP and PD 

as the diameters that defme the semicircles 
AXP and PYD, respectively. 
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ZhorA 
Comp!Atatio., 

From the Zhoubi suanjing (Zhou Computation 

with the Gnomon) ring the ancient words of 
the sage Duke of Zhou to his learned advisor 
Shang Gao. The duke asks, "How is it 
possible to measure the heavens and 
establish the calendar? What is the source 
of the numbers used to make such 
measurements?" 

Shang Gao answers that number measure 
comes from the geometry of the circle and the 
square. He impresses his duke by placing 
bamboo sticks on a counting board to form 
the three diagrams shown on page 55. 
Deeply awed by what he sees, the Duke 
of Zhou exclaims: "Ah! Mighty is the art 
of numbers!" 

Can you discover what 
mathematical properties so 
stirred the feelings of the duke? 

Note. 

The Zhou was an ancient 
kingdom that ruled China 
from 1045 to 246 B.c. In 
the Zhoubi suanjing, we 
find reference to this 
powerful dynasty in the 
person of the Duke of 
Zhou. However, the origins 
of the Zhoubi suanjing are 
shrouded in mystery. The 
fmal form of this book on 
ancient mathematics and 
astronomy traces back to 
the Western Han dynasty 
before the first century A.D. 
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Zho"' Exercise 

1. Study the Zhou diagrams in the figures 
on page 55. In each diagram, assume 
that each of the square grids, underlying 
the bold-lined patterns, consists of unit 
squares. Explore possible numerical 
relations for the lengths and areas of 
the figures. 

2. In Figure 1, find the length and area of 
the square-board grid and various 
bold-lined geometrical shapes on the 
board. Write down any numerical 
relationships that satisfy the 
Pythagorean theorem. 

3. In Figure 2, can you find any geometrical 
relationships between the two bold-lined 
squares? Are there any numerical 
relationships that satisfy the 
Pythagorean theorem? 

4. In Figure 3, the smaller bold-lined 
square is inscribed in the larger one. 
Find the numerical relationships 
between the sides and areas of the 
geometrical shapes formed on the board. 
Use the Pythagorean theorem and the 
quadratic formula to find the lengths of 
the legs of any of the four congruent 
right triangles formed between the 
two bold-lined squares. 

t-liVlt 

Let one leg be defined as having length x 
and the other leg 5 - x. 

Below. 

Shang dynasty stone 
column with symbols 
for heaven and earth 
(Shang dynasty, circa 
1500-1045 B.C.). 

From ancient times, the 
numbers 3, 4, and 5 have 
had important religious 
significance in China. The 
number 3 is a symbol for 
heaven, and the number 4 
represents the earth. The 
number 5 is significant 
because it is the number 
of the Five Phases: Wood, 
Fire, Earth, Metal, and 
Water. 
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On page 55, we presented the three mathematical figures of Shang Gao. 
Figure 1 demonstrates the Gou.-gu theorem, the Chinese version of the 
Pythagorean theorem. In ancient China, Gou-gu referred to the properties of 
right-angled triangles. Gou referred to the base of a right triangle 
(horizontal leg), while Gu. signified vertical measure-the altitude of the 
triangle (vertical leg). The hypotenuse of the right triangle is called xian, or 
"bow string." The GOLt-Gu theorem states that in a right triangle, the sum of 
the squares of the Gou and the Gu is equal to the square of the xian. Here 
is the diagram of the third-century Chinese commentator of the Gou-Gu 

theorem, Liu Hui: 

i 
Red 

)tell ow 

b 

R~ j 
If we examine the figure without moving the pieces, it is clear that the 
square of side c has area equal to the sum of the areas of one yellow 
square and four red triangles. Using modern algebra, we write 

which simplifies to the familiar a 2 + b2 = c2 • 

ab 
R=-

2 

Another way to look at the above figure is to think of the area of the large 
square with side a + b as the sum of areas of the yellow square and 
four rectangles of base a and altitude b. Again, using algebra, we write 

(a+ bf = (b - a)2 + 4ab 

(1) 

{2) 

Equation (2) was used in ancient China to solve certain quadratic equations. 
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Liu f-lui 's P~oof 
In Liu Hui's third-century Commentary on the Jiuzhang suanshu, we find 
the Gou-Gu theorem in a form similar to that of the Pythagorean theorem: 

In a right triangle, the area of the square on the hypotenuse (xian) equals 
the sum of the areas of the squares on the base (gou) and the altitude (gu). 

(See Figure 1.) 

Lui Hui provides a simple proof based on the Chinese dissection process 
using Figure 2. We have shaded the right triangle having legs a and b and 
hypotenuse c. Start with square ABCD whose side is c and area is c2 . 

Remove pieces 1, 2, and 3 by translation and rotation to form pieces 4, 5, 
and 6, respectively. The original square has now been transformed into 
two new squares: (1) square EFBG of side b and area b2 ; (2) square GHIC 

of side a and area a2 • We write 

A( GHIC) + A(EFBG) = A(ABCD) 

a2 +ll=c2 

Can you prove that pieces 1, 2, and 3 are congruent to pieces 4, 5, and 6, 
respectively? 

A 

E 

D 

FIGURE 1 FIGURE 2 
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The Ambitio~As 
t-lo~se 

Yang Hui was one of the great medieval 
mathematicians of China. He lived during the 
Southern Song dynasty (1127-1279). As did 
many other great Chinese scholars, he wrote 
a commentary on the ancient Han classic 

Nine Chapters of Mathematical Art. From 
Yang Hui's Xiangjiejiuzhang suanfa 

(Analysis of Arithmetical Rules in Nine 

Sections), published in 1261, we have the 
problem of the "ambitious horse." Can you 

solve this problem? 

The Pl""oblem 

An ambitious horse 
travels 193 Chinese 

miles (lq on the first 
day of a journey. 
Thereafter, the 
horse increases the 

distance traveled by 
15 li each day. What is 

the total distance 
traveled, if the trip 
takes 15 days? 
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Ambitious t-lorse Solutio~ 

This problem can be readily solved using the formula for the sum of a finite 
arithmetic series: 

sn =a+ (a+ d)+ (a+ 2d) + ... +(a+ (n- 1)d) 

where a is the first term, n is the number of terms, and d is the constant 
difference. It can be shown that 

n 
S = -2 (a + a ) and a = a + [n - 1)d 

n n n 

where a is the nth or last term of the series. In the problem, a = 193 li, 
n 

n = 15, and d = 15. Hence, a = 403 and S = 4,470 li. 
n n 

}!aJ-19 +-lui's Method 

(1) 

The Chinese solution makes use ofYang Hui's diagram (Figure 1). Each bar 
represents the distance the horse traveled on a particular day. The diagram 
is abbreviated in that five bars represent all fifteen bars or terms of an 
arithmetic series. The area of the entire figure represents the total distance 
the horse traveled on the journey. The area in Figure 1 is equivalent to that 
of the triangle and rectangle shown in Figure 2 on page 61. Using algebraic 
notation, we find the distance the horse traveled by combining the areas of 
the triangle and the rectangle in Figure 2: 

1 
S = A + A , where A = -2 (a - a)(n) and A = an 

n 1 2 1 n 2 

Distal'\ce Fil'st Day 

I Distonce Losi Day 

FIGURE 1 
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EqvdvaleV\t ChiV\ese aV\d 

WesterV\ SolvttioV\s 

s = n 

s = n 

s = 
II 

.,__ ____ a -----• 

an 
FIGURE 2 

nan- an 

2 
+an 

nan- an+ 2an 

2 

n~+ an 

2 

n 
S = -2 (a+ a) 

n n 

t 
n 

! 

Thus, Equation (2) derived by the Chinese method is the same as 
Equation (1) derived by the Western formula. The Chinese geometric 
method is equivalent to the Western solution. 
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Ancient Square 

Root 
Chinese mathematicians of the early Han 
dynasty (circa 200 B.c.) were proficient in 
extracting square roots. So ingenious were 
their methods that they led to the solution 
of quadratic equations and polynomial 
equations of higher degree. 

The ancient Chinese method of extracting 
square roots relies on division and 
estimation, similar to algorithms of modern 
Western mathematics. However, in the 
Chinese technique, a strong component of 
geometry clarifies the mechanical steps. Since 
these steps were done on a calculating board 
with calculating rods, the theory can be 
better understood if algebra is used. 

The fundamental principle of extracting 
square roots, in ancient Chinese and modern 
Western mathematics, can be explained by 
the two algebraic identities: 

(a + b + c)2 = (a + b)2 + 2(a + b)c + c 2 (2) 

Equations (1) and (2), along with an iteration 
process, govern the extraction of square root of 
any rational number. The following explanation 

presents the principles of square root extraction 
in modern Western format, supplemented by 
the Chinese geometric dissection process. 
Fundamentally, the two processes are the 
same: one done on a calculating board, the 
other by written arithmetic. 

Below. 

Han dynasty books consisted 
of vertical writing on bamboo 
slips about 23.1 em in 
length. As the drawing 
shows, the bundle could 
be rolled up and tied for 
convenience. 

... .&I 
.. ::~:. ·~== ~ 

ofe I •. I• .. ' 'If 'J ~ . . ... -..... ... ............ . . . 
.. • .. a 'J 

~ :· -:: ·==···. 
: ~ ;-:::: .. ··,: .. .. . . -. . .... ..... 

~ ~ ~ .. . .. . - " . :·~:\t .. ::il:. 
~ • •"- •. • Ita.... ' - ...... ~ .......... ~ . .. -· .. . .. .... . 

• I ._. a.~.. • 
• • • .. •• c ., .... 
... '? .... - • .. .. _ ........ ,. 

.. I r .. "'• • . . - -...... .. . 
- • • ., ,. n . .. ·-·.. ... . . ": :::·:; __ :~ 

.•· .. =·=- • .. : .. . .. -......... . .. . . . ....... ""···-....... ~· .... ... :::·.-;..~ ........ 
. . . ...:; : - ~= .. · .. .... ... . 

~ . .. .. ..... . , . .. . . ... . . .. ·•· .. ) .. ~ .. • .. 
-.· ... 
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Assume n represents a whole number whose positive square root is 
precisely a two-digit number a + b, where a is the value of the tens digit 
and b is the value of the ones digit. Our task is to derive a + b from n. 

Since a + b is the square root of n, n = a 2 + 2ab + b2 • In Chinese 
mathematics, this fact was represented geometrically {see Figure 1). 
The area of the large square represents n, and the side of this square 
is a + b or Yn. Each of the cells of Figure 1 relates to the expression 
a 2 + 2ab + b2 • 

There are two square cells of area a 2 and b2 , respectively; and there are 
rectangular cells of length a and width b, having a total area of 2ab. As 
we explore the steps in extracting a + b using the written algebraic 
process, we can see the steps unfold geometrically through the Chinese 
dissection process. 

n =(a+ b)2 =a2 + 2ab+ b2 

t 
b 

...t:l 
2ab5:n-a2 

+ n-a2 
~ b<--
II - 2a 

IE,. a2 ab a 

1 1 
a ...--b---+ 

FIGURE 1 

© 2001 Key Curriculum Press 63 



The Ambitious Horse: Ancient Chinese Mathematics Problems 

64 

Step 1 

Set the number n = a 2 + 2ab + b2 as the dividend. Find the principal 
square root of the first term and subtract its square from the dividend. 

a ..,_ Partial root ,.--:.::....__ ___ _ 
a2 + 2ab + b2 ..,_ Dividend 

a2 

2ab + b2 ..,_ Remainder 

In Figure 1 on page 63, this operation corresponds to finding the shaded 
square area a 2 and subtracting it from the area (a+ b)2 of the large square. 
The result, 2ab + b2 , is the area of the L-shaped region called a gnomon. 

Step 2 

Estimate the second digit. Take twice a, the partial root, as a trial divisor. 
Divide the first term of the remainder. Write the quotient above the second 
term of the dividend. 

a + b 

Trial divisor ----. 2a 2ab + b2 

When working with numerical values, the structure of the precise factors is 
unknown. So, when dividing by a trial divisor, the quotient may be too large 
so that the subtraction yields a negative number. In that case, a smaller 
quotient would be tested. In this case, b is the precise number needed. 

Step 3 

Add the quotient b to the trial divisor to obtain the actual divisor. Multiply 
the second term of the root b by the actual divisor. Subtract the product 
from the last remainder. 

a + b 

a2 + 2ab + b2 

a2 

Trial divisor 2a 2ab + b2 

Actual divisor --. 2a + b 2ab + b2 

0 
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As previously mentioned, in working with numerical values, it is not 

always obvious what value to use for b. Re-examining the L-shaped 
gnomon of Figure 1 on page 63 reveals an important relationship 
Chinese mathematicians used to estimate b. By inspecting the 
relationship between the areas of the cells, it follows that 

2ab ~ 2ab + b2 

But 2ab + b2 = n - a2 

b~---
2a 

This formula provides the largest possible value of b as a trial number. 
After a is found, Formula (3) is easily evaluated since n - a2 is the 
remainder in step 1. If the value of b is too large, the subtraction is 
negative and a smaller number must be tried. 

Sqvta~e Root with Th~ee Digits 

(3) 

The process of extracting the square root of a number can be extended to a 
root with three or more digits. Assume n represents a whole number whose 
positive square root is precisely a three-digit number a + b + c, where a is 
the value of the hundreds digit, b is the value of the tens digit, and c is the 
value of the ones digit. We need to derive a + b + c, from n. 

If Vn =a+ b + c, then n =(a+ b + c)2 by definition. Using Identity (2) on 
page 57 and expanding the terms, it follows that 

(a+ b + c)2 = (a+ b)2 + 2(a + b)c + c2 

(a+ b + c)2 = a2 + b2 + c2 + 2(ab + ac + be) (4) 

Geometrically, Equation (4) can be represented by Figure 2 on page 66. 
The area of the large square represents n = (a + b + c)2 with side equal to 
Vn = a + b + c. Equation (4) conforms to the Chinese pattern of geometric 
dissection. The area of the large square is the sum of the areas of three 
squares and six rectangles as can be seen in the figure. 
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n =(a+ b + e)2 =(a+ b)Z + 2(a + b)c + e2 

ae be e2 
t 
e 

t 
i 

ab b2 be b 

a2 ab ae a 

l 
+----a---~-+--b 

FIGURE 2 

In Figure 2, there is a square of side a + b bounded by a heavier line for 
emphasis. This part of the figure is exactly like Figure 1 on page 63 except 
that a represents hundreds and b represents tens, instead of tens and 
ones, respectively. If the root extraction process for the two-digit case is 
applied to Figure 2, the heavier bounded square of Figure 2 corresponds to 
the shaded square of Figure 1. By treating the four cells as a single square 
in Figure 2, it has the same relationship with its outlining L-shaped 
gnomon as does the gnomon of Figure 1 with its shaded square. 

The above described relationship is also seen between Equations (1) 
and (2) on page 62. Equation (2) has the same structure as Equation (1). 

If a + b replaces a and c replaces b in Equation ( 1), Equation ( 1) becomes 
Equation (2). Thus, either from a geometric or algebraic point of view, 
we can determine the third digit as an iterated process of the two-digit 
case. In fact, we can extend ihe iterative process as many times as 
we wish to determine the square root of any rational number whose 
digits are finite. The following numerical example on page 67 can better 
illustrate the process. 
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Example 

Find: V121.104 

Step 1 

Set 121,104 as the dividend, marking off the digits in pairs from right to 
left. The number of pairs is the same as the number of digits in the square 
root, in this case three. 

I 12 I 11 I 04 

Step 2 

Examine the pair 12, representing 120,000. The largest whole-number 
square root contained in 12 is 3. The 3 is placed above the 12 as 
a partial square root and represents 300. The square of 3 is 9, but 
9 actually represents (300)2 , or 90,000. We write 90,000 under the 
dividend and subtract, obtaining a remainder of 31, 104. 

3 
12 I 11 1 04 
9 00 00 
3 11 04 

In most square root algorithms, 9 would be written under the 12 in 
abbreviated form, rather than its full place value of 90,000, but we wish 
to demonstrate the Chinese dissection process, showing the geometric 
regions corresponding to the numbers in the algorithm, beginning with 
Figure 3 on page 68. 

In Figure 3, the number 121,104 is the area of square ABCD, while 
90,000 is the area of shaded square EFGD. When the shaded area is 
removed from the figure, the L-shaped gnomon ABCGFE remains and 
has area equal to 31,104. 
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68 

A M N B 

H I J p :A(ABCD) = 121,104 
:A(ABCGFE) = 31,104 
:A(EFGD) = 90,000 

E F K Q 

D G L c 

FIGURE 3 

Step 3 

We are looking for the tens digit b in the root. With a = 300, and app1ying 
the Chinese formula, Equation (3) on page 65, with b + c replacing b, 
we have 

b + c s: 
n- a2 

2a 

31,104 
b + c s: 2(300) = 51.8 

Hence, the greatest possible value predicted for the tens digit is 50. 
Compute the area of gnomon HJWFE with 50 as the value for b. The 
gnomon consists of two rectangles and a square (see Figure 4). This area is 
32,500, an impossible value, since there was only 31,104 square units of 
area available. Hence, we need to try a smaller value for b. The next logical 
choice is b = 40. 
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H 

E 

;A.(HJLGFE) = 32,500 
I 

(300)(50) (50)2 

F K 

(300)2 (300)(50) 

J 

D G L 
+---- 300 --· .. _.,._50 ___. 

FIGURE 4 

t 

1 

The corresponding steps of the algorithm in finding the tens digit b require 
that we first take twice the root and use this as a trial divisor. Divide the 

trial divisor into the remainder to get an estimate for the tens digit. 
Following this procedure, 31,104 + 600 = 51.8, which is exactly the same 
number obtained by the Chinese formula, Equation (3). 

Trial divisor 
Actual divisor 

r--=3-:--=5--:-__ +--- Partial trial root 
12 ' 11 ' 04 +--- Dividend 
9 00 00 +--- Square 

--+ 2(300) = 600 3 11 04 +--- Remainder 
...--. 600 + 50 = 650 3 25 00 +--- Trial product 

Impossible ,. New remainder 

As the above algorithmic steps demonstrate, 50 was an impossible value 

for the tens digit. We use 40 for our next choice. At the top of page 70, we 

repeat the algorithm with b = 40. 
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70 

.---..:.;.3.....,.........:.4--=--- .---- Partial root 
12 I 11 I 04 .---- Dividend 
9 00 00 .---- Square 

Trial divisor -.. 2(300) = 600 3 11 04 .---- Remainder 
Actual divisor ----+ 600 + 40 = 640 2 56 00 .---- Product 

55 04 .---- New remainder 

As this algorithmic process indicates, the value with b = 40 gives a new 
positive remainder. Since no larger value of b yields a positive remainder, 
we have found the correct value for the tens digit. At this stage of the 
algorithmic process, we have obtained a new partial root of 340. 

In Figure 5, the new partial root 340 is the side of shaded square HJLD 

with area 115,600 square units. The L-shaped gnomon ABCLJH has area 
equal to the remainder, 5,504. Notice how closely the numbers of the 
Western algorithm follow the Chinese geometric method of dissection. 

t 
c 

340 

A M N B 
~----------------~--------~--~ 

H I J P 
r-----------------~--------~----; 

E 1--------F-+-__ ___;;,K~----1 Q 

D G L C 
340 ----------.+- c ........ 

FIGURE 5 

;A(ABCD) = 121,104 
;A(HJLD) = 115,600 
;A(ABCUH) = 5,504 
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Step 4 

We are looking for the ones digit c to complete the square root. In Figure 5 
on page 70, c is the unknown side of the gnomon. If we can find a digit c 
that makes the gnomon have an area of exactly 5,504 square units, we 
will have found a square root of exactly three digits. If there were no ones 
digit c giving us the precise area of 5,504 square units, we could continue 
the iterations and find subsequent place values of tenths, hundredths, and 
so on, or resort to approximating the root with a fractional remainder. 

Continuing our search for the ones digit c, we apply the Chinese estimation 
formula. Equation (3) on page 65, to Figure 6. 

n- (a+ b)2 

c:s; 
2(a +b) 

5,504 
c::::; 2(340) = 8.09 

The value of c cannot be greater than 8. If we use c = 8, the 
gnomon ABCLJH has area 5,504, and we have found the last digit 
of the square root. See Figure 6 . 

.---------340---------..-8-. 
A N B 

H 
8(340) (8)2 

J 

t 
8 p 

A (ABCUH) = 5,504 8(340) 340 

L C 

FIGURE 6 
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Returning to the corresponding steps of the algorithm, take twice 340 as 

the trial divisor to find c. Divide the trial divisor into the remainder to get 
the estimate for the ones digit. The result 

5,504 7 680 = 8.09 

corresponds to the Chinese formula, Equation (3), we used when we looked 
at the geometric process. The final steps of the algorithm are written as 

Trial divisor 
Actual divisor 

,.--=3--:--....:.4---:--"'8'--- +- Square root 
12 ' 11 ' 04 +- Dividend 
9 00 00 +- Square 

600 3 11 04 +- Remainder 
640 2 56 00 +- Product 

-+ 2(340) = 680 55 04 +- Remainder 
---+- 680 + 8 = 688 55 04 +- Product 

0 +- Final remainder 

By comparing step 4 and Figure 6 with step 3 and Figure 3, we see that 
the algorithmic steps or geometric procedure form an iteration process. 
Chinese mathematicians of the early Han dynasty were capable of 
extracting the square root of any rational number. They had a choice of 
continuing the iteration process to whatever place value they thought 
sufficient or using approximation formula to terminate the process. At 
this early period of history, a well-developed decimal system existed in 
China. Sometimes, the square root of a number is an irrational number. 
Although Chinese mathematicians did not develop the concept of 
irrational numbers completely, they recognized them as being different 
from other numbers. They called irrational numbers side numbers in the 
context of extracting square roots. 

Han dynasty character 
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Q~Aad ratic Eq ~Aatio~s 
from the t-la~ Dy~as+y 

From the Nine Chapters of Mathematical Art, we learn that ancient Chinese 
mathematicians of the early Han dynasty solved quadratic equations of the 
form x 2 + mx- n = 0, where m and n are positive rational numbers. Their 
technique was based on geometrical dissection and the square root 
extraction process performed on the calculating board. In all Chinese 
examples, problems were numerically specific and did not have the benefit 
of a written algebra. 

We can best understand the ancient Chinese method by outlining the 
process for a solution having a three-digit answer. However, this process 
generalizes to any rational number solution or irrational number, when 
used with the approximation formula for the remainder. 

Suppose x1 = a+ b + cis a positive root of Equation (1), where a is the 
hundreds digit, b is the tens digit, and c is the ones digit: 

x 2 + mx- n= 0 (1) 

Substituting the root x 1 =a+ b + c into Equation (1), we have the following 
new Equation (2) involving the three ~igits of the root: 

(a+ b + c)2 + m(a + b + c) - n = 0 (2) 

Equation (2) can be expanded and terms rearranged to be compatible with 
the Chinese square root extraction process: 

(a + b + c)2 = a2 + b2 + c 2 + 2(ab + ac + be) + m(a + b + c) - n = 0 (3) 

Impression made from 
an early bronze seal 
belonging to a Han 
dynasty general. 
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Equation (1) has a special geometric relation to Figure 1 below. The area of 
square AIJD equals x 2 • The area of the shaded rectangle IBCJ equals mx, 

and the area of rectangle ABCD equals n. Furthermore, Equation (1), 

as a whole, is a statement about the dissection process: When all the 
component rectangles are removed from rectangle ABCD, the area of 
rectangle ABCD is reduced to zero. 

A E G I B 

l 
a2 ab ac ma a 

K L M N 0 1 
t 

ab b2 be mb b 

T ~ 
c 

Q R s 

ac be c2 me 

p 

t 
D F H J c 
+---- a-----+-+---- b 

FIGURE 1 

We begin solving Equation ( 1) by focusing our attention on Figure 1. 
The essential idea is to begin the process of extracting the square root 
on square AIJD with the value n = area of ABCD-not the area of 
square AIJD as in the case of a regular square root extraction. Keep in 
mind that calculating the square root this way has an element of trial and 
error. We are forcing the solution of the quadratic equation into the form 
of square root extraction. As we find a, b, and c through the square root 
process, we successively remove the parts of the shaded rectangles, that is. 
ma, mb, me. These steps are outlined on the next page, followed by a 
numerical example. 
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OutliJ-'\e of Squa~e Root Ext~actioJ-'\ 

1. Determine a by finding the largest square of a contained in n. 

2. Compute a2 +am and subtract from n. This removes square AELK and 
rectangle IBON from Figure 1. 

3. Estimate b. It can be shown from Figure 1 that 

n-a2 -am 

2a+m 

If b is chosen numerically too large, it will produce a negative 
remainder in step 4. Choose a smaller trial value for b and repeat 
the calculations. 

4. Compute 2ab + b2 + mb and subtract from the previous remainder 
n - a 2 - am. This corresponds to removing square LMRQ, 

rectangle EGML, rectangle KLQP, and rectangle NOTS from Figure 1. 

5. Estimate c. From Figure 1, it can be shown from the relationship 
between cells that 

< (n - a2 - am)(2ab + b2 + mb) c_ 
2(a +b)+ m 

6. Compute c2 + 2ac + 2bc + me and subtract from the last remainder 
(n- a?-- am)(2ab + b2 + mb). This corresponds to removing square 
RSJH, rectangle GINM, rectangle NSRM, rectangle QRHF, rectangle 
PQFD, and rectangle STJC. 

example 

Solve x 2 + 15x- 126,324 = 0 for x. 

Since the constant 126,324 has six digits, the square root of this number 
and Equation (6) are estimated as having three digits. We assume that 
x = a + b + c is the form of the solution. We proceed using the modem 
Western form of the square root algorithm with some modifications. 
Equation (6) is set out geometrically for the Chinese dissection process 
as shown in Figure 2 on the next page. 
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x2 + I5x- 126,324 = 0 

a2 ab ae l5a 
l 
a 

1 
t 

ab b2 be I5b b 

ae be e2 15e 
t 
e 

+ 
.,__ ___ a -----+4--- b " .. e--..-- 15 -----+ 

A(ABCD) = 126,324 

FIGURE 2 

Step 1 

Set 126,324 as the dividend. Find digit a and compute a2 + 15a. Subtract 

the result from the dividend to obtain the first remainder. 

a=300 
a2= 90,000 
I5a = 4,500 
a2 + 15a = 94,500 

3 .._ Partial root 
,....--=--:~---:---

12 ' 63 ' 24 .._ Dividend 
9 45 00 .._ a2+ I5a 
3 18 24 .._ First remainder 

Step 2 

Find b. By using Formula (4) on page 75, we- estimate b. Accordingly, 

b::::; 51. The value b =50 is too large, so use b = 40. Then we compute the 

value of 2ab + b2 + 15b and subtract from the first remainder. If a= 300 

and b = 40, then 2ab + b 2 + 15b = 26,200. 
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.-----=:3~_4.!........,-__ +- Partial root 
12 I 63 I 24 +- Dividend 
9 45 00 +- a2+ 15a 
3 18 24 +- Remainder 
2 62 00 +- 2ab + b2+ 15b 

56 24 +- New remainder 

Step 3 

Find c. By using Formula (5) on page 751 we estimate the value of c. 

Accordingly, if a= 300 and b = 40, c ~ 8.09. We use c = 8 and compute 

c2 + 2ac + 2bc + 15c and subtract from the last remainder. If a = 300, 

b = 40, and c = 8, c2 + 2ac + 2bc + 15c = 5,624. Since the final 

remainder is zero, x = 348 is the solution of the quadratic equation 

x 2 + 15x- 126,324 = 0. 

3 4 8 
12 I 63 I 24 
9 45 00 
3 18 24 
2 62 00 

56 24 
56 24 

0 

+- Final root 
+-Dividend 
+- a2+ 15a 
+- First remainder 
+- 2ab + b2+ 15b 
+- Second remainder 
+- c2 + 2ac+ 2bc +15c 
+- Final remainder 

If the last remainder of this process had not been zero, two additional 

zeros could have been added to the right of 24 in the dividend. The process 

can be extended along the established pattern to find the tenths place. 

There is no limit to this process, except perhaps fatigue. As many decimal 

place values as are needed can be obtained by adding more pairs of zeros 

to the right side of the dividend. If the root is irrational, the process can 

be terminated after reaching a desired accuracy. In such cases, the final 

place value can be approximated by remainder formula. Ancient Chinese 

mathematicians did not develop the concept of irrational number, but 

recognized that such nonterminating decimals were different and called 

them side numbers. 
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AdvaV\ced Mathematics 

of Medieval ChiV\a 
During the Song and Yuan dynasties (960-1368 A.D.). China developed an 
impressive amount of advanced mathematics. One of those achievements 
was the solution of polynomial equations of higher degree. As early as the 
mid-eleventh century, the illustrious Chinese mathematician Jia Xian 
introduced an iterated multiplication process on the calculating board for 
extracting roots or solving polynomial equations of arbitrary degree. His 
method was equivalent to the Ruffini-Horner method developed about 
800 years later in Europe. 

Since Jia Xian's work on solving polynomial equations was done on a 
calculating board with movable calculating rods, we can best understand 
his mathematics using modern algebraic techniques. The logical basis for 
justifying Jia Xian's method rests on the diminished root theorem from the 
part of algebra known as the theory of equations. 

Dimilllished Root Theo~em 

Letf(x) =a xn +a xn-l +a xn- 2 +···+a = 0 be a rational integral 
o 1 2 n 

polynomial defined over x E R. For any c E R, J(x) is successively divided 
by x- cas follows: 

Q1(x) is the quotient and r1 is the remainder ofj(x) + (x- c); 

Q2 (x) is the quotient and r2 is the remainder of Q1 (x) + (x - c); 

Q3 (x) is the quotient and r3 is the remainder of Q2 (x) + (x- c); 
and so on, until the process ends with Q (x) = a and r . 

n o n 

If a new polynomial equation j(y) is formed such that 

j(y) =a yn + r yn-l + r yn- 2 + ... + r2 y + r = 0, then the roots of 
o n n- 1 1 

the j(y) = 0 equation are c less than those of the j(x) = 0 equation, that 
is, y = x- c. 
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A simple example of a type of problem encountered by Jia Xian was the 
extraction of a fourth root of a number or the solution of a fourth-degree 
polynomial equation. The two processes can be interchangeable as the 
following example illustrates. 

Example 1 

Find x = ~279,841 

or solve for x, x 4 - 279,841 = 0 

At right. 

Jia Xian was familiar with the lll ~ .t- ~ 7~ -1; 
binomial expansion diagram 
shown here. The European 
version known as Pascal's 
triangle was discovered 
600 years later by the 111 + 
French mathematician :t ~ 
Blaise Pascal (1623-1662). ~ 
The illustration shown was ~- Jl 
first published in Zhu Shijie's 
Siyuan yujian xicao in 1303. 

~t: ~~ "'~ t\~ "~ e~ ~ 1;...~ """" 
.\!~ 
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In Chinese mathematics, Equations (3) and (4) are equivalent as only a 
single positive root was sought for Equation (4). 

In our solution to the problem, we apply the diminished root theorem to 
Equation (4) and use synthetic division to simplify the process. 

Step 1 

Our process begins by making an estimate. We know that 20 < x < 30 

because (20)4 < x 4 < (30)4 • Assume that x = 20 + y, where 0 < y < 10. 

This transformation implies that the solution x is at least 20 plus some 
positive number less than 10. If we apply the diminished root theorem to 
Equation (4) with c = 20, we obtain a new equation in y, whose solution 
is a number less than 10. Using synthetic division, we get 

1 0 0 0 -279,841 ~ 20 400 8,000 160,000 

1 20 400 8,000 -119,841 
20 800 24,000 

1 40 1,200 32,000 
20 1,200 

1 60 2,400 
20 

1 80 

Therefore, if y = x- 20, the new equation in y is 

g(y) = y 4 + 80y3 + 2,400y2 + 32,000y- 119,841 = 0 

Step 2 

Since Chinese mathematics used.only positive roots, we can assume that 
all terms involving y in Equation (5) are positive. Therefore, 

32,000y-119,841 ~ 0 

y~3.7 

(5) 

(6) 
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Accordingly, y ~ 3. 7 can be used to approximate the next digit of the root. 
We use y = 3 as an approximation for the ones digit of the root. Applying 
the diminished root theorem to Equation (5), we set up the transformation 
y = z + c, where c = 3, to find a new equation in z whose solution we 
anticipate to have a value in the tenths place, that is, z < 1. 

1 

1 

80 
3 

83 

2,400 
249 

2,649 

32,000 
7,947 

39,947 

-119,841 l2_ 
119,841 

0 

Applying the diminished root theorem, we find that after the first synthetic 
division, the first remainder is zero. We need not continue to divide 
synthetically because the first division tells us that g(3) = 0. This 
fact follows by use of the remainder theorem of modern algebra: 
If g (y) -:- (y - c) has remainder r, then g (c) = r. 

Since y = 3 is the solution of Equation (5) and y = x- 20, it follows by 
substitution that x = 23 is the solution to Equations (3) or (4). Thus we 
found that 23 is the fourth root of 279,841 or x = 23 is the solution of the 
polynomial equation x 4 - 279,841 = 0. 

This first example was intended to be very simple to illustrate the basic 
process of solving higher-degree polynomials. As a second example that is 
more typical of using the diminished root theorem and Jia Xian's method, 
we return to the Quadratic Equation (6) on page 75, where we solved the 
equation using the geometric dissection method of the Han dynasty. It 
is interesting to compare the numerical values generated between the 
two processes. 

E-xample 2 

Solve x 2 + 15x- 126,324 = 0 for x. 

Step 1 

We write the equation in functional notation to better communicate 
the reasoning: 

Solvej(x) = x 2 + l5x- 126,324 = 0 for x. 
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We estimate the solution of Equation (1) is such that 300 < x < 400. In 
either Chinese or Western mathematics, this is a trial process. In modern 
algebra, the location principle would be used, that is, substitute arbitrary 
values of x inf(x) = x 2 + 15x- 126,324 and look for sign changes inf(x). 
In this case,j(300) = -31,824 andf(400) = 39,676. Hence, a root for 
Equation (1) falls between x = 300 and x = 400. The steps using synthetic 
division follow: 

1 

1 

1 

1 

Location Principle 

15 -126,324 
300 94,500 

315 -31,824 

15 -126,324 
400 166,000 

415 +39,676 

f(x) =x2 + 15x-126,324 
/(300) = -31,824 
/(400) = +39,676 

Step 2 

1300 

1400 

We apply the diminished root theorem to Equation (1) with x = y + 300, 
where 0 < y < 100. In the transformation to the new equation in y, the 
solution, y, is reduced one place value. 

1 

1 

15 
300 

315 
300 

1 615 

-126,324 1 3oo 
94,500 

-31,824 

According to the diminished root theorem, we have the new equation in y 

with root reduced by 300: 

g(y) = y 2 + 615y- 31,824 = 0 (2) 
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Step 3 

Since y 2 ;::: 0, Equation (2) can be used to make an estimate for the solution 
of y. We write the following inequality based on this assumption: 

615y- 31,824::;; 0 

y:s;51.7 

Thus, by trial we determine that y is at least 40. Using the location 
principle, we have g(50) = + 1,426 and g(40) = -5,624. The sign change 
between y = 40 and y = 50 implies that the solution for y is such that 
40 < y < 50. The steps using synthetic division follow: 

1 

1 

1 

1 

615 -31,824 
50 33,250 

665 +1,426 

615 -31,824 
40 26,200 

655 -5,624 

g(y) = y2 + 615y- 31,824 
g(50) = +1,426 
g(40) = -5,624 

Step 4 

I.2Q_ 

140 

We apply the diminished root theorem to Equation (2) with y = z + 40, 

where 0 < z < 10. We obtain a new equation in z whose solution is 40 less 
than the solution of the equation in y. Applying the diminished root 
theorem using synthetic division, we have 

I 

I 

I 
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6I5 
40 

655 
40 

695 

-31,824 140 
26,200 

-5,624 

(3) 
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Taking the values from the previous synthetic division, we can write the 
following new function in z: 

h(z) = z 2 + 695z - 5624 = 0 

Since z 2 ~ 0, Equation (4) can be used to estimate the solution of z. We 
write the following inequality: 

695z - 5624 ::; 0 

z::; 8.09 

Thus, by trial we determine that z is at least 8. We start by applying the 
location principle. We have h(8) = 0. There is no need to continue as we 
have found the exact solution for Equation (4). The steps are as follows: 

1 

1 

Location Principle 

695 -5,624 
8 5,624 

703 0 

h(z) = z2 + 695z- 5,624 

h(8) = 0 

L!. 

Since z = 8 and y = z + 40, then y = 48. 

But x= 300 + y. 

Therefore, x = 348 and is the solution of 

f(x) = x 2 + 15x- 126,324 = 0. 

We have used modern algebra and synthetic division to perform the steps 
of the solution of Quadratic Equation (1). Jia Xian and other medieval 
Chinese mathematicians used the calculating board. Although there were 
no permanent recorded steps during the process, the actual numbers on 
the calculating board correspond to the written numbers in our synthetic 
division steps. 

(4) 

(5) 
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Problem of the 
100 Fovvls 

As early as the fifth century A.D., Chinese mathematicians solved problems 
with indeterminate solutions. We find the intriguing problem known as the 
"Problem of the One Hundred Fowls" in the Chinese classic Zhang Qiz.9ian 

suanjing (The Computational Classic of Zhang Qiz.9ian). The problem follows, 
expressed in contemporary language. Can you find a solution? 

The Pl""oblem 

A rooster costs 5 copper coins called qian. A hen costs 3 qian, while 
three chicks can be purchased for 1 qian. You have 100 qian to buy 
exactly 100 fowls. How many roosters, hens, and chicks are there? 

There are several possible solutions. Assume that the solution has at least 
one of each type of fowl. 
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Solt.Atio~ to the 100 Fowls Pl"oblem 

Let: x be the number of roosters; 

y be the number of hens; 

Then: 

z be the number of chicks. 

x+ y + z= 100 
1 5x + 3y + 3z = 100 

Solving Equation (1) for z and substituting into Equation (2), we have 

1 5x + 3y + 3 (1 00 - x - y) = 100 

y = 25 _!_X 
4 

Equation (3) does not have a unique solution. Since any solution in x, y, 
and z must be a positive integer, we introduce the parameter a, a E N 

defmed by 

x=4a 

Substituting Equation (4) into Equation (3), we have 

y = 25- 7a 

Substituting both Equations (4) and (5) into Equation (1), we have 

z= 75 + 3a 

Thus, we can redefine the equation set of ( 1) and (2) by the following 
parametric set in a. 

x=4a 

y = 25- 7a 

-z= 75 + 3a 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(4) 

(5) 

(6) 

The solution set in (x, y, z) is infinite. If a = 0, there can be no roosters. If 
a= 1, we have Zhang Qiujian's classic solution of 4 roosters, 18 hens, and 

78 chicks. What other solutions are possible? 
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The 6-mperor of Qi"' 
Secretly Co!AI'\ts f-lis Soldiers 

Chinese mathematics had the capability of solving remainder problems or 
problems of simultaneous congruences very early in its history. From the 
Sunzi suarying (The Mathematical Book of Master Sun), these kinds of 
problems can be documented to the fourth or fifth century A.D. Later, 
in 1247, Qin Jiushao published his Shushujiuzhang (Computational 

Techniques in Nine Chapters). One popular version of Qin Jiushao's 
problems has the intriguing title "The Emperor of Qin Secretly Counts 
His Soldiers." The problem follows, expressed in contemporary language. 
Can you solve it? 

The P~oblem 

The Emperor of Qin secretly counts his soldiers in an enigmatic manner. 
When he counts his soldiers in groups of three, two soldiers are left. When 
the emperor counts in groups of five, three soldiers are left, and when the 
soldiers are counted in groups of seven, two soldiers are left. How many 
soldiers are there? What is the smallest number of soldiers possible? 
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Solutions of problems such as "The Emperor of Qin Secretly Counts His 
Soldiers" were so prominent in the early history of Chinese mathematics 
that even Western historians refer to the basis of the method of solution as 
the Chinese remainder theorem. We utilize modern congruence notation of 
number theory to first state the Chinese remainder theorem and then apply 
it to the Emperor of Qin problem. 

Definition: 

a = b (mod m) if and only if a = b + mk, where a, b, k, and m E N 

Suppose x is an integer such that, when it is divided by m1, the remainder 
is r1• If xis divided by m2 , the remainder is r2 • If the process is repeated an 
arbitrary number of times, say k, the divisor of xis mlc, the remainder is rk, 

mk, r E N. This process is equivalent to the following set of congruences: 
/c 

x= rk (mod mJ (1) 

If m 1, m 2, m 3, ... , mk are pairwise relatively prime and 
M = m 1 m 2 m 3 ... mk, then there exists a set of integers 
a 1, a2, a3, ... , ak such that for each ak, 

(2) 

and 

M M - M 
x = a r- + a r- + · · · + a r - (mod M) 

Itm 22m ktcm 
1 2 lc 

(3) 
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SoltAtioltl to the C.mpe...-or of Oiltl Problem 

Let: x be the number of soldiers. 

Then: x = 2 (mod 3) 

x= 3 (mod 5) 

x= 2 (mod 7) 

Applying the Chinese remainder theorem from page 88, we have 

m =3 
I 

m =5 
2 

m =7 
3 

r = 2 
I 

r = 3 
2 

r =2 
3 

M = 3 · 5 · 7 = 105 

(4) 

The three values of ak are defined by Equation (2) on page 88. It follows by 
substitution that 

M 105 
a - = a -- = 35a = 1 (mod 3) 

I m I 3 I 
I 

(5) 

M 105 
a - = a -- = 21a = 1 (mod 5) 
2m 2 5 2 

2 

(6) 

M 105 . 
a - = a -- = 15a = 1 (mod 7) 
3m 3 7 3 

3 

(7) 

Applying the definition of congruence to Equations (5), (6), and (7), it 
follows that a = 2, a = 1, a = 1 satisfy the congruences. Substituting the 

I 2 :3 • 

values of a,.. in Equation (3) on page 88, we have 

x == 2 · 2 · 35 + 1 · 3 · 21 + 1 · 2 · 15 (mod 105) 

x = 23 (mod 105) 

Thus, 23 is the smallest number of soldiers. However, by adding integral 
multiples of 105 to 23, you can have additional solutions. 
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Pilla~ of Delightful 
CoJt\templatioJt\ 

The following problem from ancient China is 
based on the Han classic, the Nine Chapters 

of Mathematical Art. 

The Pv-oblem 

Resting on the floor of a pavillion is a 
cylindrical pillar 20 ft high and 3 ft in 

circumference. A floral pattern with a 
vine wraps uniformly about the pillar. 
One end of the vine-pattern starts at 
the base of the pillar and winds so 
that the other end just reaches to the 
very top of the pillar. Can you find 
the length of the vine wound about 
the pillar? 

f-lint 

The ancient text of the Nine Chapters 

of Mathematical Art provides a rule 
that can help you solve the problem: 

''Take seven times the circumference 
of the pillar for the second side of a 
right triangle and the pillar's height 
for the first side. The hypotenuse is 
the length of the vine." 

What assumptions did the Chinese 
mathematicians make in using this 
method? 

Above. 

The character for Ming 

of the Ming dynasty 
(1368-1644 A.D.). 

Below. 

Drawing based on a Ming 
dynasty painting. 
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Think of the pillar as being sliced horizontally by parallel planes so that 
seven congruent cylindrical parts are stacked together. Then each one of 
the cylindrical parts can be represented by Figure 1, with base diameter 
3/7t ft and altitude 20/7 ft. The path of the vine starts at point A and winds 
uniformly to point B directly above the starting point. We designate the 
length of the path by x. (Figures are not drawn to scale.) 

Jn 
7t 

t 
20ft 
7 

A ~ 

FIGURE 1 FIGURE 2 

Next, cut the cylinder in Figure 1 along the path of the vine and unwind it 
into the plane right triangle of Figure 2. The base of the triangle equals the 
circumference of the cylinder, 3ft. The altitude of the triangle is 20/7 ft. 
Applying the Pythagorean theorem, we find the length of the vine for one 
turn as follows: 

2 = (3)2 + (20)2 = 9 + 400 = 841 
X 7 49 49 

X = f84l = 29 ft v49 1 

In Figure 3, the seven turns of the vine are shown as a composite of 
seven right triangles, each with hypotenuse x. Therefore, the length of 
the entire vine is 7 x or 29 ft . 

.,_ __ 7 (3ft) __ _,. 

FIGURE 3 
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Pool of CelebY.ated 
Kl'1oW I ed 9 e 

The following problem from ancient China is based on the Han classic, the 
Nine Chapters of Mathematical Art. 

The Pt'"oblem 

In a garden. there is a square pond 10ft on a side. A reed grows in the 
very middle of the pond, with its top measuring 1 ft above the surface of 
the water. When the reed is drawn directly to any of the sides of the pond, 
its top touches the surface of the water. Assume that the pond has uniform 
depth. Find the depth of the water and the length of the reed. 
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Soi~Atiol'\ to the Pool of Celebrated Kl'\owledge Problem 

The solution of the problem is an application of the Pythagorean 

theorem. In the figure below, AC is the water's depth and the leg of 
right triangle ABC. The other leg, BC, is the distance from the reed to 
a side of the pool, given as 5 ft. When the reed is stretched to the side 

of the pool, it becomes the hypotenuse of the right triangle. 

If we define the depth of the water AC as x, then AD = x + 1 is the length of 

the reed. Applying the Pythagorean theorem, we have 

x2 + 2x + 1 = 25 + x2 

2x= 24 

x = 12 ft, the depth of the water 

x + 1 = 13ft. the length of the reed 
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6xalted T~easvtre 

of 3ade 
There is a treasure of jade buried in a wall. 
The exalted treasure is in the form of a right 
circular cylinder of unknown dimensions. 
When the wall is chiseled so that 1 I 10 ft of 
the depth of the jade is exposed, it can 
be seen that the axis of the cylinder is 
parallel to the face of the wall. The 
exposed part of the cross section of the 
cylinder is a segment of a circle 
whose chord measures 1 ft. What is 
the diameter of the jade cylinder? 

In the sketch at the right, the chord 
of the circular cross section is 
segmentAB. 

Note 

Problems of this type were solved as 
early as 200 B.c. during the Han 
dynasty in ancient China. 
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SoltA.tioltl to the Exalted T,....eastA.,....e of 3ade p,....oblem 

The solution of the problem uses the basic properties of a circle and the 
Pythagorean theorem. The cross section of the jade cylinder is shown in 

Figure 1, where the parts of the problem are defined. 

Given: Circle 0 with radius r 

1 
MC = 10 ft or 0.1 ft 

AB= 1ft 
AB..L OC atM 

OA = OC = OB = r 

Find: d, the diameter of circle 0 

FIGURE 1 

In Figure 2, we apply the Pythagorean theorem to right triangle OAM, 

using r as the common variable. 

A 

0 r-0.1 

FIGURE 2 

) 1 Key Curriculum Press 

1 
2 or0.5 

r 2 = (0.5)2 + (r - 0.1)2 

r 2 = 0.25 + r 2 - 0.2r + 0.01 

0.2r = 0.26 

r = 1.3 

:. d = 2r = 2.6 ft 
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P~eciovts 

C\oldeJ'\ Rope 
There is a precious rope of gold hanging from 
the bough of a willow tree. A learned 
philosopher sitting beneath 
the tree muses over the 
situation. He observes 
that when the rope 
hangs freely, 3 ft of rope 
is left over, after it 
makes contact with the 
ground. However, if the 
philosopher stretches 
the rope so that its free 
end just touches the 
ground, the free end is 
positioned 8 ft from 
where the rope first 
touched the ground. 
How long is the rope? 
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Solt-ttiol'\ to the Pt"eciot-ts Golde"' Rope P .. oblem 

The figure on the left illustrates the rope at the time of first observation by 
the philosopher. Let x be the distance from the tree limb to the first contact 
point on the ground. 

r 
X 

1 
+-3ft--+- 8ft 

c 
-+ 

frrst contact position stretched position 

The stretched position of the rope is shown in the figure on the right. 
The leg AB of the right triangle ABC is x, determined by the frrst contact 
position. Leg BC is 8 ft. the distance from the first contact position to the 
end of the rope in the stretched position. The hypotenuse AC is the length 
of the entire rope, or x + 3. If we apply the Pythagorean theorem to the 
right triangle ABC, it follows that 

x 2 + 6x+ 9 = 64 + x 2 

1 
x + 3 = 12 6_ ft, the length of the rope 
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The Party's Over 
The following problem from ancient China is found in the Han dynasty 
classic, the Nine Chapters of Mathematical Art. 

The Problem 

A bureaucrat going about his business of overseeing water use spotted a 
woman washing dishes in the river. Immediately, he demanded of her: 
"Why are there so many dishes here?" She replied, "There was a dinner 
party in the house." His next question was "How many guests attended 
the party?" She did not know but gave this reply: "Every two guests 
shared one dish for rice; every three guests used one dish for broth; 
every four guests used one dish for meat; and altogether, sixty-five 
dishes were used at the party." 

If you had been at the river, could you have answered the questions 
of the overseer? How many guests attended the party? 
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The solution of this problem is based on fractional parts or ratio. From the 
information in the problem, we construct the following ratios and convert 
them to a form in which they share a lowest common denominator. 

Rice: 

Broth: 

Meat: 

1 6 
number of plates/guest= 2 = 12 

1 4 number of plates/guest= 3 = 12 

1 3 
number of plates/guest= 4 = 12 

(Lowest common denominator, or LCD = 12) 

By adding the three fractions (expressed with the LCD), we find the 
number of plates for rice, broth, and meat used by 12 guests. 

6 4 3 13 - + - + - = -plates/guest 
12 12 12 12 

Thus, it takes 13 plates to serve a complete meal for 12 guests. Interpret 
. 13 13 

the fraction 12 as a rate, r. or r = 12 plates/guest. 

As a rate problem, the following simple equation can be written: 

A= rn, 

Therefore, 

where A = number of plates for all guests 

r = number of plates/ guest 

n = number of guests 

A 
n=

r 
65 plates 

13/12 plates/guests = 60 guests 
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Page 7, Exercise 1 
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1i 
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F;f 
--L-
_:t~ _.,., 

11.7761 

____r____ 

/\ 

---a 
___L... 

/'\ 

+ 
li 

13651 

---'-
/'\ 

a 
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+ 
---1::: 

16871 
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1L 

19991 

---
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/\_ 
-t-

11.9821 
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2 

+ 
[lQ 

14 

1i 

5 

40 
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Page 8, Exercise 2 

4 

+ 
12 

100 

-
T-
f\. 
:![ 
/" 
+ 

1,860 

__t_.... 

/\ 

6 

1m 
+ 
1i 
45 

-
-T-
:fL 
Ef 
-1::; 
+ 
li 

1,975 

-=r-
/~ 
Ef __.__ 
/" 

-+ 
1,860 

1i 

5 

-t 
+ 
70 

i\ 
8 
BOO 

-
-T-
1m 
-8 
:tL 
-t--
-

1,492 
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Pages 9-1 0, Exercise 3 

a. 
IT] X 103 + IT] X 102 

-
-=f-
JL +[I] X 101 + IT] X 10° 

E3 
f\. 
-t-- IT] X 1,000 +IT] X 100 

--- +[I] X 10 + IT] = 11.9821 

b. 
IT] X 103 + 0 X 102 

-
-=f-
-C; 

+[}] X 101 + [QJ X 10° 

E3 
[l9 

+ 
=IT] X 1,000 +[I] X 100 

+[}] X 10 + [QJ = 11,7401 

c. m X 103 + IT] X 102 

E_ 
-=f- +IT] X 101 + IT] X 10° 

JL 
a ----_,_ m X 1,000 +IT] X 100 

JL 
+IT] X10+IT]= 15.9291 

d. [I] X 103 + IT] X 102 

--
+[}] X 101 + m X 10° 

-
-==p 
::tL 

[I] X 1,000 +IT] X 100 
-g 
ll9 
-+--
_li 

+[}] x 10+ 0 = 13.9451 
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e. [I] X 103 + [I] X 102 

-
- +[QJ X 101 + [QJ X 10° 

-=r 
j\ 
-Fi 

[I] X 1,000 +[I] X 100 

+[QJ X 10 + [QJ = 12.8001 

f. 0 X 103 + [I] X 102 

--t 
-=r- +[2] X 101 + [I] X 10° 

(Z_g 
a 
::tL 
-+- 0 X 1,000 +[I] X 100 

-- +[2] X 10 + [I] = 17.4921 
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Page 11 , Exercise 4 

- - rm 1i ----'...... --t; ;\ 1L -- -. 
/\ - ~ -

-· - rm 1i ----'...... -t ;\ )L -· - - . 
/\ -- -

- - tm ----'...... 

J\ + -t· + + + 
-- - /\ - rrg _L_. i\ ·-· /\ 

-· - --
+ + + - . - --- - ----'...... 1L -t· + --t . - --- - /\ - 1i )\ - --· IZ9 ·-t 

+ - - -- -- ---

-+ - -
rm rm - - - - -

;\ -· ___.__ -+- -j~ -t --I· + - /\ IZ9 J\. -- ---L. 

-- /\ 

+ - - - 1m - - tm - - -
1i li + - + - -j~ + li --r -f-· + 1i 1i li 

- - - IZ9 lZ9 1i --j· + - -· -
----'...... ----'...... + - + + -j~ + /\ /\ - --t-___ .... ;\ lZ9 

---L. - ;\ 1m /\ -

- - - lZ9 1m 1i ---L. 

+ - - /\ - -
--t; -t + + + + + + + lZ9 - J\ 1i - 1L ---L. --- /\ -

- -
1m E. ---L. --t -- rm /\ + - -

J\ i\ -+ -t· + + + + __._.. + /\ 1m -
i\ 

___.__ 
lZ9 --. /\ -

-
- - lZ9 li 

__.__ 
--t J\ + - - /\ -

1L 1L + -r- + + + + -t~ 
J\ --t ---L. 1i 1m - - --/\ - --
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Page 20, Exercise 1 

Figure 5: 80,868- 4,735 = 76,133 

Figure 6: 7,998- 5,273 = 2,725 

Page 21, Exercise 2 

a. 13,677 b. 97,895 c. 1-IIII§ITilfl d. l:!.llll 11111 
e. 3,076 f. l*=llTI::bllll g. I1111I=I111UJIIIIII h. 96,652 

i. l=lmrl=llrl::biTI j. 7,083,990 

Page 22, Exercise 3 

- mr l. - IIIII ..l mr ..L Ill - IIIII 

I Ill mr - m l. II --
- l. Ill l. 1111 --..L - I ..L TT --

a. 798,325 + 3,862 = 802,187 b. 396,055 + 10,309 = 406,364 

...L TID ..l IIIII m - lf - Till -
IIIII - -

- Ill l. 1111 - 1111 - II .L 
1111 J.. T - T I 1111 - - 1111 - 1111 Till - -

c. 897,538-336,424 = 561,114 d. 472,935 - 129,476 = 343,459 
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1111 T 
Ill -

='= --
:k II 

a. 4,608 + 3,597 = 8,205 

1T ..L l1f ----
..L Till -

lf - Till -- -

c. 79,836-6,914 = 72,922 

a. 37 x 87 

Page 23, Exercise 4 

l1f I .L Ill ...L T -
1T j_ 1111 

- Ill ----
IIIII I - Till - Ill -

b. 18,376-6,453 = 11,923 

T 1T j_ ...L 1111 --
1111 - I ...L nn - -
II 1T .L II ...L Ill -

d. 76,094 + 2,179 = 78,273 

Page 29, Exercise 1 

b. 465 X 867 C. 308 X 932 

Page 31, Exercises: Seven-Piece Puzzle 

2. 8 square units; 3. 8 square units; 8 square units; 4. area is a constant 
(8 units with given dimensions), independent of the shape. 
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Page 32, Exercise with the Dog 

You could define a single closed region as a closed region in which you can 
connect any two points with a path that only contains points belonging to 

the closed region. 

2. 8 square units 

3.-7. Answers vary with the figures chosen in construction. 

8. The square; 4 ·VB= BV2 units 

9. An arrangement where the pieces pairwise only shared one point; 
1 0{2 + V2) units 

Page 33, Chinese Dissections 

As shown in the diagram at the left of the problem, dissect the 
parallelogram into a trapezoid and a triangle. In the diagram below, 
these dissections are trapezoid ABFD 

and triangle BCF. 

FB l_ CD and EA l_ CD, because FB is the 

altitude and EA is constructed that way. 

FB = EA, because both are the distances 
between the same parallel lines. 

AD = BC, because ABCD is a 

parallelogram. 

A b B 

LlBCF = LlADE, because of HL congruence. You can translate LlBCF into 
LlADE and form a rectangle with base b and height h. Since both the 

parallelogram and the rectangle consist of the same two congruent figures, 
their areas are the same. Thus, the area of the parallelogram is :Ap = bh. 

Dissect the parallelogram into two triangles as shown in the diagram 
below. LlABC = LlADC, because of SSS congruence. Thus, their areas are 

equal-and therefore :At = ~bh. 

k'lc 
A B 
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Page 34, Classic Theorem 

Explanations can vary, but the following is one possible solution: 

Draw altitude CL of MBC from vertex C. Label the intersection of CL and 
MN, point K. as shown in the diagram. 

L is also C's mirror image over MN, because MCL - L'lMCK (MN II AB and M 

is a midpoint of AC). 

Thus, ML = MC = AM, due to the property of reflection and because M is 
the midpoint of AC. So, L'lAML is isosceles. For similar reasons, 
LN = CN = NB, so L'lLNB is isosceles. MX and NY are perpendicular to AB, 

so they are the axes of symmetry for the isosceles triangles L'lAML and 
L'lLNB. Therefore, L is the mirror image of A over MX and of B over NY. 

Because of the property of reflection as a transformation that preserves 
angle measures, L 1 = LA, L2 = LB, and L3 = LC. Applying the angle 
addition postulate and substitution, we find that Ll + L2 + L3 = 180°, 
so LA+ LB + LC = 180°. 

Page 35, Problem 1 

A. Dissecting along the diagonal: 

Refer to the diagram below. A(ABCD) = A(MBC) + A(MCD). MBC's 
base is b1 and its height ish, so A(MBC) = kb1h. For MCD, we can 
choose b2 (the trapezoid's second base) as its base. The height of the 
triangle will also be h, because the distance of vertex A from DC is the 
same as the distance between C and AB . .A(MCD) = kb2 h and 
therefore, A(ABCD) = Ib1 h + Ib2 h = I(b1 + b2)h. 

© 2001 Key Cuniculum Press 



The Ambitious Horse: Ancient Chinese Mathematics Problems 

B. Dissecting through its bases: 

Refer to the diagram below. Dissect the trapezoid into a parallelogram 
and a triangle. So, .A(ABCD) = .A(ADCE) + .A(ECB). A(ADCE) = b2 h and 

A(~CB) = ~(b1 - b)h. Thus, .A(ABCD) = b2h + ~(b1 - b2)h 

= 2(bl + b2)h. 

A E B ,._ __ bl ------+-

C. Dissecting along the median: 

Refer to the diagram below. Draw in the perpendicular line segments 
through the endpoints of the median labeled E and F. MGE = ~DJE, 
because AE =DE (EFis a median) and LAEG = LDEJ (vertical angles). 
Both triangles have a right angle at G and J respectively, because JG 

was constructed that way. Thus, .A(AGE) = .A(DJE). The same can be 
said of ~HBF and ~ICF, therefore .A(HBF) = .A(ICF). So, .A(ABCD) 
= .A(GHIJ). 

And .A(GHIJ) = EF · h, and because EF = JI = GH, 

2 . EF = bl - X - y + b2 + X + y = bl + b2, 

so EF = ~(b1 + b2) and .A(GHIJ) = EF · h = ~(b1 + b)h 

J x r-D ___ b2 ___ c..;;.,. y 1 

E[7 SJF 
l1 L\ 

AXG HYB 
+----- bl ------+-

© 2001 Key Curriculum Press 109 



The Ambitious Horse: Ancient Chinese Mathematics Problems 

110 

Page 35, Problem 2 

Interior angles of an obtuse triangle: 

Either draw in the midsegment just as you did on page 34, connecting the 
two shorter sides (turn the triangle on its longest side as base), or draw in 
the midsegment as shown on the diagram below. CD is the altitude from 
vertex C. EF II AB, so CD l_ EF. Because ~CDA ~ ~CGE, and E is a midpoint, 
CG = GD. Therefore, C's mirror image over midline EF is D. Thus, ~CEF = 
~DEF and LECF = LEDF. 

CF = DF due to the property of reflection and CF = FB because F is a 
midpoint, so DF = FB and ~DFB is isosceles. Because the base angles of an 
isosceles triangle are equal, LFBD = LFDB. 

By the same reasoning, CE = DE because of reflection and CE = EA 

because E is a midpoint, so DE = EA and ~DEA is isosceles. Since the base 
angles of an isosceles triangle are equal, LEDA = LEAD. 

LCAD = 180°- LCAB, because they are supplementary. 

From the last two steps, knowing that LEDA = LEAD, we find that 
LEDF + LFDA = 180°- LCAB, therefore LEDF + LFDA + LCAB = 180°. 

And because LEDF = LACB and LFDA = LB. we get 
LACB + LB + LCAB = 180°. 

D A B 

Page 35, Problem 3 

Refer to the figure on page 34 for the Classic Theorem problem. 

Label the common vertex of angles 1, 2, and 3, point L. 

MMX = ~LMX. ~CMN = ~LMN, and M3YN = ~LYN, therefore: 

.A(XYNM) = ~.A(ABC) . .A(XYNM) = XY · YN. YN = ~hand XY = ~. 
1 1 1 . -

so .A(ABC) = 2 · 2 h · # = 2AB · h. 
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Page 35, Problem 4 

Refer to the diagram below. 

The diagonals of a rhombus are perpendicular bisectors of each other, so 
they intersect to form four congruent right triangles with legs ~d1 and ~d2• 
Therefore, the area of the rhombus is 

Page 35, Problem 5 

Refer to the diagram below. 

By defmition, regular polygons have equal sides (s). Connecting the center 
of the circumscribed circle to the vertices, we divide the pentagon into 
five congruent triangles (SSS). Thus, the apothems (a) are equal. 

A(pentagon) = 5.A(triangle) = 5 · ~ · side · apothem 
= ~ · (5 side) · apothem = ~ · perimeter · apothem. 

s 
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Page 37, Liu Hui's Solution 

Reasons for Steps 

1. ACBE is a rectangle with sides of length a and b. 

Definition of the area of a rectangle. 

2. CDFG and ACBE are both comprised of two regions identical to 
region 1 {small triangles), two regions identical to region 2 {large 
triangles), and two regions identical to region 3 {square). So, their 

areas are equal. 

3. Definition of rectangle area, and by construction. 

4. Substitution. 

5. Division property of equality. {a+ b) i= 0, because a> 0 and b > 0 

being measures of the sides of a triangle. 

Page 38, Western Solution 

Reasons for Steps 

1. Area addition postulate. 

2. Area formula for a triangle. 

Distributive law. 

3. Area formula for a triangle. 
Distributive law. 

4. Area formula for a square. 

5. Area formula for a triangle. 

6. Substitution of {2), (3). (4), and (5) into (1). 

7. Multiplication property of equality. 

8. Addition of like terms. 

9. Distributive law. 

10. Division property of equality. 

An alternate solution: .6.BAC- .6.BEF, therefore EF/AC = BF/BC 
d s a-s ab 

an b = -a- so s = a + b 
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Page 40, More from Liu Hui 

The radii shown in Figure 1 are perpendicular to sides. AO and CO are the 
hypotenuses of congruent right triangles (marked as 1's and 2's), because 
of HL congruency. 

Obviously one can create rectangle EFGH by pairing right triangles as 
shown in the diagram. 

The following are reasons for each step. 

1. ABCD is a rectangle with sides of length a and b. 

Area postulate for rectangle. 

2. EFGH consists of double the parts as ABCD. Therefore, the 
area of EFGH is twice that of ABCD. 

3. Area postulate for rectangle. 

4. Substitution. 

5. Division property of equality. 

Page 41, Western Solution 

Reasons for Steps 

1. Area addition postulate. 

2. Area formulas for a triangle and a square. 

3. Segment addition property. 

4. Substitution of (3) into (2). 

5. Multiplication property of equality. 

6. Addition of like terms. 

7. Distributive law. 

8. Division property of equality. 

9. Definition of diameter. 

10. Multiplication property of equality and substitution. 
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Page 45, Proof 

Reasons for Steps 

l. Defmitions given in problem. 

2. Since MPE ~ .6.ESG, AP/PE = ES/SG, or (AP)(SG) = (ES)(PE). AP = QE 

and EK = SG, because of construction, so by substitution we get 
.A(QUKE) = .A(PESC). These areas are complementary with respect to 
diagonal AG . .A(QUKE) = .A(LWJF), because of construction (SG = Tl). 

3. Complementary areas with respect to diagonal AB. 

4. Subtraction property of equality. 

5. Area addition property. 
Substitution. 

6. Definition for the area of a rectangle. 

7. Substitution. 

8. Segment addition property (since TI = SG =51 by construction). 

9. Substitution. 
Defmitions in problem. 

10. Division property of equality. 

11. Segment addition property. 
Definitions in problem. 
Substitution. 

Page 48, Proof 

Reasons for Steps 

l. Defmitions given in problem. 

2. Since MPE ~ .6.ESG, AP/PE = ES/SG, or (AP)(SG) = (ES)(PE). AP = QE 

and EK = SG, because of construction, so by substitution we get 
.A(QUKE) = .A(PESC). These areas are complementary with respect to 
diagonal AH . .A(QUKE) = .A(LWJF), because of construction (SG = TI). 

3. Complementary- areas with respect to diagonal AB. 

4. Subtraction property of equality. 

5. Area addition property. 
Substitution. 
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6. Definition for the area of a rectangle. 

Definitions in problem. 

7. Substitution. 

8. Segment addition property. 
Defmitions in problem. 

9. Substitution. 

10. Division property of equality. 

11. Segment addition property. 
Defmitions in problem. 

Substitution. 

12. Area formula applied in step 2. 

13. Definitions in problem. 

14. Substitution from lines 10, 12, and 13. 

Division property of equality. 

Page 50, Yin-Yang Proof 

Answers for Given and Prove 

Given: Circle 0 with diameter AB; semicircles AXO and 

OYB with diameters equal to ~ 

Prove: A(S) = A(R); L(AXOYB) =~(circumference) 

Reasons for Steps 

1. Given. 

2. Area addition postulate. 

3. Congruent semicircles have equal areas. 

4. Substitution. 

5. Substitution. 

6. Arc addition postulate. 

7. Circumference formula. 

8. Substitution. 

9. Distributive law of multiplication over addition. 

10. Circumference formula. 
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Page 51, More Yin-Yang! 

Part 1 

Algebraic Proof for .A(R) = .A(S) = .A(T) 

1. AB=BC= CD 

2. Areas of semicircles: 

.A, = .A(AXB) = ~ 1t(~)z = ; (AB)z 

.A2 = .A(CID) = ~ 1t(C~)2 = ; (CD)2 = ; (AB)2 

.A3 = .A(AYC} = ~ 1t(A2C)2 = ~ (AB)2 

.A4 = .A(BHD) = ~ 1t ( B~ )z = ~ (AB)z 

.As = .A(AW) = ~ 1t ( 3~)2 = 981t (AB)z 

.A6 = .A(AMD) = .A(ALD) = ~1t (AB)2 

3. .A(R) = .A, + .A6 - .A4 = ; (AB)z + 981t (AB)2 - ~ (AB)2 

31t 2 1 [ 91t 2] 1 . = 4 (AB) = 3" 4 (AB) = 3 (area of c1rcle 0) 

= ~(AB)z _ ~(AB)2 + ~(AB)2 _ ~(AB)z = 31t (AB)2 
2 8 2 8 4 

5. .A(T) = .A2 + .As - .A3 = ; (AB)z + ~ (AB)z - ~ (AB)2 

= 31t (AB)2 
4 

From lines 3, 4, and 5, it follows by substitution that 

6. .A(R) = .A(S) = .A(T) 

Q.E.D. 
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Page 51, More Yin-Yang! 

Part 2 

Algebraic Proof for L{AXBHD) = L(AYCID) 

1. L(AXBHD) = L(AXB) + L(BHD) 

L(AYCID) = L(AYC) + L( CID) 

AB 
2. L(AXB) = 1t2 

L(CID) = 1t~ 
BD 

L(BHD) = 1t2 = 1t{AB) 

L(AYC) = 1t A2C = 7t(AB) 

3. L(AXBHD) = ~ (AB) + 1t(AB) = ~1t (AB) 

L(AYCID) = 1t{AB) + ~ {AB) = ~ (AB) 

4. L(AXBHD) = L(AYCID) = ~ (3AB) = ~{AD) 

1 
= 2[1t(AD)] 

= ~[circumference of circle 0] 

Q.E.D. 
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Page 52, Another Case of Yin-Yang! 

Part 1 

Algebraic Proof for A(R) = A(S) = A(T) = A( U) 

1. AB = BO = OC = CD 

2. Areas of semicircles: 

A 1 = A(AXB) = ; (AB)2 ; 

A 3 = A(AYO) =; (AB)2; 

As = A(AZC) = 9; (AB)2 ; 

A 7 = A(ALD) = 2x(AB)2; 

A2 = .A( CJD) = ; (ABf; 

A 4 = A(OID) = ; (AB)2; 

A 6 = .A(BHD) = 9; (AB)2: 

A 8 = A(AMD) = 2x{AB)2 

3. A(R) = A 1 + A 8 - A 6 = ; (AB)2 + 2x(AB)2- ~(AB)2 = x(AB)2 

4. .A(S) = A3 - .A1 + A6 - A4 

= ~(AB)2 - ~(AB)2 + 9x (AB)2 - ~(AB)2 
2 8 8 2 

= x(AB)2 

5. .A(T) = As - A 3 + A 4 - A2 

= 9x (AB)2 _ ~(AB)2 + ~(AB)2 _ ~(AB)2 
8 2 2 8 

= x(AB)2 

6. .A(U) = A 7 - As + A 2 = 2x(AB)2 - 9; (AB)2 + ; (AB)2 = x(ABf 

7. From lines 3, 4, 5, and 6, it follows by substitution that 

A(R) = A(S) = .A(T) = A(U) 

Q.E.D. 
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Page 52, Another Case of Yin-Yang! 

Part 2 

Algebraic Proof for L(AXBHD} = L(AYOID) = L(AZCJD) 

1. L(AXBHD) = L(AXB) + L(BHD) 

L(AYOID) = L(AYO) + L( OID) 

L(AZCJD) = L(AZC) + L( CJD) 

1t 
2. L(AXB) = 2(AB); 

L(BHD) = s; (AB); 

L(AYO) = 7t(AB); 

L( CJD) = ; (AB) 

L(AZC) = 31t (AB) 
2 

L( OID) = 1t(AB) 

3. L(AXBHD) = ; (AB) + ~ (AB) = 21t(AB) 

4. L(AYOID) = 7t(AB) + 7t(AB) = 21t(AB) 

5. L(AZCJD) = ~1t (AB) + ; (AB) = 21t(AB) 

6. From lines 3, 4, and 5, it follows that 

L(AXBHD) = L(AYOID) = L(AZCJD) = 21t(AB) 

1 
= 2 [1t(AD)] 

= ~[circumference of circle 0) 

O.E.D. 
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Page 53, General Yin-Yang! 

Algebraic Proof for L(AXPYD) = ~ 1t(AD) 

1 
1. L(AXP) = 21t(AP) 

L(DYP) = ~ 1t(PD) 

2. L(AXPYD) = L(AXP) + L(DYP) 

1 1 
3. L(AXPYD) = 21t(AP) + 27t(PD) 

4. L(AXPYD) = ~ 1t(AP + PD) 

5. But AD= AP + PD 

L(AXPYD) = ~ 1t(AD) Q.6.D. 

Note: L(AXPYD) = ~ 7t(AD) ~ ~ [circumference of circle 0] 

or, in other words, the length of the path of the two semicircular 
arcs has a total length of one-half of the circumference of the circle, 
independent of the choice of P on the diameter AD. 

Page 56, Zhou Exercise 

1. Answers can vary. 

2. MFB = Lll3GC = 8CHD = .1.DEA, because of SAS congruence of 
triangles. Therefore, AB = BC = CD = DA. LBAF = LCBG, because 
of congruence of triangles. Similarly LABF = LBCG. From 
right MFB we have that LBAF + LABF = goo and LBAF = LCBG, 

so LABF + LCBG = goo. LABF + LCBG + LABC = 180°, because 
they form a straight angle. Therefore, LABC =goo and 
quadrilateral ABCD is a square. The areas of the four congruent 
triangles MKB, 8BKC, 8CID, and dDJA are equal to 6 units each. 
So, the area of square ABCD is 25 square units, therefore the 
length of its side is 5 units. 

2 2 2 And from the Pythagorean theorem: 3 + 4 = 5 
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3. A square with side 3 cannot be inscribed in a square with side 5. 

Yes, the difference is a perfect square. 25 - 9 = 16, 52 - 32 = 42 or 
32 + 42 =52. 

4. The difference in area of the square with side 5 and the inscribed 
square of side 4 is 9, a perfect square. Hence, 25- 16 = 9, 
52 - 4 2 = 32 or 32 + 4 2 = 52 satisfies the property of the 
Pythagorean theorem. 

5. Let x be the length of one leg of a right triangle, then 5 - x is the 
length of the other leg. The hypotenuse is equal to 4. 

Applying the Pythagorean theorem, we have 

x 2 + (5 - x)2 = 16 

x 2 + 25- lOx+ x 2 = 16 

2x2 - lOx+ 9 = 0 

By applying the quadratic formula, we have 

5±0 x= 
2 

Alternatively, the area of the triangle is :. 

~(x)(5- x) = ~ 

5x- x 2 = ~ or 2x2 - lOx+ 9 = 0, which leads 

5±0 to the same result above: x = ---
2 
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Page 58, Gou-Gu Theorem 

The congruence of triangles 2 and 5 is true for the following reasons: 

AB = CD, because ABCD is a square. LDKC = LAFB = 90°, because 
EGBF is a square and DK is constructed to be perpendicular to EC. And 

LKCD = L.FBA, because they are corresponding angles. 

The congruence of triangles 1 and 4, and 3 and 6: 

Because of the congruence of .6.DKC and .6.AFB, DK = AF and EL = DK, 

so AF = EL and therefore EF = AL. Also GB = EF, so GB = AL. AD = BC, 
because ABCD is a square, so MLD = .6.BGC. IC = GC, because HGCI 

is a square. From the congruence of .6.AFB and .6.CGB, GC = AF, and 

AF = EL = DK, so GC = DK and CI = DK. Thus .6.BGC and square HGCI 

can be translated by vector CD and the images will be .6.ALD and 
square EWK. 

A 

El 
L~··············v 

Page 99, The Party's Over 

Alternate solution for the problem: 

Let n be the number of guests. 

n n n 
So, 2 + S + 4 = 65 

6n + 4n + 3n = 780 

13n = 780 

n = 60 
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Pronunciation Guide 

Vowels and Diphthongs Consonants 

a father b bike 
e her p pike 
i see m mother 
u hoof f five 
ii buick d dog 
ai bike t tea 
ei page n night, ink 
ao house 1 luck 
ou oath g give 
an land k kind 
en mention h house 
in tin j gin 
ang Hong Kong q [ch] 
eng length x [hs] 
ing thing z [tz] 

ong bassoon[g) c [ts] 
er far s see 
ia Maya zh [dj] george 
ie hear ch chicken 
iu you sh she 
ian Ian 
iang young 
ua quadruple 
ui quick 
uan twenty 
un soon 

Note: The i after "z," "c," "s," "zh," "ch," and "sh" is pronounced like a (schwa). 
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ba ba Rong Fang rong-fang 

BaGua ba-gwa san san 

bai bai Siyuan yujian si-yuan-yii-jian-

Beijing bei-jing xicao hsi-tsao 

Chen Zi chen-tzi Shang shang 

cheng cheng Shang Gao shang-gao 

Daxie shumu zi da-hsie-shu-mu-tzi shang wei shang-wei 

er ar shi shi 

gou gou shou shou 

Gou-Gu gou-gu Shushu jiuzhang shu-shu-jiu-djang 

gu gu si si 

Haidao suanjing hai-dao-swan-jing Song song 

Han han Sun sun 

Han Gaozu han-gao-tzu Sunzi suanjing sun-tzi-swan-jing 

Jia Xian jia-hsian ! Tang tang 

Jing xi zi zhi jing-hsi-tzi-dji wan wan 

jiu jiu Wei wei 

Jiuzhang suanshu jiu-djang-swan-shu wu wu 

Kangxi kang-hsi xia wei hsia-wei 

Kong Qiu kong-chiu xi an hsian 

kung-fu kung-fu ! Xiangjie hsiang-jie-

le le jiuzhang suanfa jiu-djang-swan-fa 

li li Yang Hui yang-hui 

ling ling yi yi 

liu liu Yin-Yang yin-yang 

Liu Hui liu-hui Yongzheng yong-djeng 

Manchu man-chu yu yii 

Meng meng Yuan yiian 

MengTian meng-tian Zhang Qiujian djang chiu-jian 

Ming ming Zhang Qiujian djang chiu-jian-

qi chi 
suanjing swan-jing 

qian chi an 
zhongwei djong-wei 

Qin chin 
Zhou djou 

Qin Jiushao chin-jiu -shao 
Zhoubi djou-bi 

Qin Shihuangdi chin-shi-hwang-di 
Zhoubi suanjing djou-bi-swan-jing 

Qing ching 
Zhu Shijie dju-shi-jie 
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