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Preface

The sophist Protagoras, who lectured all over Greece in the fifth century Bc, proclaimed:
‘The measure of everything is human’. Although he spoke in a wide context, his hearers
may well have taken him literally. In the Ashmolean Museum, Oxford, is a relicf in the
shape of a pediment, showing the head, chest, outstretched arms and foot imprint of a
man (below). Whatever its exact metrological interpretation (and this is disputed), it shows
not only awareness of the imporrance of human measurements, bur a sense of harmony
and symmetry. Such an approach is visible in Greek and Roman art and architecture, and
in the esteem accorded to the teaching of music and geometry.

In our computer age of electronic accuracy, results by ancient methods may seem unreliable.
Yet in many respects we can show that the ancients could often come close to an exacr
measurement, though attempts at modern conversion may be problematic.

The most prominent theoretical aspects of math ics were ast y, in Babylonia
and Greece, and geometry, in Greece. These sometimes overlapped, and geometry contributed
to the development of algebra and trigonometry. Eratosthenes’ calculation of the earth’s
circumference shows a combi of the th ical and the practical. He may have been
more interested in assessing the angle of the sun at midday in different places, but he also
based his calculations on a rough approximation to actual land distance, and went on
to draw a world map which influenced his successors.

Artefacts from excavations in Egypt, the Athenian agora and elsewhere emphasise the
practical importance, for trade and commerce, of standard weights, measures and time-
keepers. In the Roman world the practical side of measurement largely predominated. Road-
making, surveying, military organisation, water supply and sanitation, all depended on well-
defined systems of measuring.

The present work tries to show what a wealth of artefacts we have, particularly in museums
and libraries, which throw light on ancient mathematics and measurement, and to set these,
alongside technical literature from the Rhind papyrus right down to Renaissance Latin,
in their cultural background.

P S e b e B
1 Greck metrological relief. Oxford, Ashmolean Museum.
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1 The Background

We know that a number of ancient civilisations developed their own techni of math

ticsand measurement separately. Much is now known, for example, of the hlstorv of Chinese

h and ; but they did not influence the knowledge of those subjects
in the Wcst, and so it is not proposcd to outline them in this book. Of those civilisations
which didi e Western develop the principal ones were Egypt and Mesopotamia,
each of which had been evolving its own system from a very carly penod

In Egypt we find early interest in ast y and ¢ 1 g in the division
of the year into 12 months of 30 days cach, to which five days were added. Egyprian
interest in the stars was typified by pictures in tombs showing astronomical features, including
maps of star positions, to calculate the passage of night hours. Such information may have
been of practical help to a farming community such as flourished in the Nile valley. The
Egyptians went on from this to devise a system of 12 daytime hours and 12 night hours,
which formed the origin of the modern system of division of the day. Since, however, the
amount of daylight varied according to the month, it will be seen (chapter 7) that some
careful observations and calibrations were involved.

Egypt is the country of the Nile and the pyramids, and it is not surprising that great
accuracy was attempted with regard to both of these. The annual autumn flooding of the
Nile, caused as we now know by high summer rainfall in Ethiopia, helped the fertility
of Egyptian fields by spreading quantities of silt. To record levels upstream, a Nilometer
was set up on Philae Island, which is now submerged by the lake of the Aswan dam. Strabo
describes it as a well, in which the level of the Nile could be read from marks on the
side. From such readings, scribes could register the maximum, minimum and mean levels
of the water in cubits. As is known from ancient writers, annual compilations of such
readings were carefully preserved, but these have not themselves survived. A Nilometer
at Memphis (Cairo) is mentioned by Heliodorus, and similar gauges have been found at
Edfu, Luxor and elsewhere, with cubit markings mostly between 52.8 and 53.3 cm above
the river’s low level.

When the floods receded, many landowners® boundary marks had inevitably been washed
away, so it was important that surveying should be carried out immediately. There are
Egypnan representations of surveyors employing knotted ropes (the knors indicating sub-

isions of linear ). the merkhet (a split centre-rib of a palm-leaf, used for
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2 Reproduction of a merkbet, an Egyptian surveving instrument. The merkhet was aligned on an
object by looking through the split centre, held upwards. It was used with a short plumb-line and
plummt( London, Science Museum,



sighting), and measuring rods. The priests inaugurated this rapid re-survey of the land,
which had to be ready for winter cultivation. There is no evidence that land survey maps
were used in dynastic Egypt for this operation. But by means of exact area measurements
and verbal descriptions, the status quo was re-established. Graeco-Roman writers from
Herodotus (c. 484—.420 s¢) right down to Cassiodorus {c. AD 490—. 583) atwibute the ori-
gins of geometry, literally ‘measuring of the earth’, to this practice.

Egyptian numerals were based on the decimal system, the highest values being placed
on the left. Up to nine of the same symbol could be used, arranged in one or two lines.
The hieroglyphic signs are:

1! 10,000 §
10 » 100,000
100 t 1,000,000 ¥
1000 1
Examples are:
465 W

4323 110

The sign for 1,000,000 disappeared in early times, and after its disappearance a system
of multiplication, by placing one ber over her, was imes used; for pl

1,100,000 = 100,000 x 11 = 2

The most famous mathematical work from dynastic Egypr is the Rhind mathemarical
papyrus, copied by the scribe Ahmes or Ahmose from a papyrus of 1849-1801 Bc. It was
bought by A. H. Rhind at Luxor in 1858 and is now in the British Museum. In its geometry
we can see some understanding of the properties of right-angled triangles, including the
simplest ones, which have sides that are integral numbers of units in length (3, 4, 5; 5,
12, 13). Also included is an approximation for m, the ratio of the circumference of a circle
to its diameter; the value given is (§) = 3.1604938, too large by about 0.019.
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3 Part of the Rhind mathemarical papyrus, dealing with the calculation of areas. Sccond [ntermediate
Period, ¢. 1575 Bc, British Museum.



The Rhind papyrus has several arithmetical problems, such as the following: ‘A quantity
whose half is added to it becomes 16'; in other words, ‘find § of 16’. The workings are
as follows:

(a) (b)
1 2 * 3
3 1 2 6
* 4 12
§ 2
* 1

Table (a) shows that the divisor should be 3. The purpose of table (b) is to find one-third
of 16. Column 2 multiplies column 1 by three. The asterisked items are added together
because the corresponding numbers in the right-hand column add up to 16. This establishes
that 1+ 4 + }—that is, St—is one-third of 16. Since { of 16 is to be found, the remaining
workings are:
(c)

1 5%

2 10%

Geometry was equally required for the construction of pyramids. In the first place, care
was often taken to achieve orientation north, south, cast and west. North-south aricntation
could easily be obrained by finding the direction of the noonday sun. A vertical pole was
set up in the sand as a gnomon. Then the path traversed by the tip of its shadow could
be observed. The points A and B, where this intersected a suitable circle drawn around
the gnomon, would be joined. Then the line AB was bisected to establish the direction
of the sun at mid-day. A possible alternative method, outlined by I. E. S. Edwards in The
Pyramids of Egypt, would have been to bisect the angle formed by the rising and setting
positions of a star.

Egyptian pyramids (with the exception of the most ancient, the Saqqara step pyramid)
were square in ground-plan and fully pyramidal in shape. The specification for the gradient,
known as the ‘batter’, of such pyramids was denoted by the hieroglyphic word skd, meaning
ratio. It was expressed in terms of the number of palms, in half the length of a side, per
cubic of vertical height (1 cubit = 7 palms). The Rhind papyrus is particularly concerned
with the geometry of pyramids, measurements being reckoned in rayal cubits (see chapter
4). An example of finding the barer is: *A pyramid whose vertical height is 931 [cubits].
Let me know its batter, 140 [cubits] being the length of its side.' Half the length of a
side is 7 % 70 palms; the batter is theccfore:

70 210
X —=7 x — = §} palms;
93% 280
since 1 palm = 4 finger's-breadths, this is expressed as § palms, 1 finger's-breadth.
The dimensions and orientation of the Grear Pyramid were very carcfully fixed. Like
a number of dynastic Egyptian buildings, its sides face the four points of the compass.
Measurements are in whole numbers of royal cubits, often rounded off, which vary only
narrowly—mostly between 52.3 cm and 52.5 cm, with an average of 52.36 cm. The mean
of the four base lengths, which are very nearly equal, is 440 cubits, The original height
from platform to apex was 280 cubits, giving a batter, as defined above, of 5} palms.
The length of the descending passage is 75 cubits. The floor length of the grand gallery
is 88 cubits, one-fifth of the base length. The king’s chamber is 20 cubits long and 10
cubits broad:; its height is 11 cubits, again a {actor of the base length, at 2.5 cm to the
cubic.
Contrasting somewhat with this precision is the clumsiness of the Egyptian method of
expressing fractions. Apart from 3, only “simple” fractions were used, that is, those having



the numerator 1. Thus we find statements like: ‘&, 3 of it is & + L' Fractions such as
& were not used.

In linear measurement it was customary, as we have scen, to divide the palm into finger's-
breadths. These were similar in length to the palms and finger’s-breadths of the Greek
Olympic foot. But, although the Greeks borrowed geometrical technique from Egypt, it
is not likely that they took units of length, which can always be coincidennally similar
when based on the human body.

Some specimens survive of maps which were obviously based on mecasurements of the
region depicted, though they do not include figures. We may mention the Turin papyrus
and a number of temple or garden plans. The Turin papyrus (fig. 4), now in the Musco
Egizio, Turin, but incomplerte, dates from . 1300 Bc and depicts a mining area near Umm
Fawakhir, between the Nile and the Red Sea. This is a very early example in the history
of cartography of the use of colour to differentiate between various types of mineral and
rock. No measurements are given, but since the map is thought to have been drawn up
in connection with a legal dispute in a topographically idemiifiable location, we must imagine
that some scale was implicit in it. The large-scale plans likewise record no measurements,
and sometimes there is a mixturc of plan and elevation; but temple or garden measurements
were easily obtainable and could without difficulty be represented on an agreed scale.

An equal concern [or accuracy is found in the Mesopotamian civilisations. The countries
of the Tigris and Euphrates had much foreign trade with other arcas, exchanging items
such as spices, jewels and silks from the East for minerals or timber from the West. This
international trade was dependent on recognised units of weight, volume, arca and length.
The concept of money may have arisen from the Mesopotamians' use of metal bars with
a mark indicating their weight.

Mesopotamian writing, known as cuneiform from the Latin cuneus, ‘wedge’, was executed
on clay tablets. Symbols were built up from wedge shapes formed with a square-ended
stylus. However, in early Sumecrian writing (c. J000 BC) the numerals were incised with
a different instrument, with rounded ends, one large, one small. It may have been a reed
or a wooden spike. The Sumerians used the sexagesimal systen, which had a base of 60,
bur there were individual symbols for 36,000. 3600 (=60%), 600, 60 and 10. In late Sumerian
(¢. 2500-2000 8C), numerals, like other written symbols, were made with a square-ended

4 The main fragments of the }
Turin papyrus (hicroglyphic
text translated by . Ball)



stylus. Owing to the difficulty of making curved lines with this, rhomboids took the place
of circles.

In the later Babylonian script (c. 2000 Bc—. AD 75) there is a dif(erent system for recording
numbers. We find two notations: the old sexagesimal system, still used for mathematics
and astronomy, and also the dccimal system, used for everyday purposes such as trading
and accounting. A complication arises in this later script, namely that in its sexagesimal
notation only two signs in all were used: one for 216,000, 3600, 60 and 1, the other
fc;r 36,000, 600 and 10. A slight break between rwo signs indicated a change in the power
of 60.

SUMERIAN AND BABYLONIAN NUMERALS
Early Sumerian (c. 3000 BC)

©@=60x60x10 (O=60x60 G=60x10 TJ=60 o=10 o=l
So

oe=11 [To=61 {[ov=71 GPoo=671 (OFTor=23600+671=4271

Later Sumerian (¢. 2500-2000 8C)

O =60x60x10 O =60x60 k=60x10 [=60 «=10 T=1
So

dJ=11 TT=e1 Td=mn =671 O}4I=3600+671 = 4271

Babylonian (2000 Bc—AD 75)
1=]  10=« 60=] 60x10=< 60x60=]  60%60x10=4

and so on. Everything depended on the order of the wedges, reading (rom left to right.
So 4] =11.Butitcan also equal 601 (60X 10+ 1). J[=2,but | |=61;the difference
depends only on careful writing and reading.

100=T4 (60+(4x10)) 1000 = <FF % (16X 60 + [4 x 10])

Both the linear measurements and the capacity measurements (chapter 4) of the Meso-
potamians were to some extent linked with the £ 1 ber system ioned above.
The cord, the largest linear unit used by surveyors, represented 60 double cubits. The double
cubit was divided into 60 digits (finger’s-breadths), the smallest lineac unit. A tablet contain-
ing a plan of Nippur, ¢. 1000 Bc, gives measurements for buildings which seem to be in
units of 12 cubits (about 6 m). An earlicr plan, ¢. 2300 BC, from Yorghan Tepe near Kirkuk,
mentions the area of a plot of land shown, 354 iku (about 125 ha).

For capacity measurement the largest unn, the gur, represented 300 sila, the smallest.
But although we can give approxi quivalents, modern pts to correlate Sumerian
weights with Sumerian capacity measurements have been inconclusive.

In mathematics we may think that the Babylonians were more proficient in arithmetic,
the Egyptians in gcometry. Thus, to take an example where arithmetic counts for more
than geometry, a tablet in the Yale Babylonian collection shows a square with sides 30.
On the diagonal are two sets of figures: 1, 24, 51, 10 and 42, 25, 35, which correspond
to VZ and30 x VI respectively. This means that the Babylonians had a very closc approxi-
mationto V2, since 1, 24, 51, 10 equals

24 51 10
1+—+—+
60 3600 216,000




which is 1.41421296: the true value is approximately 1.41421356. For m, on the other
hand, the Babylonians tended to use 3, while the Egyptians certainly used as an approximation
()2 (see p. 8). They may also have worked with == 3% (3.142857), the true value being
3.14159....

The Babylonians had extensive lists of squares, which they probably used to aid multiplica-
tion. Similarly, there are lists of reciprocals expressed in the sexagesimal system:

2 30 6 10

3 20 8 7,30
4 15 9 6,40
5 12

That is to say, & = &, while § = 5 + &', and so on. If necessary, further subdivisions were
introduced, e.g.:

27 2,13,20

The principal application of Babylonian mathematics was to astronomy, in which many
achievements are recorded. As Prolemy noted, almost complete records of eclipses were
preserved from ¢.747 Bc. The astronomers established that solar eclipses can only rake
place at the end of a lunar month, and lunar eclipses only in the middle of one. Whether
they were able to predict cclipses before about 300 BC is uncertain. By 700 s at the latest,
and almost certainly earlier, they had named three regions of the sky after gods. The region
of Enlil was to the north; that of Anu, covering about 34° in declination, was equatorial;
and that of Ea lay to the south. But there is also a group of early texts which divides
the sky into three zones, cach containing 12 sectors. These zones bear names of planets
and constellations with progressive numbers. Whereas in early times observation of Venus,
for example, may have been connected with divination, by about 400 8¢ a body of mathemati-
cal astronomy had been built up, using a zodiac with 12 signs, each of 30°. This constituted
a system of reference for the movements of the sun and planets which was passed down
to the Alexandrian Greeks and their successors.

In the fifth century BC the 19-year cycle known as the Metonic cycle (see chapter 3)
was incorporated in the Babylonian calendar; this is now thought to have come before
Meton unsuccessfully proposed its incorporation in the Athenian calendar.

Halley's comet, which reappears roughly every 75 years, was observed in detail both
by the Chinese and by the Babylonians. The Babylonian record dates in all probability
to 164 B¢, and reads in translation: ‘The sallammu [comet] which previously appeared to
the cast in the path of Anu in the area of the Pleiades and Taurus, to the west [...| and
passed on in the path of Ea...." The regions of the sky are the same as those given above.

Among other countries which had some influence on the math ical progress of parts
of the Graeco-Roman world were Minoan Crete, Phoenicia and Etruria. Minoan Linear
B, the pictographic and syllabic script which influenced Cypriot writing, had a system of
numerals somewhar similar to the Egyptian. The Phoenicians used a knowledge of astronomy
drawn from Babylonia to help with navigation by night; and the Greek alphabet, used
for onc of the two Greek systems af num:ranon (chapter 2), was derived from the Phoenician.
The Etruscans used hods of d ion, including observarion of quarters of the heavens,
which seem to have had a connection with Bahyloman practice. Like the Babylonians, they
named these areas of observation after deities. Early Greek scientists went from Asia Minor
to Egypt in the sixth century BC and consulted the priests. Later Greeks had access to
Babylonian knowledge through the wrinings of Berosus, who flourished abour 290 8c. It
is significant that throughout the Graeco-Roman period these aspectsof Egyptian and Babylo-
nian civilisarion stood in high esteem; though after a time Greek mathemaricians considered
they had advanced beyond their Near Eastern predecessors,




2 Numbering by Letters

h

The Greeks and the Romans had systems of ing which, compared with arabic numer-
als, seem awkward to us. It is recognised today that most of the Minoan—Mycenaean script
known as Linear B was in a language which may be considered the ancestor of Greek.
This scrips (¢. 1450—¢. 1200 BC) had a system of numeral abbreviations as follows:

1 5w
0 - 50 s=-
100 » 500 33°
1000 + 5000 $H*

10,000 ¢

These abbreviations, among the first to be deciphered, could be combined with ideograms,
such as & for ‘woman’. But the script disappeared in the dark age which followed. The
only possible relic of Linear B—which, however. is paralleled in other systems of numeration
that are definitely independent—is the series |, I, I, Ml adopted for 1—4 in the ‘acrophonic’
system of classical Athens (p. 14).

From about the sixth century B¢ the Greeks and later the Romans had methods of express-
ing numbers which were based largely or wholly on the alphabet. Where many numbers
were involved, any system of abbreviation was an improvement on the early practice of
writing them out in full. But Greek city states, being independent, frequently did not collabor-
ate. So we are not surprised to find two different systems emerging, one ar Miletus in Asia
Minor, the other at Athens and in Autica. It is now thought that the Milesian numeration
started first: it is to be found on early Attic vases, though from abour 480 BC both systems
are found.

The Milesian or alphabetic numeration may possibly have been invented by one of the
two earliest Greek scientists, Thales (who (lourished in 585 8c) and Anaximander (c. 6 10—
540 8¢), both of whom lived in Miletus. As an ple of the applied h ics of
the time, Anaximander is said to have designed the first Greek map. If he put distances
on it, he would certainly have needed a set of abbreviations.

About the mid-eighth century sc the Greek alphaber, which larer strongly influenced
the Roman (and much later still the Cynillic), had been adapted from the Phoenician, Success-
ive letters were used to denote numbcrs, though they had no connection with the pronuncia-
tion of the numcrals. As they have come down to us, they are usvally minuscule (lower-case)
letters, except on inscriptions. Thus 1 was a (alpha), 2 was B (beta) and so on to 10,
which was « (iota). For the multiples of 10 up 10 90 and of 100 up ro 900, successive
single letters to the end of the alphabet were used. Thus, 111, for example, was expressed
by the letters standing for 100, 10 and 1. Early usage in Asia Minor was in the reverse
order. Since 27 letters of the alphabet thus needed to be used for denoting numbers up
to 999, not only the current alphaber but three obsolete or obsol letters were used.

A A

5 ‘The first five letters of the

Phoenician and Greek

9 B
7T
JANYAN™ alphabers compared.
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Numerals from 1000 upwards started again from a, but with a stroke written below. We
may rabulate the Milesian numeration thus:

1 « 10 100 »p 1000 o

2 B 20 200 o 10,000 M
3 vy 30 A 300 T 20,000 &

4 8 40 p 400 v

5 ¢ 50 v 500 & Examples
6 F 60 E 600 x 11 w
7 70 o 700 & 63 &y

8§ 7 80 w 800 o 128 pxm
9 0 90 < 900 2 1601 axa

The eatly letters brought in were wau (6), a form of digamma; koppa (90); and sampi
(900). M stood for mryrioi, 10,000, and a numeral could be placed over it to denote com-
pounds.

These abbreviations became so standard that the full system lasted right down to the
fall of Constantinople (1453), and they are used to a limited extent in modern Greek,
though they were never adapted to Yanguages other than Greek. They had serious disadvan-
tages, one being the mastering of 27 symbols, though the ancients were more accustomed
than we are to memorising such things. But also, as in the other Graeco-Roman numerations,
a number like 222, for example, is not represented by three identical signs. In this case,
rather, it uses the 20th, 11th and 2nd lerters respectively of the enlarged Greek alphabet.

There were two methods of expressing fractions in the Milesian numeration. First, as
in Egyptian notation, the Greeks often represented them as the sum of unit fractions: e.g.,
$= 1=, which was expressed by letters of the alphabet with accents—in this case y'e.
(There was no plus sign in Greek mathemarics; numbers to be added together were put
side by side, with or withour kai, "and’.) As special signs we find £ =%, g =% (not §
as might be expected). Secondly, in mathematical writings we also find non-unir fractions,
with numerator and denominator written cither on the same line or on two lines. The
Milesian system was adapted by several mathematicians to express enormous numbers.
Archimedes in his Sand-reckoner devised a special notation {not used in practice) which
could express numbers up to what in our own notation would be 1 followed by 80,000
million millions of zeros.

The other Greek numeration system is usually known as Amic or acrophonic. ‘Artic’
means that it was mainly used in Athens and the rest of Attica; “acrophonic’ that it was
based (apart from the symbol | for 1) on the first sound of the numeral. Another name
is ‘Herodianic’, from the grammarian Herodian who described it in the second century
AD. This numeration used capital letters, and 100 was represented by H, standing for the
rough breathing, indicating aspiration, at the beginning of the word hekaron, an abbreviation
particularly common in some Aegean islands. These are the normal forms:

11 500 Examples

5 (pente) 1000 X {khilioi) 1na

10 & (deka) 5000 ® 63 PAI
50 PP, F 10,000 M (myrioi) 128 HaaArm
100 H (bekaton) 50,000 M 1601 XrH

It will be seen that these abbreviations, which somewhar resemble Roman numerals, were
more self-explanatory, though lengrhier, than the Milesian. Fractions were uncommon: C
stands for §, while D seems intended for §.

This Atti¢c numeration did not last as long as the Milesian, fading out in the third century
BC and disappearing under the Roman Empire. An interesting feature, visible in the table
above, is that 50, S00, 5000 and 50,000 were formed by monograms incorporating the



symbols for § and, respectively, 10, 100, 1000 and 10,000. Like the Roman numeration,
however, reperition of lertess was used to form some numerals: e.g., as A stood for 10
(deka), AA stood for 20, though 20 was wrirten in full as eikosi (elxoar) and so pronounced—
not, of course, as deka deka. Because of its use of capital lerters, this numeration was
particularly suitable for inscriptions. In fact the forms used are all ones thar can be expressed
by straight lines, which facilitated carving on stone.

In the Greek world there was no sign for zero in regular use, but a sign O or O is
found in astronomical writings, for example in the tables of solar and lunar eclipses in
Book VI of Ptolemy’s Almagest.

The Roman numeration is far more familiar to us, since it is still widely used: occasionally
for year-dates, frequently for numbering prefatory pages in books, and so on. Many have
supposed that M and C originated as initial letters of mille (‘thousand’) and centum
(*hundred’). However, the other letters do not fit such a pattern, and indeed none originated
in that way. The early Latin abbreviation for 1000 was @, later CID, and it was the
second half of this, ID or D, which came to be used for 500 (quingents). That symbol @
had its origin in phi (), which formed part of the alphabet in the Chalcidian Greek coloni
of southern Italy, founded from Chalcis in Euboea. The Latin alphabet was based on the
Chalcidian Greek alphabet, a variant of which (with E and F, digamma, transposed) appears
on the Formello vase found near Veii:

At Eige | 1 T80 ﬁwqw‘\\(

aBySFeZhSLcr U VB OT Mgpotui g X

6 The Greek alphabet an a vase from Formello, north of Rome. (After delra comes digamma: after
nu, Phoenici khs aftce pi, Phoenician shin: then koppa: after upsilon come xi. phi and chi.)

Parallels with Etruscan have suggested that three lerters of this alphabet that were not
used in the Latin alphabet, the ninth and the last two, came into use as numerals, after
slight changes: as C for 100, probably influenced by centum: CO for 1000; and L for
50. From the abbreviation M.I. lor mille passus (mile) or milia passium (miles). M came
into use for 1000, being in its written forms not unlike the previous symbol. Then 1,
though nor influenced by an inivial letter, developed into the closest lerer in appear-
ance, L.

Since the scheme was clearly derived from the Chalcidian alphabet, why can we not
conjecture that after the first symbol, a stroke for 1, the next two symbols, Vand X, originated
in the last two Chalcidian letters? For, rather than the forms found on the Formello vase,
the regular forms for v and & were actually V and X. Instead, artempts are made ro explain
V as half of X or X as a double V. Such an origin is admittedly like that of D for 500,
but does not explain why 50 and 100 were not similarly rreared.

The subtractive forms, such as IV, which we now use where a number is one short of
a multiple of 5, represeat part of an alternative method used by the Romans. C. M. Taisbak
has shown thar this method was exeremely well suited to the abacus. Since 28 could be
either viginti octo (‘twenty eight’) or duodetriginta (‘two from thirry’), it came to be abbre-
viated as either XX VIl or, less commonly, XX11X. Although 4, 14, etc., had no such alterna-
tive verbal forms, they could be expressed by analogy as IV, XIV, etc., as well as in the
commoner farms N1, XTI, and so on. Under the late Republic, lines came to be used
to denote thousands, thus: VI = 6000; VT= 600,000. For &, the letter S (semis, whence
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English ‘semi-") was adopted. For other fractions the duodecimal system was used, so that
from one to five dashes, representing the number of twelfths, were uscd, preceded by §
or not as appropriate. Thus § was expressed as =- (i), §as == (f1), YasS= (:+ f).

e ber abbreviaui with alternative forms where applicable, may be tabu-
lated thus:
11,1 500 D,B,D
$ 1000 @, €D, O, later M
10 x 5000 CIDDsalso v, B
50 4,1.L 10,000 CCD:also X, @
100 ¢

Thus 3100 could be expressed as CID CID CID Cor as TG, later also as MMMC.

Some additive and subtractive forms

4 NLIV 40 XXXX, XL
8 VILIX 400 CCCC,CD
9 VI IX

As an example of the use of Roman numerals in Latin, this is an extract from the Corpus
Agrimensorum explaining how to calculate the volume, in (cubic) feet, of a rectangular
cistern: Si fuerit arca longa ped. XXX, lata ped. XV, alta ped. VII, duco longitudinem
per altitudinem: fiunt ped. CCX. hoc duco per latitudinem: fiunt ped. HICL. “If a cistern
is 30 ft long, 15 fr wide and 7 ft high, 1 multiply the length by the height: this makes 210
[sq.] ft. | multiply that by the width: this makes 3150 [cu.] ft.

The question is often asked today how difficult the Greeks and Romans found it to add,
subtract, multiply and divide. Materials for assessing this acc rather lacking, but it is thought
that there were few problems, except that long division was awkward by classical methods.
For addition and subtraction the abacus must have speeded things up. For multiplication,
tables such as that in fig. 7 could be used. The examples of these that have come down
to us are more commonly in Greek numerals, as writing materials have survived better
in the sands of Egypt or in other dry parts of the casten Roman Empire, where Greek
was the lingua franca.

7 Greek multiplication table on a wax tablet. Lines 2—4 may be rendered 2x 1=2;2x2=4;2x3
= 6. British Library, Add. MS 34186 (1).



3 Mathematical Education in the
Greek World

To the Greeks the teaching of mathematics was an extremely important aspect of cducation,
while to most Romans it was viewed as a necessary aid to technology. It has to be admitted
that Greek and Roman writers do not tell us all we want to know about the teaching
of mathematics. of which measurement was an inherent part. The word mathéma isel(,
a noun from the verb manthano, means ‘subject connected with leaming’, which shows
how basic a concept it was in Greek educarion. Its two main branches in antiquity. arithmetic
and geometry, mean respectively “subject of numbers® (arithmos = number) and ‘measuring
{metrein) of the earth (g¢)". The word geometria came from the use of geometry in surveying
and in general denoted cither surveying or geometry. It was perhaps to avoid this ambiguiry
that Euclid called his manual in 13 books not Geomretria but Stoicheia, “elements’. The
name ‘algebra’ is Arabic, though not oaly had some of the principles of algebea been dis-
covered by the Babylonians, but the Greek mathematician Diophantus developed it in some
depth.

Geometry was above all the type of mathematics admired and exalted by the Greeks.
To them it seemed even more than arithmetic to point to perfection. We are told by Vitruvius
that the philosopher Aristippus of Cyrene, who flourished ¢. 400 Bc, was shipwrecked on
an island with some companions. Aristippus, who liked the pleasures of life, spotted geometri-
cal drawings recently executed in the sand, and reassured his companions by saying, *All
is well: 1 see teaces of mankind.’

The philosophers of the lonian school, from Miletus and elsewhere in Asia Minor, were
the first (sixth and fifth centuries BC) 1o use mathematics extensively in the Greek areas.
They asked questions abourt the world and the universe, and tried to give answers to these
questions. The story in Herodotus that Thales, founder of the school, predicted a total
eclipse of the sun in western Asia Minor is doubted by modern scholars. Bur Thales or
his successors do seem to have applicd geometry far more widely than the Egyptians had.
From this time onward it became in many ways the foremost academic discipline. Four
propositions ascribed in antiquity to Thales (if correaly, he is perhaps unlikely 1o have
thought of them as propositions) are:

oA

). Acircle is bisected by its diamerer, 2. The angles at the base of an isosceles
triangle are equal (cf. Euclid 1.5).

/AN

3. Two intersecting straight lines 4. An angle inscribed in
{orm two pairs of equal angles. a semicircle is a right angle.
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He is also said to have worked out the distance of a ship from a high point on shore
by the use of similar triangles (above).

About 531 Bc Pythagoras of Samos emigrated to Croton in southern ltaly and set up
a community of mathematicians and mystics. Though best known today for the ‘theorem
of Pythagoras’, his greatest achicvement perhaps lay in establishing the mathematical basis
of musical intervals. What we know as ‘Pythagoras’ theorem’—that the square on the hypote-
nuse of a right-angled triangle is equal to the sum of the squares on its other two sides—
embodies a fact which was known to Babylonian mathematicians from very carly times.
The Greeks ascribed the proof of the fact to Pythagoras, and this is very probably correct,
bur if so we do not know how he demonstrated it. Probably the proof was what we may
call the Chinese puzzle type, of which one version is known fraom Chinese mathemarics,
rather than by the Euclidean method {fig. 8). This larter was taken up by Arabic textbooks
and became the standacd approach in our geometry manuals of the nincteenth and early
twentieth centurics.

For a fragment explaining the application of ‘Pythagoras’ theorem’ to the measurement
of a trapezium we may turn 1o a Greek papyrus at the Field Museum of Natural History,
Chicago, described by E. ). Goodspeed. The figure accompanying it, as reconstructed (fg.
9), gives all linear and area measurements. But it is clear that originally only the exterior
linear mcasurements were given; for the base we arc in effect only told that the total is
16, while the component parts are what we should express algebraically as x + 2 + x

+ y. These dara, however, enable first the r ing linear (5,12, 4) o
be found and then the total area, 30 + 24 + 30 + 24 = 108.
Among other achi may be ioned that of the Athenian astronomer Meton

(c. 435 BC). He determined that 235 synodic (lunar) months are approximately equal to
19 years, to such effect that our calculation of the date of Easter, using the Golden Numbers
1-XI1X, depends ultimarely on his cycle, improved by later Greek astronomers and reinforced
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8 Euclidean version of ‘Pythagoras’ theorem’ 9 Reconstruction of a diageam in the Field
(Euclid, i.47). Museum I’apyrus 1, Chlcago the application of
‘1o the ofa
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11 Eudid i.26: to prove that two triangles are equal in all
respects if they have one side and rwo angles each equal. This
figure is for the case where the side is between the angles. Here
K H BC = EF, £ ABC = £ DEF, £ ACB = £ DFE. If on DE we cut
off EG = BA, then, from Euclid i.4, triangles ABC, GEF are
10 Diagram illustrating a problem equal in all aspects. So £ GFE = £ ACB. But £ ACB

in Plato’s Meno: doubling the = . DFE, so unless G coincides with D we are making the
square. part equal to the whole.

by borrowings from the Near East. Whether he was indebted to Babylonian astronomers
is disputed.

With this background, on which Greek h ici were ¢ ly building, we
need not be surprised that mathematics featured high in the educational curriculum. By
the late fifth century BC a theory of mathematical educarion had been formulated. Much
of the tcaching at the higher level was carried out by sophists who travelled from city
to city throughout the Greek world. The sophist Hippias of Elis (c. 485-415 Bc), who boasted
of the wealth he acquired from such teaching, advocated a curriculum consisting of arithme-
tic, geometry, astronomy, and acoustics.

Plato (c. 429-347 BC) was a great advocate of geometry, and in his late work The Laws
he supported Hippias’ curriculum. The inscription on Plato’s door, or that of his Academy,
ran ATEQMETPHTOX MHAELE EIZITQ, literally ‘no one ungeometrical may enter’, i.e.,
‘only for the geometrically literate”. According to him, his master Socrates, by means of
leading questi used in his dialogue Mero two geometrical problems involving measure-
ment to support his theory that we can all recollect something from a former life. In the
first, he showed that twice the square on a straight linc is not the square on twice that
line. In this diagram (fig. 10) the given square is that on AB, while the double square
is not AGHK but BDML, the square on the diagonal. But Plato did not regard gecometry
as valuable because it had a practical end. To his mind it was to be studied as contributing
towards the ideal life aspired to by a philosopher.

The oldest extant manual of gecometry is that by Euclid of Alexandria (c. 300 8c), which
built on earlier works by Hippocrates of Chios {c.470-4008c), Eudoxus of Cnidos
{¢. 390—c. 340 BC) and others. Euclid's textbook, of which Books 1-6 dealt with plane geo-
metry, remained a standard work in schools until quite recent times. Books 7-9 deal with
the theory of numbers, Book 10 with irrationals and Books 11-13 with solid geometry.
An ple of a th affecting me is 1.26 (fig. 11), taken up with i.15 by
Roman surveyors (fig. 12) as a means of measuring a river without crossing it. Euclid was
a great believer in methodical progress from one deduction to another, and in not taking
anything for granted.

12 M. lunius Nipsus in the Corpus

Agrintensorum: to measure the width BC of a S 0
river without crossing it. Produce CB to A, draw
AE at right angles. Mark off any point D on AE,
and draw DF ar right angles 10 AE. Bisect AD

at G, produce CG to meet DF at H. Then it can
be praved that DH = AC, and by subtracting AB
the length of BC is found. Reconstruction by M.
Cantor (1875), simplified.

3
Qvras profegelias pos J s eo aulor
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The most gifted ician of antiquity was Archimedes of Syracuse (c. 287-212 ¢},
killed by a Roman soldier at the siege of his city. His tomb represented a cylinder circumscrib-
ing a sphere, with the ranio of their respective volumes 3:2, which he discovered. He upheld
the use of approximation where he felt thar certainty could not be attained. Thus, to reach
an approximation for 1, he worked out the approximate circumferences of regular polygons
of 96 sides, one inscribed in a circle and one circumscribing it. The ratios of those to
the diameter of the circle were 34 and 3%, In decimal form these are approximately 3.14286
and 3.14084, compared with the correct value (to five decimal places) 3.14159. He also
gave approximations to square roots. In order to discover theorems relating to the surface
area and volume of a sphete, the volume of a conoid and the area of a figure bounded
by a parabola and a straight line, he imagined the weighing of figures to abtain ratios.

The most lamous story is given by Vitruvius in his preface to Book 9 of De Architectura,
King Hiero had been told that a certain amount of silver had been substituted for an equal
weight of gold in a crown made for him:

When Archimedes was investigating this, he happened to visit the baths, and as he was
going down into the bath-tub, he noticed that the displacement of water was equal to
the immersed part of his body. This suggested to him a means of solving the problem.
Without delay, in his delight he leapr out of the bath, and making his way naked towards
his home he indicated in a loud voice thac he had found the answer. As he ran, he
repeatedly shouted ‘beureka, heureka'.

As the text goes on to explain, he proved that a mass of gold the same weight as the
crown displaced less water than a mass of silver of the same weighr, since the denser metal
(gold) of equal weight will occupy the lesser volume.

The contriburions to measurement made by Eratosthenes and Hero of Alexandria are
largely connected with map-making and surveying, and as such are discussed in chaprers
§ and 6. Applied arithmetic was not covered in manuals bearing the title of arithmetic,
such as that, preserved in excerpts, of Nicomachus of Gerasa (second century AD). To
such writers arithmetic dealt mainly with integral numbers, the properties of odds and
evens and their compounds, prime numbers and their products, ratios and means.

It is not generally appreciated that later Greek mathematicians laid down the foundations
of trigonometry and algebra. Trigonometry may be said to have started with a work, now
lost, by Hipparchus of Nicaea and Rhodes (c. 190-after 126 Bc) on the chords in a circle.
Building on this, Prolemy of Alexandria (flourished Ap 127—48) proved in his Mathematical
Symtaxis, better known as the Almagest, that in a semicircle with diameter 120, if E is
the midpoint of the radius DC, and EF is made equal to EB, then FD is the side of a
decagon and BF the side of a pentagon inscribed in the circle. Fram this he calculares (if

A ¢ b ¥ £ B C

we may decimalise) that EF* = BE? = 4500, so EF = 67.08204. D therefore is 37.08204,
50 its square is 1375,0777, while BD? = 3600, so BF! = 4975.0777 and BF = 70.534.
So this gives us a value for FD/FB, which is the sinc of angle FBD—that is, the sine of
136°. Other quantities may similarly be calculated.



Algebra was developed by Diophantus of Alexandria, who flourished ¢. AD 275. One equa-
tion emerges from the following problem. Find rwo numbers whose sum is 20 and the
sum of whose squares is 208. Let their difference be 2x; then the greater is x + 10, the
smaller is 10 — x. The sum of their squares is 2x* + 200, which totals 208; hence x¥* =4
and x = 2, So the numbers are 12 and 8.

We hear little of the school curriculum. Mathematics was a subject taught at every level,
starting with simple counting and games. For counting, 1-9 were shown by three positions
each of the last three fingers of the left hand, while the thumb and forefinger showed tens.
The right hand showed hundreds and th ds. The system is explained by Bede in De
temporum ratione, and by Nicolas Rhabdas of Smyrna, who flourished AD 1341. For educa-
tional play in the early stages of arithmetic Plato mentions the distributing of apples or
garlands. For slightly older pupils money was introduced into the arithmeric, as at Rome
(see chaprer 8), together with other practical uses of math such as cial,
architectural, military and navigational applications.

In these connections the two notations mentioned above had to be raught rhoroughly
Although the Greeks were great theorists, the devel of town p for
shows how the practical application of geometry was constantly before the eyes of puplls
in many Greek cities as far apart as Asia Minor and Sicily. At the same time Pythagoras’
mystical approach to numbers (1 = reason, 2 = opinion and the first female number, 3 = the
first male number, 4 = justice, and so on) seems to have persisted. We may compare the
Chinese equlvalents in the Ta Tai Li Chs of AD85-105: 1 = heaven, 2 = earth, 3 = mankind.

E at M ia ad M drum in the second century BC were in arithmetic,
drawing, music, and Iync poetry. Music likewise featured in the Diogeneion at Athens,
where geometry, literature and rhetoric were also taught. We can tell from other subjects
that the question and answer method, which persisted long after classical antiquity, was
common.

The equipment used in schools could consist of the abacus, the wax tablet, porsherds,
used and unused papyrus sheets, books {also on papyrus until the third century ap), and
instruments. The abacus probably reached Greece from Phoenicia, since its name is derived

\

13 Modem Chinese abacus, corresponding to one type of Graeco-Roman abacus. Each row, starting
from the right, represents a decimal place. Beads above the bar are worth 5, beads below it 1. To
show a number, beads are placed against the bar. The number shown here is therefore 6543.
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from Old Semitic abag, ‘sand’. It originally consisted of grooves drawn in sand, in which
pebbles were moved. The principle is that, as soon as a collection of pebbles can be replaced
by one pebble elsewhere, that is done, cither by taking them out of the grooves or, more
simply, by pushing them to the ‘dead’ end. The Greeks normally wrote numbers, as we
do, in descending order from left to right, so the right-hand groove (or one half of it)
was for units and the left-hand groove was for the highest denomination. Whether the
Greeks most often operated, as with Chinese abaci, in fives with a dividing line, or in
fives without one, or in tens, is not known.

The wax tablet, single or multiple, was useful for written sums, which could easily be
obliterated. There is evidence that some of these tablets had a hole so that they could
be hung on the wall. The potsherd, ostrakon, was sometimes used for odd notes or calcula-
tions. For more permanent purposes sheets of papyrus, often imported from Egypt, were
kept in stock. Some of those which have been found contain multiplication or conversion
tables compiled by adults. A papyrus of the third century Bc gives a list of squares, like
the powers to be seen in a manuscript of a Latin geometry doubtfully ascribed to Boethius
{fig. 14). Another papyrus, of the first century Bc, has addition tables of monetary fractions.
For simple additions the best specimens are on Coptic tablets of the late Roman Empire.
Mathematical books may only gradually have been introduced into schools and only for
the use of the teacher, not in multiple copics, which in manuscript took a long time to
produce. School instruments included the ruler, compasses and perhaps double dividers.
No protractors have been discovered, but certain types of set square could be brought
into service for measuring right angles.
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14 A manuscript table showing 1, 5 and 6 to the powers of ) to 5 in Roman numerals. British Library,
MS Harl. 3595, f. 26.



4 Measurement

All ancient civilisations used parts of the human body for many of their shorter measurements,
while the longer ones reflect in origin the interests of their users. Thus fingers, palms, feet
and forearms came to be standardised for the shorter units. The forearm was usually reckoned
from wrist to elbow rather than from fingertip to elbow. As specimens of longer units
we may mention, in ascending order, the double pace, the cord and the stade. The double
pace originated in Rome, with $ ft making 1 passus; the Romans thought of long distances
in terms of land journeys on foot by their efficient road system, and of the marching speed
of an army. The measuring cord was used by several early peoples, including the Sumerians
and the Egyptians. The Greek stadion is in origin the length of a race-track, subsequently
extended 1o a straight line, first on land and then over the sea. Since in the Graeco-Roman
world the Greeks were the great sailors and the Romans land travellers, sea distances were
usually measured in stades and land distances in miles of 1000 double paces.

Maodemn scholars have been able, in the case of all the major civilisations, to establish
the average or customary measures of length. Such studies are complicated, in the first
place, by the fact that there was in many areas a lack of uniformity—even in different
parts of the Greek world. The same applies to units of volume and weight. Many sales,
for example, must have been conducted by what we still call ‘rule of thumb’, though gradually
official standards came to be laid down. In the Agora at Athens, weights and measures
of the official inspectors (metronomoi) have been found. The task of working out equivalents
is easiest where there are, as from Egypt, subdivided and inscribed rulers. Helpful 100 are
the rare instances, from Greek temples in Asia Minor, where we have the equivalent of
an architectural blueprint. More often we can deduce units from the dimensions of buildings,
columns, etc., because round numbers of units were employed much more often than frac-
tional ones. But there is always the problem that standards differed, sometimes slightly,
sometimes greatly, according to region and period.

Egypt

Egyptian linear measurements were based on the royal cubit (*forearm’), of approximately
52.3 cm, whose subdivisions were the palm (the width of the palm excluding the thumb)
and the digit (the finger’s-breadth):

Measures of length

4 digits (4 x 1.87 cm) = 1 palm, approx. 7.5 ¢cm
7 palms = 1 cubit, approx. 52.3 cm
100 cubits = 1 bt or kbet ('rod’}, approx. 52 m 30 cm

Shorter and longer cubits encountered in Egypt appear to be non-Egyptian. Two other
measures are the nebiu, ‘wooden pole’, somewhat larger than the cubit, and the itrw, ‘river-
measure’, estimated as normally 200 ¢, but less in one rext.

15 Cubit measuring rod from Egypt, divided into digits (finger’s-breadths), which are in turn
subdivided into decreasing fractions from } to & of the digit. Turin, Museo Egizio.
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Measures of area

1 cubit X 100 cubsits is called 1 cubit, 27.35m? (the Egyptians here ignored any word
corresponding to ‘square’)

100 of these cubits = 1 square kbet (bt), Greek aroura, literally ‘arable land’, in Egypt
of the Ptolemies 2735 m?

Subdivisions of the square kbet: }, §, and } (} square khet = rmn)

10 square khet = *a thousand’ (cubits as defined above)

Measures of capacity

32 ro (approx. 0.015 litre) = 1 hin (approx. 0.489 litre)
10 hennu (pl. of hin) = 1 hekat (approx. 4.89 litres)
20 or 16 hekat = 1 khar, ‘sack’ (approx. 97.8 or 78.2 litres)

The hekat was the official corn measure, and its subdivisions were in the series } hekat
= 160 ro to & hekat = 5 ro, written in symbols known as the Horus eye. A legend had
it that the god Horus had an eye torn apart in a fight, and these parts, later restored by
the god Thoth, were depicted as in fig. 17. The connection between linear and capacity
measure is shown in the Rhind mathematical papyrus, nos 41-47. Thus no. 41 runs: *Example
of working our a circular container of diameter 9 and height 10°. What is wanted is the
amount of corn that will go into this cylindrical container. The com is reckoned in kbar,
at the earlier equivalent of 20 bekat to the khar. The answer, here correctly given, is 960
khar, and the calculation shows that m is taken as 3, or approximately 3.1605. The volume
is mth = 3,1605 % 4.5% x 10 = 640 cubic cubits; this is multiplied by 1} to give the
answer, so 1 cubic cubit = § khar with this equivalent.
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17 The eye of the Egyptian falcon god Horus
served as a pictogram. To denote fractions of the
bekat, used as a comn measure, scribes wrote in
individual parts of the eye.

16 Egyptian alabaster vessel inscribed with a
stated capacity of 8% bennu, equivalent to about
4litres, New Kingdom, ¢. 1300 bc. British
Museum.
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18 Division of the digit into 2 to 6 parts, from the statue of Gudea, king of Lagash, Mesopotamia.
Paris, Louvre.

Mesopotamia
Sumerian measures of length
M linear were based on the Sumerian cubit of 49.5 cm. This
is known from a starue daring from 2170 8¢ of Gudea, king of Lagash (now in the Louvre,
Paris). A plan of a building, incised on stone, lies on Gudea’s lap. There is also on the
statue a scale-bar with successive digits divided into 6, S, 4, 3 and 2 equal parts. From
this and other evidence we may give:

30 digits, of 1.65 cm each = 1 cubit (ku3), 49.5 cm

There is only very limited evidence, in Assyria in the second millennium 8¢, for use of
the foot as a measure.

For surveying purposes the Sumerians used a unit called a reed, of 6 cubits, and one
comparable with our pole, of 12 cubits. Representations of a coiled land-measuring cord
and compasses are to be seen on the limestone stele (slab) of Ur-Nammu, king of Ur
¢.2100 Bc, now in the University of Pennsylvania Muscum at Philadelphia. Since the accom-
panying text mentions canal-digging, we may conjecture that the cord and compasses were
used for that purpose, though the building of the ziggurat of Ur required similar instruments.

Sumerian measures of area
1 square gar = 1 sar, approx. 36 m’
100 (expressed as 1,40) sar = 1 iku
1800 (expressed as 30,0) iku = 1 bier

The sar was used mainly for measuring the area of houses, the iku and the bir for field
areas; and there were other less common measures of area.

Sumerian measures of capacity

10 sila, each of approx. 0.82 litre = 1 bdn, approx.
8.2 litres

6 ban = 1 nigida, approx. 49.2 litres

§ nigida = 1 gur, approx. 246 litres

A silver vase from Lagash, dating from 2450 ac, now
in the Louvre, measures 4.15 litres, S sifa, up to the base
of the neck.

A very early specimen of the Old Babylonian period,
found at Tell al Rimah, is in the lraqg Museum, Baghdad.
Its inscription is thus rendered: *1 homer § siitw } g,
measured in the situ of Samas’. Since 1 homer = 10
situ and 1 s@tu = 10 gi, the jar held 150% gi. Jts
measured capacity, within a margin of error of 2%, is
121.3 litres, so that 1 gis = 0.79-0.82 litre. The fact that
quite different equivalents have been suggested for other
vases is chiefly explained by the phrase ‘measured in the
siitu of Sama¥’, which clearly implies local variants. In
the Neo-Babylonian period 1 gst is also the area of land
that can be seeded with 1 i or ga of seed.

19 Jar from Fort Shal, Nimrud, \
inscribed ‘| homer, 3 siitwe, 7 qi’. British Muuum on loan
from the University of London.
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Greece
Grecek city states varied appreciably in their measures.

Measures of length

The extremes were based on a foot (pous), varying according to region between 27 and
35cm. Two measures used in temple construction were 32.6-32.8cm and 29.4-29.6 cm,
the latter being similar to the normal Roman foot (p. 27).

4 daktyloi {finger’s-breadths) = 1 palaste (palm)

3 palastai = 1 spithamé (span between thumb and little finger)
94 palastai = 1 foot

1} feer = 1 cubit

4 cubits = 1 orguia

10 orguiai = 1 amma (cord)

10 ammata = 1 stadion

Alternatively, 10 feet = 1 akaina, 10 akainai = 1 plethron, 6 plethra = 1 stadion.

Measures of area

10,000 square feet = 1 plethron (the plethron could also be a linear measure of 100
feet, as given above).

Measures of capacity
These also varied from place to place, but with the commonest equivalents were as follows,

For liquid measures:

6 kyarhot, each 0f 0.04 or 0.045 litre = 1 koeylé, 0.24 or 0.27 litre

2 kotylai = | xestés, 0.48 or 0.54 litre

6 xestai = 1 khous, ‘pourer’, 2.88 or 3.24 litres

12 khoes = | metrétés, ‘measurer’, 34.56 or 38.88 litres
The water capaciry of a clepsydra (see chaprer 7) found in Athens is 3.22 litres, suggesting
that the local value of the kbous was intended, the larger one given above.

For dry measures:

6 kyathoi = 1 kotylé, as above

4 kotylai = 1 khoinix, 0.96 or 1.08 litres

8 khoinikes = 1 hekteus, 7.68 or 8.64 litres

6 hekteis = | medimnos, 46.08 or 51.84 litres

Rome
The smallest Roman measurement, like the smallest Greek, was a finger's-breadth (digirus).
As in Greece and elsewhere, 4 of these finger’s-breadths formed a palm, and 4 palms made
a foot, so that there were 16 digiti to a foot. But we also find the system which was 1o
survive after the classical period. From at least the late second century Bc the Latin duodecimal
system was brought in to divide measures into 12 parts. The Latin word for one-twelfth,
uncia, is derived from unus, so literally means ‘unit’. It has given the English language
both "ounce’ and ‘inch’ (Old English ynce).

The foor itself (pes) was normally of 29.57 cm, though in the provinces we also find
a pes Drusianus, named after Nero Claudius Drusus (38 =9 Bc), stepson of Augustus, which
had a length of 33.3 or 33.5 cm; it was really of far greater antiquity than Drusus. From



the third century AD there was also a short foot of 29.42cm. If one was dealing purely
with linear measurement, then $ pedes made 1 passus (literally pace, but in fact a double
pace). One thousand passus (mille passus) made 1 Roman mile (1.4785 km). The abbreviation
M.P. stands for this, or the plural milia passuum. Land surveyors used linear divisions
of 120 pedes to make up 1actus = 35 m48.4. The actus (plural actus), from ago, ‘drive’,
was in origin the distance that oxen pulling a plough would be driven before turning.

Measures of area
For areas of land, whether in agriculture or in land survey, the iugerum was the normal
measure. The full table, based on the standard foot, is as follows.

14,400 square feet (pedes quadrati) = 1 square actus (actus quadratus), of about 0.126 ha
2 square actus (actus quadrati) = 1 jugerum, of about 0.252 ha

2 jugera = | heredium, heritable plot, of about 0.504 ha

100 heredia = 1 centuria of regular size (200 iugera), about 50.4 ha

The word beredium was little used in practice. The centuria varied in size from 50 to
400 iugera, though 200 iugera, as given above, with squares of size 20 x 20 actus =
709.68 x 709.68 m, was by far the commonest size.

Measures of capacity

For liquid measures:
4 cochlearia, ‘spoonsful’ = 1 cyathus, approx. 0.0455 litre
3 cyathi = 1 quartarius, approx. 0.137 litre
2 quartarii = | hemina, approx. 0.273 litre
2 heminae = | sextarius, approx. 0.546 litre
6 sextarii = 1 congius, approx. 3.275 litres
8 congii = 1 amphora, approx. 26.2 litres, properly | Roman cubic foot
20 amphorae = 1 culleus, approx. 524 litres

For dry measures:
4 cochlearia, ‘spoonsful® = 1 cyathus, approx. 0.0455 litre
3 cyathi = 1 quartarius, approx. 0.137 litre
2 quartarii = 1 hemina, approx. 0.273 litre
2 heminae = 1 sextarius, approx. 0.546 litre
16 sextarii = 1 modius, approx. 8.736 litres

Thus Roman measures of liquid capacity were
based on the equivalent 288 cochlearia =
1 congius. The cochlear was originally used
for extracring snails from their shells. The
congius was used chiefly for liquid mcasures,
its place for dry measures being largely taken
by the sextarius, so called because it was one-
sixth of a congius. The commonest measure

20 Roman vase marked SEXTAR (sextariss). It
contains not the usual liquid measure of 0.546
litre but 0.99 litre. British Museum.
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21 Mosaic showing Roman slaves filling a
modius with com brought from a ship. Ostia,
*Aula dei Mensores’.

22 Comn-measure from Magnis (Carvoran) on
Hadrian's Wall. The inscription reads: IMp ...
CAESARE AVG. GERMANICO. XV. COS. ERACTVS.

AD, &, XVII $ HABET. P. XXX1IX {"under the

Emp [Domitian| Cacsar A

Germanicus, consul {or the 15th time, made
exact to 17} sextarii. Has weight 38 1b).
Northumberland, Chesters M

for dry materials was a dius, usually lated ‘bushel’; ics show slaves filling
cylindrical containers of that size with com. The biggest measure for liquid materials was
the amphora, which rook its name from the large carthenwarce vessel used to transport
wine or oil by sea. Amphorae in fact varied in size, but obviously a dealer could insist
on one of standard ining one cubic foot of wine or oil. Owing to mass produc-
tion, those found on any one ship tend to be of the same size, as can be seen from ships
wrecked at Albenga (province of Savona, north ltaly), Antibes and elsewhere.

As an example of a Roman container the bronze corn-measure of Carvoran, Northumber-
land, may be cited (fig. 22). It dates from aD 90, and its inscription states that it contains
exactly 17} sextarii (symbol 8) and weighs 38 librae (symbol P = pondo). This was dry
measure, but it was tested both with rape seed and with water, giving the result that 1
sextarius = 0.645 litre and 0.648 litre respectively. These figures arc appreciably higher
than the 0.546 litre given above.




5 Mathematics for the Surveyor
and Architect

The occupations to be considered in this chapter, together with their end-products, were
concerned with roads, aqueducts, land division, military survey, town planning and architec-
ture. We possess Latin manuals of land survey (Corpus Agrimensorum), camp-making (Hygi-
nus) and architecture (Vitruvius). From these and other ancient works, together with
archaeological remains, we are able to build up a picture of those activities, more complete
in some spheres than in others.

Many Roman roads, and a few Greek, are well preserved. Typical features in the western
provinces of the Roman Empire are their straightness, except where the geography suggested
an alternative alignment, and the fact that changes in direction often occur at a rise and
are made at an angle, not normally with a curve. Statius, in his poetic account in Silvae
iv.3 of Domitian's road to Naples, makes it clear that the work-force was large and well
organised. Since the groma was the instrument of Roman land sueveyors, and since there
was a ‘groma area’ in military camps, many modern writers have supposed it was used
for road survey too, but we cannot prove this. What we do know is that very long stretches
of road were often made exactly straight, and that there is evidence of accurate planning.
For example, Stane Street, which connected London to Chichester, has a straight stretch

Londinium

[ 50

e L@ of ROman Stane Street

= — Orect g London — Chchester
23 The course of Stane Streer, the Roman road 24 Roman milestone from Rhiwiau-uchaf, south
from L.ondon to Chichester. of Llanfairfechan, N. Wales, inscribed

A.KANOVIO.M.P.VI1L, ‘B miles from Canovium
{Caerbun)’, British Museum.
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from near the Thames to the Epsom area. After that it changes direction, but the original
line points exactly to Chichester. This kind of precision could have been achieved by the
use of beacons, though some preliminary orientation could, as suggested by A. L. F. River,
have been carried out with the help of homing pigeons. The use of these and beacons
for Graeco-Roman military intelligence is well artested. Pigeons based on London and Chi-
chester could possibly have been released from the oppasite ends of the route or from
points on the way and their angles of flight recorded.

Main Roman roads in most areas had milestones (fig. 24), many of which record distances
from nearby towns. Such distances are sometimes measured from the centre, sometimes
from the ourskirts. The unique Golden Milestone erected by Augustus in Rome recorded
distances of places in ltaly not from the milestone but from the Servian Wall. There is
some evidence that road surveyors may have dealt with a one-mile section of road at a
time. Research has been started on the angles taken by successive stretches of Roman road.
This has suggested that divergences were more often than not in simple fractions of 180°,
e.g.: 15° divergence = angle of 165°; 7° divergence = angle of 172}°. Widths of Roman
roads rended to be planned in round numbers of feet, e.g. 8, 12, 16, 20, 24, 30 or 40 feet.

Aqueduct surveyors needed mathematics particularly for tunnelling, and for calculating
slopes and volumes of piped water. A problem in a treatise by Hero of Alexandria
{c. AD 60) shows how to start off the digging of a tunnel from both sides of a hill with
the correct orientation. His method is to measure lines at right angles round the side of
the hill, then by means of similar triangles to establish the correct angles for starting the
two sides (fig. 25). Evidently the advice was not always followed, since an inscription from
Saldae, Mauretania (Bejaia, Algeria) shows that after local excavators had failed 1o meet
in the middle, the Roman surveyor Nonius Datus was called in, made a map of the area,
and planned correct lines of approach. For ensuring the proper gradient on aqueducts it
was probably sufficient to align a series of poles of appropriate length, since Romans seem
to have distrusted elaburate devices such as Hero's dioptra (fig. 26). The volume of water
supplied depended on the diameter of the pipe or pipes, and dertailed instructions for this
are given by Frontinus in his work on the water supply of Rome. The positioning and
use of siphons in aqueducts was a specialised skill.

25 Hero: a method of establishing the angles for digging
a tunnel {rom two sides, as reconstructed by H. Schone.

26 Reconstruction by H. Schéne of Hero's dioptra, which
could be used both for surveying and for astronomical
observation.



We happen to know more about Roman land survey than other types because of the
existence of the Corpus Agrimensorum, a collection of manuals of various dates, though
traces of Roman land division in ltaly. Tnmsl: and many olher areas, together with inscrip-
tions, have also made a sub | The dard ‘century’ was a square with
sides of 20 actus or 2400 Roman feet. Owing to local vaniations the actual measurement
comes to between 703 and 710m. Since 2 square actus make 1 iugerum, this gave the
area of the standard ‘century’ as 200 iugera. Various other measurements, such as 50,
210, 240 or 400 iugera, are occasionally found. The land was divided by limites, literally
meaning ‘balks’ between fields, but in practice these were cither roads between ‘centuries’
or subsidiary tracks. Those in one direction were called kardines, those at right angles
decumani; the two intersecting main roads were called kardo maximus (K.M.) and decuma-
nus maximus, (D.M.). The system of reference used to number ‘centuries’ started thus:

S.D. sinistra decumani to left of decumanus
D.D. dextra decumani to right of decumanus
C.K. citra kardinem to near side of kardo
V.K. ultra kardinem beyond kardo
mmm e P |8 =
sl Spl DDI ﬁ ol }
vkKI vk vkl

sDI
VKI
sD o
CKI
[ 1200 2400
Roman Feel
27 Mcthod of numbering “centuries’. 28 Roman surveying exercise by students, using

a groma, small poles and decempeduc,

The main instruments used for dividing up the land were the groma (cross-staff) and the
detempeda (lO foot rod) The groma, as can be seen from the Pompeii model in the Naples
National € d of horizontal cross-pieces mounted on a bracket swivelling
on a pole, each arm of the cross having a plumb-line and plumb-bob. Its main use was
to survey squares and rectangles, with a back-check every five limites. The actus of 120 feet
was measured, we may take it, with two decempedae end-on, care being taken to keep
the line straight. When we tried measuring 2 iugera with university and school students,
using replicas of the groma and decempeda, the resulting error was minimal.
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Most Roman land division was carried out by agrimensores, literally ‘land measurers’,
Under the Roman Empire thesc came to be organised under a bur ic system, apprentices
being taught about use of instruments, measurement and allocation of land, boundaries,
mapping, land law, and the ¢l of math ics and ¢ logy. The land which they
divided was normally ager publicus, state land, attached to a colony. Roman colonies were
old or new settlements with adjacent territory, designed either for veterans (ex-servicemen)
or for civilians, either in Italy or elsewhere in the empire. There was inflation in the area
of holdings allotted, starting from 2 jugera and common pasture, and ending with 331-100
iugera, veterans being given plots according to rank. If necessary, a holding could be distri-
buted berween two or three “‘centuries’. When the allocation had been made by lor, the
surveyor took settlers to their holdings and made a map of the land division.

Surveyors, like farmers in Columella’s Agriculture, were taught how to calculate areas.
Some calculations were straightforward and exact; some were approximations depending,
for example, on averaging out two sides. Columella’s figures relate more to theoretical
geometry than to likely field shapes. In the exact category we find a square, a rectangle,
a trapezium, and a right-angled triangle. The area of the square is expressed as b iugerum
(9600 ft?) + * wncia (400 ft*). The rectangle illustrates standard land division procedure.
The trapezoidal field comes into the exact category because Columella evidently had in
mind a regular trapezi In the approxi category, for calculating the area of an equi-
lateral triangle Columella uses V3 = 1.73 and for the area of a circle 7 = 3L. For a segment
he uses the same value for m, but his instructions work only where the angle subtended
at the centre of the circle is a right angle.
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29 Reconstruction of Columella's calculation of the area of a regular trapezium and a segment of
acircle.

Triangles were not used for regular survey work, as they have been since Tudor times.
But the right-angled triangle and its properties formed part of the basic training, though
problems were sometimes unpractical. One given in the Corpus Agrimensorum assumes
that in a triangle ABC with a right angle at B, we know the area and hypotenuse and
the total AB + BC: we have to establish AB, BC separately. It is solved thus:

AC? = 289; subtract 4 X area (240), leaving a remainder of 49; take the square root,
7; add the sum of the two sides, 23, giving a total of 30; halve this, giving 15 = BC.

This can be shown to give the correct result.

M. lTunius Nipsus' use of triangles for mcasuring the width of a river was shown in
chapter 2. Another use of triangles was in re-survey, where a faulty line had to be redrawn;
bur unfortunately the manuscript diagrams are corrupt.

Military surveyors had to be equally precise. We know of a line 29 km long on the German
limes (in this sense ‘boundary of the empire’) whose variation from the straight is no more
than 2m. Hyginus, in his work on Roman camp-making, gives exact measurements of
all the buildings, as well as outer defences, of a camp intended as a pattern. Military surveyors
had also o measure sections of wall buile. This was done in the casc of Hadrian’s Wall,
the only complicarion being that some army units measured in miles and passus {double
paces), while others measured in milcs and feet. The abbreviation for miles, M.P., is unambi-



guous, since it was used only to mean milia passuum. But P. alone was ambiguous, since
it could refer to passus or pedes.

Town-planning in the classical world started with Hippodamus of Miletus. After the
end of the Persian Wars in 479 8¢ he made designs for his own city and a number of
others, laying them out in rectangular blocks. In 443 c he was one of the original settlers
at the Athenian colony of Thunii, near Sybaris (Sibari) in southern Iraly. As a result, we
find that many Greek settlements in southern Italy and Sicily conform to this type, consisting
of rather long rectangles. The present town centre of Naples, with its constant traffic jams,
must be built on the same lines as the ancient Greek colony. To what extent the surrounding
countryside of these colonies was divided into rectangles is not quite so certain.

One important task of the town surveyor was to make plans of the area. These were
clearly less common than they are today, but we are fortunate in possessing numerous
fragments of the Forma Urbis Romae (fig. 30), a marble plan of the city of Rome made
between AD 203 and 208. A reconsrrucnon of all fragrnenrs lmown in 1959 is to be seen
in a courtyard of the Capitoli Rome. G ically, the plan clearly presented
a challenge, because most of Rome had not been planned but had grown up in a haphazard
manner. No measurements are given, but an attempt is made to work to a scale of 1:240
or 250. In actual fact prominent temples tend to be shown somewhar larger than they
really are. Nevertheless it can be claimed that as a plan of Rome to scale this was not
surpassed until the eighteenth century.

Architecture was one of the most highly esteemed arts in ancient Greek and Roman
citics, and it is clear from Vitruvius’ manual that the good architect had to be proficient
in mathematics and measurement. It scems to have been more common for architects to
make models than drawings of intended buildings, in this way introducing a three-dimen-
sional effect. Much effort was spent on achieving perfect proportion in temples and other
buildings; Vitruvius even advocates desirable proportions for the reception rooms in a house.
A notable feature of the Parthenon on the Athens acropolis is what is known as ‘upward
curvature’. As D. S. Robertson has written: ‘The stylobate [top step, literally “support
for columns™] often drops towards all four angles, so that its surface is somewhat like
that of a carpet nailed at its corners only, and raised from the floor by a draughe.’ If,
on approaching the temple from either end, one places a hat on one comner of the stylobate
and looks towards it with one’s eyes near ground level at the other comer, one will not
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30 Section of the Forma Urbis Romae, a town
plan of Rome, showing part of the Trastevere,
with the Tiber at the top. Rome, Musei
Capitolini (original in the Museo di Roma).
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be able to see it. The architect has built in a slight convex curve, just as, by what is known
as entasis, the columns often do not have a straight surface, but diminish in diameter by
a very gentle convex curve, not so great as to cause a bulge. Whether, as the ancients
maintained, the purpose was to correct the optical illusion that angle columns looked too
thin, or whether there were more practical purposes, such as drainage in the case of the
stylobate, is disputed. In the case of the col stone frequently replaced earlier wood,
and an artempt may have been made to imitate the shape of the timber.

A building known to have been specifically designed by an architect called Polyclitus
(younger than the famous artist of that name) was the theatre at the healing shrine of

p us, whose auditorium is now thought to date from about 300 ec {(fig. 31). The
main object there was to ensure perfect acoustics; and although most of the stage buildings
have long since disappeared, the auditorium is so well preserved that the acoustics remain
extremely good. From the point of view of numerology, is it only a coincidence thav the
numbers of rows of seats below and above the diazoma (passage across the auditorium)
are respectively 34 and 212 These are two successive numbers in the Fibonacci series. The
series begins l 2,3, 5, 8, each term belng the sum of the previous two numbers. The

ratio of e bers is a ly closer approximation to the Golden Number

V3+1
2

(Thus 34/21 = 1.6190.. ., compared with the true value of the Golden Number, 1.6180....)
Where, as at Megalopolis in Arcadia, architecture could in a new town be combined with
town-planning, full use was made of the space available.

Acchitects used cither models, as mentioned, or scale plans to act as blueprints. A scale
plan of the uncompleted temple of Apollo at Didyma, south of Miletus in Asia Minor,
has long been visible in the ruins of the temple, but has only recently been interpreted.
It consists of lines up to 10 m long, circles, etc., cut into the stonework in a passage. From
the point of view of , the most i ing feature is a blueprint designed to
show the entasis on columns. Half the width only is shown, but at full scale. The height,
on the other hand, is at { size, so that each Greek foot is represented by a daktylos (digit
or finger’s-breadth). Similar but less important incised figures have been found at two other
temples in Asia Minor, and it is to be hoped that more will be discovered. The concept
of scale is important when put side by side with the devel of mapping, to be considered
in the next chapter.
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31 The Greek theatre
at Epidaurus.




6 Mapping and the Concept
of Scale

Attempts to measure the earth and map it had been made earlier in many countries, but
it was the Grecks of the classical and Hellenistic period who pioneered advances in this
field. A distinction was made berween the earth and the inhabited earth (oik ). The
continents known to the Greeks and Romans were Europe, Asia and Africa, also called
Libya. To Hecataeus of Miletus {c. 500 Bc) Africa was part of Asia, though others separated
them (fig. 32), None of the three continents was fully known, bur it was gencrally agreed
that the east-west length of the inhabited world was abour 1% or 2 times its north—south
width. Artempts were then made to measure a north—south and an east—west line, using
as unit the stade (stadion), 1 stade being berween 150 and 200 m. Dicacarchus of Messana
(Messina), a pupil of Aristotle writing about 320 Bc, divided the known world by 2 west—east
line from the Straits of Gibraltar via the Straits of Messina (7000 stades) and the Peloponnese
(a further 3000) to southern Turkey and the Himalayas.

Eratosthenes of Cyrene (c.275-194 Bc), director of the Alexandrian library, measured
dividing lines of the inhabited world intersecting at Rhodes, a centre of Greek navigation
(fig. 33), and approximately 74,000 stades in length east—west, 38,000 north—south (what
the ancients called ‘breadth’). Measurement of the whole earth became possible once it
was assumed, as is not far wrong, that it is a perfect sphere. After such assumptions by
Pythagoras {{lourished 530 BC) and Parmenides (born ¢. 515 Bc), Aristotle (384-322 Bc) was
able to suggest a circumference of 400,000 stades (60,000~80,000 km),

A far more accurate measurement was made by Eratosthenes. He observed that at Syene
(Aswan, Upper Egypt) the sun at mid-day on the summer solstice was exactly overhead,
whereas at Alexandria it formed an angle with the vertical of & of 360°. He then assumed
that: (a) the sun was so distant that one could consider its rays to be parallel anywhere
on carth; (b) Syene was on the same longitude as Alexandria (there is actually a difference
of 2°; (c) Syenc was 5000 stades from Alexandria, This resulted in a circumference of
50 x 5000 = 250,000 stades, which he adjusted to 252,000 in order to make it divisible
by 60.

THE WORLD S, Srprhracas Sea
Acwrding &
ERATOSTHENES
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32 Conjectural recanstruction of NG reco of map

Hecataeus' map of the known waorld. of the known world.
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If Eratosthenes was then using a stade of 178.6m, his amended circumference comes
to about 45,000 km, as against the actual equatorial circumference of 40,075 km. But one
theory has it that he was using an Egyptian land measure roughly equated with a stade
and having a value of 157.5 m, in which case his estimate was much closer, at 39,690 km.

Knowledge of the geometry of the sphere enabled Greek math icians to reckon the
approximate number of stades separating any two places on a known parallel. Thus, if
the circumference at the parallel of Rhodes, 36° N, was reckoned as 195,000 stades (Eratos-
thenes wrongly considered it less than 200,000), one degree of longitude would there be
equal to 5411 stades, as against 700 stades on the equator.

The circumference suggested by Eratosthenes was criticised first by Hipparchus (flourished
162-126 B¢) as too small, then by Posidonius (115-51/508c) as too large. Posidonius
established thae the star Canopus was on the horizon at Rhodes at the same time as it
reached an clevation of & of 360° at Alexandria. If the two were on the same longitude
(they are actually 1°37° apart), he had only to multiply their distance from each other
by 48. But this sea distance was harder to calculate than one on land; and after first making
it 5000 stades, he settled for 3750, which gave a circumference of 180,000 stades, each
degree of longitude at the equator being 500 stades. Such a round sum appealed to Prolemy
(¢.AD 90-c. 168), who claimed that the inhabited world extended over 180° of longitude,
not, as Marinus had given, 225°. At the latitude of Rhodes he made this 180 x 400 =
72,000 stades, from the Canaries to the coast of China. Prolemy’s figure of 400 stades
for each degree of longitude at the latitude of Rhodes is a slightly different proportion
from that of Eratosthenes.

The projection of world maps ran into difficulties as more came to be known about
the inhabited world. By Prolemy’s time this was recognised as ding south of the ¢q
He tried to provide for a map of the inhabited world extending from 63°N, the latitude
of Thule island (the Shetlands), to 16°25'S, Agisymba and Prasum promontory in East
Africa. Prolemy suggested two different projections (fig. 34). The first, a conic projection,
had straight meridians diverging from 63° N to the equator, after which they rurned abruptly
and conrracted southwards to 16°25’ S, The second had curved meridians designed to have
‘the shape which they appear to have on a globe'. For this purpose the latitude of Syene
(Aswan), 23°40° N, abour half-way from north to sou(ﬂ of his inhabited world, was taken
as the central parallel. This is a difficult projection to draw, since the nearer the parallels
are to the sides of the map, the more curved they have to be made. Also it was less easy
to locate places with known latitude and longitude on such a world map. So for practical
purposes the first projection was recommended. (A third which he outlined was probably
not intended to be seriously considered by map-makers.)
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34 Prolemy's first and sccond projections for a world map.



35 Map of the world from Prolemy’s Geography. British Library, MS Harl. 7182, £.58v-59r.

For regional maps, on the other hand, Prolemy proposed straight lines of latitude and
longitude intersecting at right angles. This made it easier to insert place-names from given
lists of latitude and longitude. But in order to provide the approximately correct proportions,
cach regional map was given its own representative fraction, based on its mean latitude.
Ideally these proportions should result in distortion being reduced to a minimum; but in
fact Prolemy, as can be seen from his map of northern Britain, not infrequently made mistakes
which resulted in imperfections despite the correct regional proportions.
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Even in Prolemy’s Geography we find two methods of calculating latitude and longitude.
The standard method of giving latitude is our own method, but in addition we find h
which gives for each place in the better-known areas of the world its maximum hours
of daylight, rounded off to the nearest quarter-hour. The standard method of giving | d
is by degrees east of the Canaries. But we also encounter a method of giving the distance
east or west of Alexandria in hours (since 360° = 24h, 15° = 1 h).

Whereas the ancients were able to calculate latitudes fairly well, longitudes presented
greater problems. It was known that these could be calculated by simultaneous observation
of an eclipse from two or more places. The problem was that scientific data were lacking
for such an pt. An astr ical method used by Hero of Alexandria to calculate
the distance between Rome and Alexandria, although based on scientific principles, did
not result in an accurate answer. Under the late Roman Empire, Greek mathematicians,
using trigonometrical methods, seem to have given distance equivalents for some places
based on their latitudes and longitudes in Prolemy’s Geography.

In addition to terresmal mapping, the positions of visible stars were carefully plotted
with similar co—or By this method Hipparchus listed the co-ordinates of 800 stars.
Prolemy in his Almagest gave the co-ordi of 1022 stars whose positions could be plotted
on a globe. Archimedes designed an instrument like an orrery, which portrayed the motions
of the sun, the moon and five planets, even showing solar and lunar eclipses after the correct
number of revolutions.

The aspect of measurement is confined to the written word in the Peutinger Table (fig.
37), sole surviving copy (now in the Austrian National Library, Vienna) of a road map
of the Roman Empire. It was earlier in the form of a single parchment roll, 6.75m long
but only 34cm wide; but it was cut up and placed under glass for berter preservation.
It has north at the top; and north—south distances, such as that between the ltalian and
north African coasts, look very short, while east-west ones look very long. Many road
distances, in Roman miles or in local measurements such as leagues, are written in, but
there is hardly any attempt ar scale. That a road map more or less to scale could exist
in the Graeco-Roman world is shown by the Dura Europos shield (fig. 38), an unofficial
map of the north shore of the Black Sea, with place-names written in Greek but with distances
expressed in Roman miles; it is now in the Bibliothéque Nationale, Paris.

In addition ro road maps, we possess from classical antiquity a number of itineraries
and periploi. Itineraries gave details of road joumncys in list form and were evidently com-
moner than road maps. The most helpful one for the reconstruction of ancient topography
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37 Section of the Peutinger Table, a copy of a Roman road map, showing Dalmatia, Italy from Bolsena
to Rome, and parr of Tunisia (Carthage is opposite Rome's harbour at Ostia). Vienna, Osterreichische
Nationalbibliothek. (See also front cover.)
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is the Antonine Itinerary, drawn up for journeys to be undertaken by an emperor of the
Antonine dynasty, The most probable emperor is Caracalla, who journeyed via Asia Minor
1o Egypt in AD 214—15. Britain has 15 itinera, some going out of their way 10 enable the
emperor to visit particular places. Iter 111, from London to Dover, is expressed as follows:

London ro the port of Dover, 66 miles, checked:

To Rochester [Durobrivae| 27 miles
From there to Canterbury (Durovernum| 25 miles
From there to Dover harbour 14 miles

Periploi are sea itineraries, y informarion. They tended
to be expressed in stades rather chan miles. It is oflen unclear whether the distance recorded
is the straight-line distance from cape to cape or that following the coast.

Most of the large-scale plans from the Roman world were drawn up by architects or
surveyors, and as such have been mentioned in the previous chapter. But there are also
other items, such as a mosaic plan of some baths, found at Rome, which has measurements
of rooms in Roman feet; and the ‘Urbino plan’ (fig. 39; now in the Ducal Palace, Urbino),
of a property recorded as measuring 546 x 524% Roman feer, with an approach road
1688 Roman feet long. Many such items must have been destroyed as no longer relevant.

It is evident that throughout the classical period the concept of scale was well developed
in professional work. Plans to scale can be seen from Babylonian times onwards. The special
attention paid by Egyptian mathematicians to pyramids must have been supplemented by
working models. Architectural plans at Didyma show a skilful blend of full size and &
scale; and the use, attested by Greek writers, of architectural models implies three-dimen-
sional accuracy. Greek world maps (rom the third century sc onwards were based to a
greater or lesser extent on spherical projection theory, which in its application to cartography
reached its high point with Ptolemy. The Roman land and building surveyors clearly had
a firm grasp of scale. The only difficulty lay in the variety of units between different areas
or periods. After centuries when the city-states were independent, domination first by Alex-
ander the Great and bis successors and then by Rome led 10 a much greater degrec of
standardisation.
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38 Simplified redrawing of the Dura Europos
shicld map. The rumcrals indicate distances, in
Roman miles, from previous places westwards,

39 The *Urbino plan’ of a '}?L'}rm«:‘:;()’ w_yu,l;::»’ P roilus oo



7 Telling the Time

Near Eastern Calendars

The ¢ y method of denoting years in the ancient Near East was by reference to
the number of ycars that the current monarch had reigned. The Babylonians had a year
which started in the spring and contained either 12 or 13 months, depending on the relation
of the lunar months and the solar year. Their system and nomenclature were taken over
by the Hebrews after 587 Bc. By customary observance in the Babylonian world, a new
month started, if the new moon was visible, on what would otherwise be the 30th day
of the current month; if not, it began on the (ollowing day. Hence months were either
29 or 30 days long. An extra (intercalary) month was inserted as and when required, to
bring the months into step with the sun.

Official Egyptian months had 30 days each, and the daily income of a temple was reckoned
as 1 of its annual revenue; but in fact 5 supplementary days were added to make 365.
But there was still a discrepancy from the true length of the year, which is more nearly
3654 days. So the new year, which fell on the 1st of the month Thoth, gradually fell back:
in 747 BC it was on 26 February, in 647 8c on | February, in $47 8C on 7 January, and
so on. The scribes were presumably trained to take account of this discrepancy.

Greek Calendars

Each city-state in classical Greece had its own method of expressing years, months and
days. In many cases we can be confident, or fairly so, which year is intended, and can
relate it to our era—e.g., 480 BC for the battle of Salamis. But the Athenians were governed
by an annually changing archon eponymos, office-holder of the year, so that they tended
to refer to a year as ‘in the archonship of Euclides®, etc. This system was not easily understood
by other Greeks, let alone modern readers. Hence other systems evolved for referring to
years:

(1) The Olympic games, the great occasion every four years when all Greeks met, were
used from the fourth century BC as a system of reference. Since the games started in 776 Bc,
that year counted as Ol. (Olympiad) 1.1, Ol. 1.2 being 775; Ol. 2.1 {the vear of the second
games) was 772 Bc, and so on. The system lasted down to the Byzantine Empire.

(2) A method recommended by Eratosthenes was to start at the traditional date of the
fall of Troy, 1183 Bc. He expressed it as 860 years before the death of Alexander the Great
(who died in 323 8C).

(3) Eusebius (c. AD 269-340), the ccclesiastical historian who was barn in Palestine and
became bishop of Cacsarca but who wrotc in Greek, went back still further. He started
from the birth of Abraham, which he reckoned as 2016 B¢. By his time the Graeco-Roman
world had become interested in the events of the Old Testament, and Eusebius was keen
1o refute the charge that Christians followed Judaism merely to change it.

Athenian months, which began at the summer solstice, were named after festivals, and
lasted 30 or 29 days alternately. To bring the number up to an average of 3654 days,
an extra month had to be inserted when required, though this was not donce very consistently.
There is evidence that Meton's system (sec p. 18) was not adopted. Other Greek cities
had similar methods, but less is known of most of these.

Days of the month varied between Greek cities so much that Aristotle’s pupil Aristoxenus
says musical scales are as disputed as Greek calend ‘The tenth day of the month at
Corinth is the fifth at Athens and the eighth somewhere else.’ Days of the month at Athens
were reckoned panly from its beginning, partly from one-third of the way through it, and




partly from its end. Thus day 1 was called ‘new month’; days 2-10 were the 2nd—10th
of the ‘rising’ month; days 11-19 were the 1st-9th after the 10th; the 20th was eikas
(eikosi = 20); while days 21-29 were more often counted from the end of the ‘waning’
month than as *1st after eikas’, etc. The 30th of the month was often called ‘old and new
[day])’. But from these phrases, originally based on the phases of the moon, it must not
be supposed that an official month and a lunar month necessarily coincided.

In addition, the Athenians had a particular system of dating for meetings of the assembly.
The number of days during which a particular tribe presided over the council was called
a prytany. So a calendar of prytanies was adopted for this purpose, the formula being
‘on day 1 (etc.) of the first (etc.) prytany’, with the name of the presiding tribe.

The Roman Calendar

The Romans’ normal method of dating in the classical period was to name cach year after
the two consuls of that year. These could be followed, if required, by a numeral: e.g.,
111 = tertio or tertium, *consul for the third time".

A more scientific method was put forward at the end of the Republic. This depended
on the traditional date of the founding of Rome, reckoned back from known dates: in
our usage it works out as between 754 and 751 B¢ bur most often as 753. The phrase
used for ‘from the foundation of the city’ was ab wrbe condita, abbreviated to A.U.C.
This chronology was still used, out of antiquarian intcrest, in some Renaissance maps,
seen for example in the Galleries of the Vatican. It is also found, with or without the
BC/ AD equivalent, in some text-books up to about 1900.

Under the Roman Empire, an emperor could be appointed tribune of the people for
a year or for successive years. This, conferring a special power, had a prestige value because
it pointed to continuity from powers granted under the Republic. Dates could be reckoned
from this ‘tribunician power’. Thus, especially in inscriptions referring to an emperor, we
find phrases like TRIB(unicia) POT (estare) VIIL

Finally, abour AD 525-540 the Christian monk Dionysius Exiguus introduced the method
of dating by years of the Christian Era. This took its year 1 as the year of Christ’s birth.
But the actual dare of that event was a few years earlier than Dionysius calculated. Since
he started from year 1 and not year 0, the previous year is now called 1Bc; so if, for
example, we want to calculate the bimillenary of some event which occurred in 10 B,
it should be in 1991, not in 1990,

Roman month names have lasted up to the present, but are not self-explanatory. Those
from September to December obviously mean *7th~10th month’, whereas they refer to the
9th—~12th months. (There was even an unscrupulous tax—collector in Gaul in the first century
BC who tried because of this to extort two months™ extra taxation.} The reason is that
March was originally the first Roman month. In fact, we are told that under the kings
(traditionally 753-510 BC) there were only ten named months, March—December. The names
January and February (from Janus, god of gates, and februa, expiatory offerings to the
gods) were introduced at the beginning of the Republic, traditionally 509 ac; and in 153 ac
January was made the first month. March to June were named after deities and religious
festivals. July and August were introduced in the post-Republican period in honour of Julius
Caesar and Augustus; previously, as Quintilis and Sextilis, these months had been related
to their original position in the year, as fifth and sixth months respectively.

March, May, July and October had 31 days, February had 28, other months 29. To
bring the total up from 355 days to 366} {one day too many, but evidently regarded as
correct in early times), an intercalary month of 22 or 23 days was inserted after 23 February,
at the end of the festival Terminalia, when decreed by the Pontifex Maximus. Macrobius
comments on the reason why (before 153 BC) it was not inserted at the end of the last
month, February: ‘I suppose this was due to some religious taboo, so that March should
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not fail to follow February.’ This was an unsatisfactory state of affairs, especially when
the chief priest did not decree an intercalation that was due. Accordingly in 46 BC Julius
Caesar proclaimed a ‘once for all’ year of 445 days to make amends, and gave the months
their present lengths. He ruled that in leap years a day should be inserted after 23 February.

The Romans reckoned inclusively, that is, counting in both the day itself and the festival
belore which it was calculared, so thar the 13th was described as 3 days, nor 2, before
the 15th. Roman days of the month were numbered inclusively before the Kalends, Nones
and Ides. The Kalends were the fiest day of the month; the Nones and Ides were originally
market days, the former being the ninth day (nona), by inclusive reckoning, before the
Ides. In the original four long months, March, May, July and October, the Nones were
defined as the 7th of the month; in the remaining eight months they were the Sth. The
Ides, idus, were defined as the 15¢h of the onginal long months (hence Ides of March =
15 March) and the 13th of all other months. Some specimen dates, with abbreviations,
are:

Abbreviation Expanded form Date

KAL. JAN. kalendis lanuariis 1 January

PRID. KAL. 1AN. peidie kalendas lanuarias 31 December (day before

Kalends)

A.D.IVNON.IAN, ante diem quartum nonas 2 January (4th day inclusive
lanuarias before Nones)

A.D.UIID. MART. ante diem tertium idus 13 March (3rd day inclusive
Martias before 1des)

The Hours

In the Near East and in the world of Greece and Rome, rwo systems of reckoning hours
were recognised. The first, known to dynastic Egypt, consisted, like our modern one, of
24 equal hours. These were called in Greek hérai isémerinai, ‘equal-day hours’, and were
used in antiquity for scientific purposes, especially for astronomical observation. For everyday
purposes, on the other hand, the ancients preferred a system of meré or horai kairikat,
‘seasonal hours', which Herodorus attributes to the Babylonians. In this system the period
of daylight was divided into 12hours, so that the length of such an hour was greatest
in midsummer and smallest in midwinter. At the latitude of Rome the longest and shortest
seasonal hours were about 14 hours and £ hour respectively. The Egyprians divided the night
into 12 hours, but the Romans divided it into watches. Narurally, such a system did nor
recommend itsel{ to exactmess, though, as will be seen, it was reasonably well suited to
current methods of timekeeping.

Sundials
It is possible to tell the time at night from the stars, and this may have been done in the
Near East, but no instruments for this purpose have survived. The sundial, on the other
hand, dates from remote antiquity, and many have survived, though often not intact. The
earliest from Egypt is a shadow-stick of the eighth century ac. It has a straight base with
a raised gnomon at one end, which was set to face east in the morning and west in the
afternoon; the base was marked with six divisions {or hours. A sundial devised by Anaxi-
mander and set up at Sparta was presumably more sophisticated. The Greeks clearly became
more knowledgeable than the Romans abour the workings of sundials. One captured by
the Romans at Carania, Sicily, in 263 BC was set up in Rome, where for 99 years either
no one realised, or no one could persuade the authorities, that it was incorrectly set for
the latitude of Rome.

The largest sundial of Graeco-Roman antiquity, which was of the shadow-stick type,
was set up by Augustus near the Pantheon in Rome. Its gnomon was an Egyptian obelisk,



still in the same area today, though moved from its original site. Egyptian obelisks were
usually dedicated to the sun-god, and at least some of them may have been used in sundials
in Egypt. Parts of the large Greek inscription of Augustus’ sundial have recently been exca-
vated.

An analysis of Greek and Roman sundials by Sharon L. Gibbs has shown that the largest
number of those preserved are vertical ones of the type known as conical. Their concave
face is part of the surface of a cone; they were designed to face south and had a vertical

Another well d vertical concave group is known as spherical, most being
in fact hemispherical. A third group, which may be vertical or horizontal, is called planar,
since it has a flat dial. The horizontal type has eleven hour lines, the equinox and the
summer and winter solstitial curves. There is also a small group of vertical cylindrical concave
sundials. One such of unusual shape was found in 1975 as far away as Ai Khanoum, Afghanis-
tan; it seems to be set for a place on the tropic of Cancer, so could have been picked
up as a souvenir, perhaps at Syene (Aswan).

For travelling, it was possible, from about the third century AD, to use a portable sundial.
Several specimens of these have been found, though in some cases subsequently lost. One,

40 Conical sundial with hours marked in Greek letters, found in Alexandria. British Museum.
Compare fig. 53.
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41 Roman portable vertical sundial: assembled front. The reverse shows province names and latitudes.
Oxford, Museum of the History of Science.

said to have been found in Bratislava but now in the Oxford Museum of the History of
Science, is in bronze and has its inscriptions in Latin. Ir consists of a gnomon and an inner
and outer dial. On the back are province names and mean latitudes. For Britain one finds
the latitude 57°, much too far north but consistent with the latitudes in Ptolemy’s Geography.
To set it in Britain, one moves the inner dial to the point on the outer dial corresponding
to 57. (The outer dial is marked in tens from XXX to LX.) Then the approximate date
has to be set, with the help of dates marked VIl K IAN, 25 December, and VIII K IVL,
24 June. It is a vertical sundial, so it needs to be suspended and slowly tumed until the
shadow from the gnomon falls squarely on the curved hour recorder. The time can then
be read; the line on the hour recorder nearest to the gnomon indicates hours 6 and 7,
the next line 5 and 8, and soonto 1 and 12.

Clocks

The sand-timer was no doubt the carliest timel independent of the celestial bodies,
but it is inefficient for measuring more than a limited duration. Hence attention turned
at an early date to a simple form of water-clock. In dynastic Egypt a stone bowl with
a small opening at the bottom was used, and specimens of these have been found. Since
for everyday purposes the Egyprians used unequal hours, | were made
by reading the level against an appropriate set of lines on the side of the bowl. Similar
simple clocks were used in other parts of the Near East.

Remains have been found of two types of Greek clepsydra, literally *water-stealer’. One
consisted of an upper cistern and a lower one into which water trickled. The level of water
in the upper cistern was kept constant to avoid any change of pressure. The lower cistern
had graduations on the sides to show the time. Ctesibius of Alexandria (Rourished 279 8c)




42 Fray t of an Egyptian
water-clock: interior. The
dots indicate the level of the
water at hourly intervals, and
the figures at the bottom are
amuletic symbols. The name
of Alexander the Great is
inscribed in hieroglyphs on
the other side. British
Museum.

devised the first clepsydra that could be called accurate. According to Vitruvius, it involved
the use of a tube of gold to avoid clogging, an elaborate system of geared wheels, a cork
drum, a rype of siphon, moving figures, revolving pillars, falling pebbles or eggs, sounding
trumpets and other refinements.

If, as in Athenian law, each side in a law-suit was allowed only a specific amount of
time for speaking, this was measured with the clepsydra. The phrase ‘in my water’ meant
‘in my allorted time’. The clepsydra came to Rome in 159 BC and from then on was used
as well as the sundial; it was particularly needed in the law-courts, and in army camps
it served to demarcate the night watches. The octagonal Tower of the Winds in Athens,
erected in the first century Bc, had an accurate clepsydra, of which there arc remains, and
a series of planar sundials on different faces. A water-clock described by Hero of Alexandria
included a graduated drum whose lines indicated the hours at any season.

Astronomical Calendars

In the fourth and third ¢ ies BC, Greek astr devised elab models to illustrate
the motions of heavenly bodies. One such, invented by Archimedes, was taken to ltaly
after the capture of his city, Syracuse, in 212 8¢. Another of the same type has been called
*an ancient Greek computer’. Perhaps more realistically it may be called an astronomical
calendar. In 1900 the captain of a Greek sponge vessel rescued statues and other objects
from a wrecked Roman ship, off the island of Anticythera, between the Peloponnese and
Crete. The following year a scientific instrument was found there. It contained at least
20 gear wheels, and had two dials, one recording the apparent motions of the sun and
stars, the other, evidently, those of the moon and planets. Presumably a slave would move
the handle at regular intervals, since, although this instrument contained clockwork, it was
not a clock. The last setting marked was in 82Bc, and the statues and this instrument
were clearly intended to be transported to Italy as ‘spoils of war’ after the sack of Athens
in 86 BC.
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8 Calculations for Trade and
Commerce

Early Trade
Trade existed in the ancient world long before the invention of coinage. Goods or services
could be exchanged at rates agreed by the parties involved in the transaction. Promissory
notes could also have been used. Such a note might be accepted if, for example, a harvest
was not ready at the time when the transaction was due to take place.
Gradually a system was developed to facilitate trade and the making of payments in
general by assessing values in the form of weighed amounts of metal. One of the first
at standardisation was probably that of the Sumerians, who from ¢.24008c
inscribed basalt statuettes of sleeping ducks with their correct weights.

43 Stone 2-talent weight in the shape of a duck,
from Lagash, Mesopotamia, c. 2260 sc. British
Museum.

Main Sumerian weights

The Sumerian weight system was based on sexagesimal notation:
60 shekels, of approx. 8 g each = 1mina, approx. 480 g
60 niinge = 1 talent, approx. 28.8 kg

Shekels and ralents are not the original Sumerian names: these and other equivalents may
be tabulated thus:

Sumerian Babylonian | Assyrian English
go biltu (literally ‘load") talent
ma-na mani mina
gin 3iglu shekel
s¢ ugtetu grain
anse iméru (literally ‘donkey’) homer

It will be seen that ‘shekel’ is a Hebrew form of $iglu; ‘mina’ and ‘talent’ are adapted
through Latin from Greek forms. We find considerable variations from these Sumerian
weight values elsewhere, from 25 shekels to a mina in Phoenicia to 100 in Egypt. The
weight of the shekel also varied.

Egyptian weights
In Egypt, from the Eigh h Dynasty o 5
metals were weighed as follows:

10 kité (approx. 9.1g) = | deben (approx. 91g)

44 Egyptian stone weight inscribed with
the name of King Amenophis J and the
value 5. Eighteenth Dynasty, c. 1550 Bc.
British Museum.




45 An Egyptian weighing gold rings against a weight in the form of a bull’s head. New Kingdom,
<. 1400 ec. British Museum.

Main Greek weights
Aegina Attica{ Euboea
obolos 1.04g 0.73g
6 oboloi = 1 drachmé 6.24g 4.36g
100 drachmai = 1 mna 624.00g 436.00g
60 rnai = 11talent 37.44kg 26.196 kg

Roman weights

1 uncia = 27-27.5g
12 unciae = 1 libra (pound)

The English abbreviation ‘Ib’, the £ sign and the word *pound’ all have Latin antecedents,
since £ and Ib = fibra and pound = pondo, in weight'; in Latin, P. was used as an abbreviation

for (librae) pondo.

2 unciae = | sextans, ! libra

3 unciae = 1 quadrans, }libra

4 unciae = | triens, \ libra

5 unciae = 1 quincunx

6 unciae = | semis, tlibra

7 unciae = 1 septunx

8 unciae = 1 bes, % libra (cf. bis, ‘rwice'}

9 unciae = 1 dodrans, § libra (literally * | quadrans short’)
10 unciae = | dextans, } libra (literally *1 sextans short’)
11 unciae = 1 deunx (literally *1 uncia shorr’)

There were also subdivisions of the srcia: the sicilicus (%), the sextula (%), and the scripulum

(&)
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Three types of weighing-machine were used in the ancient world. If the object was small,
it was convenient to use scales with a pivoted beam. In some cases the weights for these
were of different shapes, in other cases of the same shape, but they were always graded.
The other two kinds of ancient weighing-machine, uscful for large items, were the bismar
and the steelyard. The bismar is mentioned by Aristotle (384-322 BC) as serving ro weigh
large quantities of meac. It had a fixed counterpoise at one end of a beam, at the other
a hinged hook to carry the meat. Attached to the beam was an upper bar with graduated
lines to indicate the weight. This upper bar was slotted into a vertical holder and was
pushed along until the bismar reached equilibrium. Although this rype survived until the
Middle Ages, it was inaccurate and was banned from churches in England in 1428. The
Roman steelyard (statera) is described by Vitruvius. This, unlike the bismar, has a fixed
fulcrum and a bl poise. An improved model was introduced in the fourth
century AD.

Since weights and measures often differed from area to area, and since scales were not
always reliable, it is not surprising that cheating occurred. The prophet Ezckiel (45.9-12)
warns: ‘Enough, princes of Israel! ... Your scales shall be honest, your bushel [ephah)
and your gallon [bath] shall be honest. There shall be one standard for each, taking each
as the tenth of a homer, and the homer shall have its fixed standard. Your shekel weight
shall contain 20 gerahs.’” After this the text is corrupt, but the latest editor, W. Zimmerli,
relying on the Septuagint, renders: ‘S shekels are to be 5, and 10 shekels are to be 10,
and 50 shekels are to amount to a mina with you.'

Coinage

Once coinage was invented it was not long before it became the usual medium of exchange
for trade in many areas of the ancient world. The date and identification of the very first
coins is disputed, but by the end of the seventh century Bc coinage was circulating in Lydia,
western Asia Minor, whose last king, Croesus (c. 560-546 BC), is proverbial for his wealth,
The earliest coins were of electrum (white gold) and were one-sided; coins with fully de-
veloped designs on both sides came later, towards the end of the sixth century Bc.

In the classical period the words used for monetary terms of account mostly reflect their
association with weight, the name mna or mina in particular being derived from the name
of the Mesopotamian weight unit given above. The names of the small Greek weights and
coins obolos and drachmé, the latter still the unit of Greek currency, literally meant ‘metal
spit” and ‘handful’. The Latin word for money, pecunia, was derived from pecus, *cautle’,
reflecting the pastoral interests of early Rome.

Coinage was normally issued by states, but it was imes signed by individuals, usually
working for the state, though sometimes perhaps as private persons. An carly clectrum
coin, probably from Halicarnassus in Asia Minor, reads Phands émi séma, ‘I am the badge
of Phanes’. Coins were not necessarily uniform in size, but were supposed to be so in weight,
and the verbal association already noted helped this; the weighing of coins in transactions
therefore continued. Most coins were made of gold or silver and care had to be taken
to ensure that they were of good metal as well as the proper weight.

46 Athenian didrachm, The
obvetse shows the goddess
Athena, patron of Athens, and
the reverse an owl, symbol of
Athena and badge of the city.
British Museum.



/., 10. The weight is preserved, but not the scale

47 Roman bronze scales, with restored
chains. Graduation marks are punched on
one arm. British Museum.

48  Part of a set of bronze weighrs,
marked with Greek leters and the
owner's name—Eutychos. Probably from
a Greek colony in southern lraly. British
Museum.

49 Graeco-Roman steelyard (Ist century AD)
with two series of graduations, 1 to4 and § 10

pan. Brirish Museum.
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Main Greek coinage

This was based on the obolos and drachmé, as in the table of weights above, together
with the didrachmon or statér, equal to 2 drachmai. In Athens after 530 B¢ the didrachmon
was replaced by the tetradrachmon (4 drachmai). There were many Jocal variations from
time to time, summarised in The Oxford Classical Dictionary under ‘Coinage, Greek’. For
the higher terms of account, see the weights table above.

Roman coinage

12 unciae = 1 as, with the same funcrions as for weights

24 (later 4) asses = 1 sestertius, abbreviated 11S (23) or HS

4 sestertii = | denarius (*containing 107, since onginally 2} X 4 = 10; abbreviated to d.
for the old British penny}

25 denarii = | aureus

Although the as was originally equal to the libra, it became successively devalued, and
other coinage with it; thus in Caracalla’s reign (oD 212-17) there were S0 aurei 10 a libra.
Very large sums were normally reckoned in thousands of sestertii; from this, the genitive
plural, as in dwo milia sestertium {2000 sestertii), came to be looked on as a neuter noun,
so that we also find dwo sestertia.

From the point of view of trade, it helped the customer that subdivisions of the as were
the same whether they referved to coinage or weight.

Since every citizen and any educated slave was expected to acquire a complete mastery
of the monetary system, it came to occupy what some considered a disproportionare amount
of time in the school curriculum. Horace, in the Ars Poetica, complains that this is a weari-
some part of Roman education:

Children at Rome learn to divide the as

By lengthy workings into tiny parts.

‘Son of Albanus, tell me: il we take

An uncia from a guincunx, what is left?

Be good enough to say. ‘A triens.’ ‘Fine!

Your money will be guaranreed for life.

We add an uncia: what does thar make?' ‘Half.’

In other words, & = 1z = Yas; & + & = }as. Although in the second line the Larin says

centum partes, ‘100 pars', this is only poetic licence, since the initial division of the as
was into 12 unciae and, even though these could be further subdivided, o would never
be a relevant fraction of the as.

Accounting and Banking

Financial lists and accounts have survived from antiquity, and better on Egyptian papyri
than on other materials elsewhere, The tribute lists of the Athenian treasury, recording
Athena’s share of the tribute paid by allies to the Delian League (478—447 8c), arc of more
interest to political historians than to students of the history of mathematics and measure-
ment. Papyrus finds include public and private accounts, estate and taxation documents,
and military documents, some of these of a statistical nature.

Certain banking operations are known from very early times; but the earliest known
equivalents of private banks, linked with estate 2 are Mesop of the
seventh century BC. Greek banking was carried out by individual bankers, who had no
offices, only tables in the central area of the city. Hence trapeza, ‘table’, could from before
500 BC mean a bank, and indeed does so in modern Greek. Throughout the ancient world,
although various religions and states denounced usury, interest was regularly charged, and




debtors could be thrown into prison. But the death or default of a banker could create
serious problems.

This situation was temporarily ified by the p dure in P ic Egypt. A central
bank was sct up in Alexandria, with royal banks in many other towns, lending money
as well as receiving deposits, and employing many bank clerks. Unfortunately this precedent
was not followed up under the early Roman Empire, except in Egypt. It was private bankers
who, in Greece on the last day of the month and in the Roman world on the Kalends
of each month, demanded interest payments, which were calculated monthly, not annually.
Unpaid interest might be added to the capital, so as to be treated as compound interest.
Contrary to the general custom, under the late Empire a branch of the civil service concerned
itself with many aspects of banking.

Roman taxation
Taxes in the Roman Empire were of two basic types, vectigalia and tribute. The main
vectigalia, of which the first two were already cnforced under the Republic, were:

Name Explanation Percentage
portoria, usvally quadra- Customs duty, originally at  2}% (higher in the Near East)
gesima (&= 2}%) ports, later also at land

frontiers
vicesima libertatis Tax on valuc of slaves freed 5%
quinta et vicesima Tax on value of slavessold 4%
venalium mancipiorum
centesima rerum Tax on auction sales 1% (Augustus),
venalium }% (Tiberius)
vicesima hereditatum Legacy duty; close relatives 5%

exempred

In additiun, vectigal was levied on occupiers of State lands, ager publicus. The second type
of taxation was tribute, nov paid by Roman citizens under the Empire. In at least two
provinces the rate of this was 1% per annum on the census, total personal capital including
houses, land, slaves and other possessions.

Greek interest rates
Expressed as ‘at 1drachma’, ‘at 8 obols’, etc., meaning 1drachma a month or B8 obols a
month for every mina borrowed, equivalent to 12% or 16% per annum.

Roman interest rates
Also reckoned monthly:
triente = Y% per month = 4% per annum
besse or bessibus = 4% per month = 8% per annum
centesimis = 1% per month = 12% per annum, the rate laid down by the Senate in 51 Bc
binis centesimis = 2% per month = 24% per annum
Al these Latin forms are ablatives of price, triente from triens, besse (rom bes, the others

from centesimus, rm. Inheritance proportions were reckoned in the same way; thus ex triente
= % of the cstate, ex quadrante = § of it.
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A Specimen Trade

The use of mathematics and measurement in trade may be conjectured for a business such
as that of a timber merchant in ltaly. First he would need to calculate the volume of each
type of timber ordered, taking account of local measurements in which it would be quoted.
Then he had to negotiate a price, working out the forcign exchange if it was to be imported.
After this we may supposc that he agreed to costs of land or sea transport, if necessary
consulting an itinerary for the distances involved. We know from Diocletian’s price edict
of Ap301 that in his time land wansport of heavy goods was much more expensive than
sea ransport. In the casc of the latter, however, it was c v to pay for b Y,
an approximation to shipping insurance. A moneylender could make a loan to a shipowner,
which did not have to be repaid if the ship and cargo were wrecked or scized by pirares.
At the land frontier or harbour a percentage tax was levied. For sawing or planing, more
slaves might have to be bought, at a higher rate if the work was skilled. If exact measurements
of timber were specified, a measuring-board or slab would be used. Such a stone slab,
found in lraly, is in the reserve collection of the British Museum. It has no inscriptions,
bur to judge from the frequency of 3-digiti (finger’s-breadth) marks, that measurement must
have been a common one for the user, who also worked in feet and might have been engaged
in selling cloth, leather steaps, rimber or marble, When all the expenses arising from the
timber purchase had been evaluated, the merchant would be able to fix a price for each
type and size. To handle complexities of foreign trade, a Greek-speaking freedman would
most often have been the best qualified.




9 Mathematics in Leisure Pursuits
and the Occult

Puzzles

Among the leisure interests of the past was the simpler sort of arithmetical puzzle. Of
the ‘think of a number’ type, our best specimens are from the Dark Ages, but clearly reflect
carlier usage. They are preserved in the treatise De amhmrncls propositionibus, urongly
ascribed to the Venerable Bede. Exercise 1 may be transl ‘Let any ber be though
of and trebled. Divide the trebled number in two, and if this results in cqual integers, again
treble one of these. If they are unequal, let the greater of the two be trebled. Record the
number of times 9 can be divided into this, then twice that number is the one thought
of. But if there is a remainder, which will be 6, add 1 of this 6 to the total reached above.’
The exercise may easily be proved to be sound. There are unequal parts when there is
an odd number. Thus, think of 11; treble it, 33; divide by two, 16 + 17; treble the larger
number, 51 = (9 x 5) + 6; 5 + 5 + 1 = 11. Another type of puzzle consisted of 14
ivory shapes which could be put together to resemble animals.

The invention of chess in India or possibly China is associated with a story about geo-
metrical progression. An Indian king, very pleased with the inventor, despite the limitations
placed on the powers of the chess king, asked what favour he could do him. The chessplayer
asked for 1 grain of wheat for the first square, 2 for the second, 4 for the third and so
on. The king granted this, not realising that the total for 64 squares ¢came to 2% — 1, or
18,446,744,073,709,551,615 grains. This was reckoned to be equivalent to eight harvests
all over the world.

Games

Whereas chess did not reach the Mediterranean till after classical times, something resembling
draughts scems to have been played in dynastic Egypt. Pictures show the pieces set up
in three rows on a board, just like 2 modern draughts-board. No particular mathematical
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50 A gazelle playing a board game with a lion. Part of a painted papyrus from Egypt. New Kingdom,
¢. 1200 Bc. British Muscum.
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51 Graeco-Roman dice. British Museum.

skill was involved. Several ancient games, which were and still are played in many parts
of the Near East and Mediterranean countries, involved simple h ics. One such
is the guessing of the number of fingers the opponent will hold up. The usual method
is for two people simultaneously to hold up between 1 and 4 fingers: the first to guess
the combined total wins. For a medieval number game, see Smith (1923), 198-200.

Dice in the Graeco-Roman world were marked as today, i.e. with opposite faces adding
up to 7, and they sometimes occur in left-handed and right-handed pairs. The lowest throw,
1 on cach die, was called in Latin canis, ‘dog’. They were thrown either in a dice-box
or in a model of a tower. Despite legal prohibitions at various times, gambling, which
also involved calculations, remained a regular accompaniment of dice-playing and chariot-
racing. Dice-playing often involved board games with counters, for which a certain element
of skill as well as luck was needed.

Among these, two Roman games, which may have had Greek or Near Eastern antecedents,
can be reconstructed with some probability from finds and literary sources. The first was
called latrunculi, ‘little mercenaries’. Since one of the Piso family—probably C. Calpurnius
Piso (died AD 65), leader of the unsuccessful conspiracy against Nero—was very fond of
it, there is a poetic description of it in the anonymous Laus Pisonis, though in that there
is no mention of the name latrunculi or latrones. It was played on a board with white
and black or red pieces, which are variously called milites (soldiers) or latrones {early name
for mercenaries, later for bandits). The board is conjectured to have been of 8 x 7 squares,
such as was found at Corbridge, Northumberland. A piece was taken if it was surrounded
on rank or file by two opposing pieces. Backward as well as forward moves were allowed,
and one line of the verse suggests a rook’s move in chess. A blocked piece could be extricated
by a skilful player. The game was won by the player who removed more pieces; he was
hailed imperator.

52 Roman gaming board, inscribed with a sentence of six six-lerer words: CIRCVS PLENVS CLAMOR

INGENS 1ANVAE TE(NSAE) (‘circus full, terrific sh g, doors ing’). British M



The other game was called duodecim scripta, ‘twelve writings'. Although some scholars
have disputed the association and speak of a 36-letter game, distinct from the ‘twelve writ-
ings’, one cannot help interpreting scripta here as sentences of € X 6 letters, each group
of six lerters forming one or two words. In the Latin Anthology there is a set of 12 such
hexameter sentences, which may suggest that a complete game set consisted of twelve six-
word, six-lerter sentences, together with three dice, one dice-box, probably 15 white and
15 black or red counters, and a board with 3 x 12 intersections, the 12 being split 6 and
6. An example of a sentence in the British Museum (fig. 52) may be rendered: “Circus
full, tervific shouting, doors [?] bursting’. Some examples have a moral tone on gaming,
such as the hexameter of six-letter words which reads 1RASCI VICTOS MINIME PLACET, OPTIME
FRATER: ‘dear brother, | can’t stand loscrs who lose their temper.’ But the tone was not
always moral, since some are about enjoying life.

What role these sentences played in the game is not clear. One inscription, perhaps intended
for beginners, reads:

cccecce BBBBBB
AAAAAA AAAAAA
pPDDDDD EEEEEE

The order of the letters is presumably a guide to the direction of moves. It implies that
the pieces were first placed on the A squares, each according 1o the number on a single
die throw; then, when all had reached an A square, they could progress via the second
ser of A squares, B, C, D, E; though some mainrain that black took these last four in
reverse order. It scems that three six-sided dice were normally thrown, and their numbers
used to move one, two or three pieces. The maximum throw was 3 % 6 = 18, and point
XIX (presumably the first C reached), which a counter could reach from [ in one tumn,
was called swmmus, ‘top'. If a white piece landed on a point containing one black picce,
it captured it, probably sending it back to point |, and vice versa. But if there were two
of more enemy pieces on a square, the proposed move (ailed. Hence the strategy was to
try to avoid having unaccompanied pieces. In fact this aspect of the game is very similar
to the rules of backgammon. The game was won when all the pieces of one side had reached
the opposite end. In a wall-painting from Pompeii, one player says exsf, meaning exii, ‘I've
got through’, while the ather says non tria, duas est, ‘It's not a three, it's a two.’

Berting was common, but only in one passage of Plautus do we find mention of betting
for odds: ‘Bet me a talent to a drachma [or similar small coin] ...’ In view of the absurdly
high odds (well over 1000 to 1), this must be comic exaggeration rather than reflect regular
practice.

The Occult

The ion between h ics and the occult in antiquity is widespread. Cerain
numerals either acquired occult meanings or were regarded as particularly auspicious or
inauspicious. The origin of the Jewish sevenfold candlestick goes back to words spoken
by God to Moses (Numbers 8.2): ‘Speak unto Aaron, and say unto him, “When thou
lightest the lamps, the seven lamps shall give light over against the candlesticks.”* There
are magic numbers in many religions: three is often such a number. A magic charm may
have to be repeared three times, or three deities may be worshipped. The great temple
on the Capitol at Rome was dedicated to Jupiter, Juno and Minerva; some Roman colonies,
instead of one large temple, had three small ones on their Capitol. Four was Hermes® number,
seven was Apallo's, nine (3 % 3) was the number of the Muses. Numerals may also represent
letters and vice versa. One such example is the sundial with successive letters ZHO, either
‘live’ (long may you live) or 7, 8, 9, 10, four successive hours on the dial (fig. 53). A
better-known example is in the Revelation of St Jobn the Divine. There 666 represents
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53 An ancient cpigram (Anthologia Palatina,
x.43) may be rendered ‘Six hours of work are b4
quite enough to give: the next four stand for
ZH®OI, meaning “lve™.” This drawing of a -
sundial gives hours 1-10 as Greek Ictters,
including 7-10 as ZHOL, ‘live’, i.¢. "live long’. (o}

It was first published in the Literary Gazette, 1}
May 1823, purporting to show a sundial vl

found at Herculaneum, though one suspects € 6

it may have been reconstructed from the
cpigram and from the sundial in fig. 40 or

one similar.

by the Hebrew numenical value of its letters a man's name, so the Greek text as usually
now interpreted tells us, and we have to work out what this is: one answer suggested
is the first emperor who persecuted Christians, Nero. This ‘mark of the beast® occurs at
the end of Chapter 13. Earlier religions had given a mystic connotation to 13 as being
onc more than 12, a round dozen used among other things for the number of the tribes
of Israel. When under Christianity 13 came to be associated with the Last Supper, it acquired
an inauspicious meaning, but we do not kaow if the chapters of this book were marked
off at an early date.

It is not surprising that echoes of these associations can be found in classical poetry.
Virgil, who studied mathemarics in his youth, seems to have been fond of seatences or
groups of sentences occupying exactly 3, 7, 9 or 12 hexameter lines. As an oddity, Horace's
Qde i.11, tu ne quaesieris, in which he prophesies that he and his patron Maecenas will
die about the same time, contains 56 words. The prophecy proved correct, as Maecenas
died within weeks of Horace. Bur the poet may also have been prophesying by a riddle
that he would be 56 ahis death: in fact he was 56 and 11 months.

Astrology and clairvoyance were prevalent in most periods of antiquity. Not only were
the twelve signs of the Zodiac used, but complete horoscopes could be drawn up. One
such is the pictorial inscription known as the Lion of Commagene. Commagene was a
small kingdom in the north of Syria, and the horoscope of its king, Antiochus, is preserved
n a bas-relief formerly dated to 98 B¢ but now held to be of 62 or $5 Bc. The king
was born in the sign of the Lion, so a lion is shown with stars outlining parts of its body.
and with three planets above it.

Finally there is what may be called the ‘intentionally occult’, the use of codes and ciphers.
Unfortunately we know little of this in antiquiry except that Julius Caesar used a simple
progressive letter substitution for his despatches to Rome from Gaul; but there may have
been some crvptography which could be called arithmetical.

54 The Lion of Commagene, a bas-relicf
depicting the horoscope of Antinchus 1, king
ol Commagene c. 70-38 ac. Nimrad-Dagh,
south-cast Turkey.




10 The Sequel

As the research by Graeco-Roman mathematicians diminished about Ap 500, that of Indian
mathematicians, who had contacts with the West, increased. Among their accomplishments
were the extraction of square roots; the best approximation of  up to that time, 3.1416;
an csti by astr ical hods, of the distance from central India to ‘the Greek
city’, evidently Alexandria; and predictions of the future positions of planets.

An aid to their calculations was a simplified form of numerals. It is true that Greek
and Roman numerals have in part survived to the present day: the former are used in
the alphabetic form to denote volume numbers, etc.—e.g., in modern Greek Vol. 2 is Tom.
B; the latter are used particularly to express not only chapters or volumes but years, as
MCMLXXXVI for 1986. But both these and their Near East predecessors had distinct
disadvantages. Hindu numerals were passed on to the Arabs, via Baghdad, about Ao 800,
and we know them as arabic numerals, though in fact our forms of 2, 3 and 5 are slightly
nearer to Hindu than to the normal Arabic forms. Probably 2 and 3 originated as = and
= joined up, though in Arabic these strokes are vertical. An important part of this notation
was the incorporation of a sign for zero. Our sign 0 seems to have arisen as a Greek astro-
nomical zero co-ordinate, for example in the Almagest of Prolemy, though there was no
zero in other types of Graeco-Roman mathematics. In Hindu notation it decreased in size,
and in Arabic numerals proper, where 0 signifies 5, zero became a dot. Comparative tables
for 02 arc:

Late

Greek Hindu Arabic Spanish lalian Modern
(o] ] . (o] [ 0
a t l I 1 1
1) ¥ r 4 2 2

The use of numerals with plus or minus signs is found in various forms in the Chinese
treatise Nine Chapters on the Mathematical Art (50 BC or later), in Diophantus (for minus
signs only), in the Indian Brahmagupta, and in pscudo-Bede’s treatise. It was followed much
later by signs for multiplication and division. With these aids written arithmetical calculations
became much easier. By the fifieenth century arabic numerals, as we call them, though
earlier frowned upon, were used extensively for trade and navigation; they had long been
incorporated into mathematical treatises.

The Arabic centre which promoted most of the sciences was Baghdad. Under Haroun
al-Rashid (c.763-809), Caliph of Baghdad, scholars were gathered from every civilised
country of the Near East and the eastern Mediterranean, and marenial brought by them
and by merchants was collated. As a result, a number of Greek mathematical and technical
works were preserved in translation. The latitudes and longitudes of Ptolemy’s Geagraphy
were revised to take account of mare recent findings and to include Arab sertlements which
did not exist in Ptolemy's time. Al-ldrisi, who worked in the period up to 1154 for the
Norman king Roger II of Sicily, and other Arab cartographers produced world and regional
maps (fig. 55). Indian and Arab sundials and clocks and Arab water-wheels imitated and
often improved on classical models. With the establishment of a seat of learning at Cordova,
European scholars, such as Abbot Gerbert (later Pope Silvester I1) in the tenth century,
went there to meet Arab scholars and find out what scientific works had been preserved
from the Greek world. Gerard of Cremona, working in Tolede in the twelfth century,
translated Arabic versions of Euclid, Archimedes and others.
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55 World map by the Arab
geographer Al-Idrisi, with
south at the top. The original
was commissioned by the
Norman king Roger 11 of Sicily
and completed in 1154.
Oxford, New Bodleian Library,
Ms Pococke 375, {.3v—r.

During the Dark and Middle Ages, Western European measurements varied from country
to country (or even within countries) and only in part reflected Roman practice. Thus in
England, the foot (30.48 ¢m) was longer than the standard Roman foot (approx. 29.6 cm);
instead of 5 ft =1 (double) pace, the next unit is the yard of 3 ft, followed by the chain
of 22 yd and the furlong of 220 yd; and the mile is 5280 ft, not 5000 as in Roman measure,
and is equal to 1.6093km, instead of about 1.48 km. For a long time a descendant of
the Roman ulna, ‘forearm’, was in use in various countries. The English ell measured 45 in,
which bears no relation to the length of the forearm, as the derivation of the word would
suggest.

There is even a legacy of Roman land survey which has survived to the twenticth century.
In Roman times the surveyor's pole was called pertica or decempeda, and its length, as
implied by the latter name, was 10 Roman feet (approx. 2m 96 cm). The English measure
was ‘rod, pole or perch’, and this last name is derived from pertica. But it was normally
5%yards (5 m 3 cm) long, and this is why there are 4840 square yards to the acre. In earlier
times English, Irish and Scottish acres all measured 160 square poles, but the pole varied
considerably, the English acre being 5% x 5% x 160yd>. In fact the measurement of 5} vards
dates from about 1305, a Norman English equivalent being 16 fect, not 16},

Arithmetic was simplified by thei duction of arabic Is. Asan ple of compli-
cated calculations involving arithmetic and geometry, Al-Kashi, who about Ap 1400 was
the first director of the Samarkand observarory, wrote a treatise on the value of . He
followed the lead of Archimedes, but on a gigantic scale, based on inscribed and circumscribed
polygons with an extremely large number of sides. But advances in arithmetic and geometry
in various parts of the Old World had been so spectacular that we need not be surprised
if trigonometry and algebra received more attention in Renaissance research.

Some el of trig y were blished early in the history of mathematics,
and the Greek mathematician Menelaus (c. Ap 100) enabled spherical trig y to be

pplied to astr ical plowting. Further advances, as seen above, were made by Indian
mathematicians after the fall of the western Roman Empire; while the sine theorem, known
from about AD 1000, was atributed to the Arabic writer Abu al-Wafu. But it was left




to a sixteenth- -century German. influenced by a thirteenth-century Persian, to codify this
branch of math Regi or Johann Maller of Konigsberg, who went to
Leipzig University at the age uf 11, may be called the father of modern trigonometry. He
was influenced by Nasir al-Din al-Tusi (1201-74), a Persian who wrote in Arabic. Regio-
montanus’ work De triangulis omnimodis (1533) caused trigonometry to be looked on
as a discipline of its own. His name for sine was sinus totus and for cosine sinus complementi;
this was first called co-sirus in 1620.

Algebra had been developed as a logical system in the later Greek world of Alexandrian
learning by Dioph Indian math icians included in their research Diophantine equa-
tions, those with rwo or more variables, of which solutions are required 1o be i
Greater advances were made from the sixteenth century. In 1545 the halian mathematician
Girolamo Cardano, the title of whose book may be rendered as The great art, or On algebraic
rules, was the first to publish the solution of cubic equations, perhaps discovered earlier
in that century by other ltalians.

The application of mathemarics and measurement ro Renaissance technology depended
to no small extent on the legacy of the Graeco-Roman world. Small-scale mapping, surveying,
architecture, timekeeping and astronomy were among the fields particularly affected.

By the late Byzantine Empire the Geography of Prolemy had become neglected, and when
in 1295 Maximus Planudes found a copy in Constantinople it lacked maps. However, he
was soon able to recopy the text with world and regional maps, either copied with improve-
ments from another existing manuscript or reconstructed from the text. The major break-
through came in 1406, when Jacopo d'Angelo in Florence translated it into Latin. Since
for many parts of the world Prolemy’s maps improved on or complemented existing maps,
the Geography was first widely duplicated in manuscript and then circulated in printed
form—from 1475 without maps and from 1477 with them, In many of these printed editions
‘modern’ or ‘new’ maps appeared, particularly of parts of the world not known to the
ancients. Although, coupled with other sources, editions of Prolemy’s Geography misled

56 Map of lealy from Prolemy’s Geagmphy Rome 1478 cdition. On this map the cast coast takes
an abrupl turn south instead of continuing ESE. Afl manuscript variants of Prolemy’s latitude and

make this app e of south lraly i ble, with the ‘heel’ south of
Monte Gargano, nor south-east. Prolemy’s co-ordinates further north had already gone too [ar cast.
British Library.
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Columbus into thinking that in the Caribbean he had reached Asia, they played an outstand-
ing part in the history of exploration.

Progress in surveying technique was slow until the seventeenth century. The Romans
had concentrated on land survey by squares or rectangles on the whole, but by Tuder
times graphic triangulation was becoming important, with the i duction of plane-tabling.
Only by the seventeenth century were the Greek chorobates and dioptra and the Roman
groma and measuring-rod superseded. It was as late as 1700 that spirit-levels took the
place of the chorobates and its The dioptra was totally ignored, but its place
was taken first by instr based on trig ical advances and logarithmic tables,
facilitating angle-measurement in the field, and ultimately by the theodolite. The cross-staff,
successor to the groma, was itself replaced by the incorporation into the theodolite of the
vernier, invented by the Frenchman P. Vemnier, and telescopic sights; while measuring-rods
were b d by Edmund Gunter’s develop of a new surveying chain.

In the regular planning of the countryside we cannot be so sure that Roman antecedents
played a part; if they did, it was not from examination of the remains (no work was done
on this until 1833), but through circulation of Willem Goes® 1674 edition of the Roman
land surveyors’ manuals. It is likely that Thomas Jefferson consulted these before devising
in 1784 his own schemes for land division of the United States mid-West.

Viteuvius’ De Architectura, of which many manuscripts exist, was printed in Rome about
1486, in Florence in 1522, and in Rome again in 1544, and the work came into circulation
in ltaly, where hundreds of large Renaissance buildings still survive. It particularly influenced
the ltalian architect Andrea Palladio (1508-80), who showed his originality by adapting
rather than copying Graeco-Roman buildings. Thus the Teatro Olimpico at Vicenza (fig.
57), stared in the year of his death and completed three years later, is based on a Roman
theatre, but hasa permanent ceiling over the auditorium, the first theatre to have this feature,
andi iously ding into the distance and creating a sense of perspec-
tive for the audlcnce The auditorium itself is not semicircular but forms a segment of
acircle.

Among Palladio’s other conspicuous buildings is the so-called Rotonda, or Villa Capra,
in the countryside near Vicenza (fig. 58). This was built berween 1550 and 1553 as a fanciful
interpretation by Palladio of villas of Cicero and the younger Pliny. It is a perfectly symmetri-
cal domed building with four identical lonic fagades, so that the villa, as Palladio writes,
‘enjoys on all sides most beautiful views'. The entire neo-classical architectural revival owed
much to Palladio’s study of Vitruvius, and measurement played a significant role in this
revival.

In timekeeping, the Middle Ages showed an improvement on the ancient methods of
water-clocks and hour-glasses. Clocks driven by heavy weights were in ¢

57 Palladio’s Teatro
Ollmplco. Vicenza:
interior.




58 Palladio’s Villa
Capra, or Rotonda,
near Vicenza.

Among famous specimens is that in Strasbourg Cathedral, built by Henri de Vick (Wieck)
in 1362-70 and operated by an escapement and a weight. The first important step forward,
the invention of the pendulum clock, came after Galileo in 1583 discovered that a wider
swing of the Pisa Cathedral chandelier took no longer than a narrower swing. Later, by
checking with a warter-clock, he found that the length of a pendulum varies as the square
of the duration of its swing. This discovery, which strictly applies only to narrow swings,
enabled far more accurate clocks to be designed.

During the Dark and Middle Ages the Julian calendar, supplemented by the seven-day
week introduced in the fourth century Ab, continued unchanged. But as it was based on
a year averaging 365} days, whereas the true value is 365.242199, there was an error
after 1000 years of 7.801 days. For centuries, despite pleas, nothing was done to rectify
this discrepancy. But in 1545 the Council of Trent made positive recommendations, which
a generation later resulted in the first substantial change since Julius Caesar. In 1572 Pope
Gregory XIII appointed a Jesuit ast to formulate a new calendar, and ten years
later this Gregorian calendar was adopted in many Europecan countries. It provided that
ten days should be omitted that year, thus incorporating a slight correction to bring the
spring equinox back to 21 March, and that centennial years (1600, 1700, etc.) should
not be leap years; this itself was subsequently amended so that years divisible by 400 should
be leap years. In 1752 Britain adopted this ‘New Style’, omitting eleven days.

Advances in astronomy came in Muslim areas, with observations at Istanbul, Samarkand
and elsewhere, and then in Europe in the mid-sixteenth century, when Copernicus turned
away from the geocentric theory of nearly all previous cosmologists. Among Greek scientists,
Aristarchus (third century Bc) had maintained that the earth and planets go round the
sun. This theory was confirmed during the century after Copernicus, when Kepler showed
that the orbit of each planet is not a circle but an ellipse. As a result, ingenious theories
by Greek astronomers to explain apparent orbit discrepancies could for the first time be
disproved. The ancicnts, for example, had no idea of the size of the sun or the distance
berween the sun and the earth (though for the moon Hipparchus came close to the right
answer). It was the invention of the telescope and observations by Galileo, who made the
first astronomical telescope, that led to rapid advances in astronomical measurement. But
it was not until the seventeenth century that the distance of the sun was able to be calculated
within about 10%.

To summarise, in the period berween the fall of the Roman Empire and the Renaissance
we need to look at math icsand ly. M , with the dividing
up of the western provinces, came to have many more regional dlffm:nncs, even mlhln
countries; and the persistence of Latin as a scholarly | was not accomp d by
an adh e to Roman weights and measures. Research in mathematics, on the other hand,
first pure and then applied, continued over a wide area of the Old World and, with the
rediscovery of classical accomplishments, led to remarkable advances during the Renaissance.
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