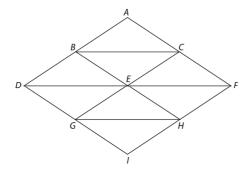
	Teste de Matemática A						
	2016 / 2017						
Teste N.º 5							
Matemática A							
Duração do Teste: 90 minutos							
10.º Ano de Escolaridade							
Nome do aluno:		N.º:	Turma:				

Grupo I

- Os cinco itens deste grupo são de escolha múltipla.
- Em cada um deles, são indicadas quatro alternativas de resposta, das quais **só uma** está correta.
- Escreva na sua folha de respostas **apenas o número de cada item e a letra** correspondente à alternativa que selecionar para responder a esse item.
- Se apresentar mais do que uma alternativa, a resposta será classificada com zero pontos, o mesmo acontecendo se a letra transcrita for ilegível.
- Não apresente cálculos nem justificações.
- **1.** Considere as proposições $p, q \in r$. Sabe-se que a proposição $((p \Rightarrow q) \Rightarrow (q \Rightarrow r)) \Rightarrow (p \lor q \Rightarrow r)$ é falsa. Quais são os valores lógicos de $p, q \in r$?
 - **(A)** p é verdadeira, q é falsa e r é falsa.
 - **(B)** p é verdadeira, q é verdadeira e r é falsa.
 - **(C)** p é falsa, q é verdadeira e r é verdadeira.
 - **(D)** p é falsa, q é falsa e r é verdadeira.
- 2. Na figura estão representados oito triângulos geometricamente iguais.



Os pontos B, C, E, G e H são os pontos médios dos segmentos de reta [AD], [AF], [DF], [DI] e [FI], respetivamente. Qual das opções representa o ponto A?

- **(A)** $\overrightarrow{DF} \overrightarrow{DA}$
- **(B)** $G \overrightarrow{CB} + \overrightarrow{HF}$
- (C) $D + 2\overrightarrow{GH} + \overrightarrow{ID}$
- **(D)** $E + \overrightarrow{DE} 2\overrightarrow{EC}$

3. Na figura está representado, num referencial o.n. Oxyz, o cubo [OABCDEFG], cujo volume é $24\sqrt{3}$. Os pontos A, C e G pertencem aos eixos Ox, Oy e Oz, respetivamente.

Qual das seguintes condições pode representar a esfera que contém todos os vértices do cubo?



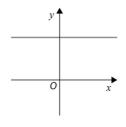
(A)
$$(x - \sqrt{3})^2 + (y - \sqrt{3})^2 + (z - \sqrt{3})^2 \le 12$$

(B)
$$(x + \sqrt{3})^2 + (y + \sqrt{3})^2 + (z + \sqrt{3})^2 \le 12$$

(C)
$$(x + \sqrt{3})^2 + (y + \sqrt{3})^2 + (z + \sqrt{3})^2 \le 9$$

(D)
$$(x - \sqrt{3})^2 + (y - \sqrt{3})^2 + (z - \sqrt{3})^2 \le 9$$

4. Quais dos seguintes gráficos são gráficos de funções reais de variável real?



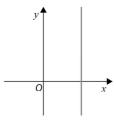


Gráfico II

Gráfico III

Gráfico IV

- (A) Gráfico I e gráfico II.
- (B) Gráfico III e gráfico IV.
- (C) Gráfico I e gráfico IV.
- (D) Gráfico II e gráfico III.
- **5.** De uma função f, de domínio \mathbb{R} , sabe-se que:
 - *f* é ímpar;
 - f tem exatamente três zeros;
 - f(1) = 0.

Seja g(x) = 2f(x-1). Qual dos seguintes conjuntos pode ser o dos zeros de g?

- **(A)** $\{-1, 0, 1\}$
- **(B)** $\{-2, 0, 2\}$
- **(C)** {0, 1, 2}
- **(D)** $\{-2, 0, -1\}$

Grupo II

Nas respostas aos itens deste grupo apresente o seu raciocínio de forma clara, indicando **todos os cálculos** que tiver de efetuar e **todas as justificações** necessárias.

Atenção: Quando para um resultado não é pedida a aproximação, pretende-se sempre o **valor exato**.

1. Seja P(x) um polinómio do terceiro grau.

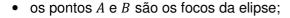
Sabe-se que:

- é divisível por $x^2 + 1$;
- dividido por $x 1 \sqrt{2}$ dá resto $-2\sqrt{2}$;
- 2 é uma raiz do polinómio.

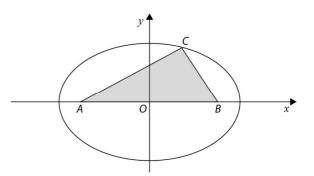
Determine P(x) e escreva-o na forma de polinómio reduzido.

2. Na figura está representada, num referencial o.n. x0y, uma elipse.

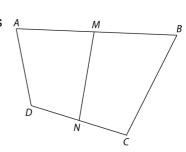
Sabe-se que:



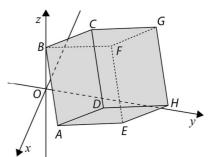
- o ponto C pertence à elipse;
- as coordenadas do ponto A são (−2, 0);
- o ponto B é simétrico do ponto A relativamente ao eixo Oy.



- **2.1.** Considere que $\overline{AC} + \overline{BC} = 2\sqrt{7}$ e escreva a equação reduzida da elipse.
- **2.2.** Suponha que a elipse representada é definida pela equação $3x^2 + 4y^2 = 48$, que a abcissa do ponto C é 2 e a sua ordenada é positiva. Defina por uma condição o triângulo [ABC].
- **3.** Na figura encontra-se representado o quadrilátero [ABCD]. Os pontos $M \in N$ são os pontos médios dos lados [AB] e [CD], respetivamente. Mostre que $\overrightarrow{DA} + \overrightarrow{CB} = 2\overrightarrow{NM}$.



4. Na figura está representado, em referencial o.n. Oxyz, um cubo [ABCDEFGH]. As coordenadas dos pontos A, B, C e F são (2, 1, 0), (0, 0, 2), (1, 2, 4) e (-2, 2, 1), respetivamente.

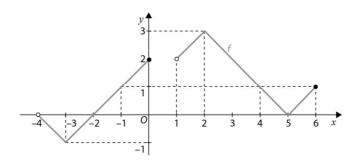


- **4.1.** Determine as coordenadas do ponto H.
- **4.2.** Escreva as equações cartesianas da reta paralela ao eixo Oz que contém o ponto A.
- **4.3.** Determine uma condição que defina o plano DFH. Apresente a sua resposta na forma ax + by + cz + d = 0 $(a, b, c, d \in \mathbb{R})$.
- **5.** Considere as funções reais de variável real f, cujo gráfico é $G_f = \{(-2,3), (-1,4), (0,5), (1,2), (2,1)\}$, e g tal que $g(x) = \frac{\sqrt{2x+1}}{x}$.
 - **5.1.** Indique o domínio e o contradomínio da função f.
 - **5.2.** Averigúe se f é uma função injetiva.
 - **5.3.** Determine o domínio da função g. Apresente a sua resposta na forma de intervalo ou de reunião de intervalos de números reais.
 - 5.4. Calcule:

5.4.1.
$$f \circ g\left(-\frac{1}{2}\right)$$

5.4.2.
$$g \circ f^{-1}(2)$$

6. Na figura está representado o gráfico de uma função real de variável real f.



- **6.1.** Estude a função f quanto à monotonia e à existência de extremos.
- **6.2.** Determine os valores de x para os quais f(x) < 1. Apresente a sua resposta na forma de intervalo ou reunião de intervalos de números reais.

COTAÇÕES

Grupo I	50
Cada resposta certa	10
Cada resposta errada	. 0
Cada questão não respondida ou anulada	. 0
Grupo II	150
	4.5
1	_
2	20
2.1	
2.210	
3	15
4	35
4.1 10	
4.2 10	
4.3 15	
5	40
5.1	
5.210	
5.3	
5.410	
6	25
6.1	
6.2	
0.2	
ΤΟΤΔΙ	200

TESTE N.º 5 - Proposta de resolução

Grupo I

1. Opção (A)

Como a proposição $((p \Rightarrow q) \Rightarrow (q \Rightarrow r)) \Rightarrow (p \lor q \Rightarrow r)$ é falsa, então $(p \Rightarrow q) \Rightarrow (q \Rightarrow r)$ é verdadeira e $p \lor q \Rightarrow r$ é falsa.

Para que $p \lor q \Rightarrow r$ seja falsa, tem-se que $p \lor q$ é verdadeira e r é falsa. Como $p \lor q$ é verdadeira, então p e q são ambas verdadeiras ou apenas p é verdadeira ou apenas q é verdadeira.

Se p e q são ambas verdadeiras ou se apenas q é verdadeira, então $p \Rightarrow q$ é verdadeira e $q \Rightarrow r$ é falsa, pelo que $(p \Rightarrow q) \Rightarrow (q \Rightarrow r)$ é falsa.

Se apenas p é verdadeira, então $p \Rightarrow q$ é falsa e $q \Rightarrow r$ é verdadeira, pelo que $(p \Rightarrow q) \Rightarrow (q \Rightarrow r)$ é verdadeira.

Assim, p é verdadeira, q é falsa e r é falsa.

2. Opção (C)

$$\overrightarrow{DF} - \overrightarrow{DA} = \overrightarrow{DF} + \overrightarrow{AD} = \overrightarrow{DF} + \overrightarrow{FI} = \overrightarrow{DI}$$

$$G - \overrightarrow{CB} + \overrightarrow{HF} = G + \overrightarrow{BC} + \overrightarrow{HF} = G + \overrightarrow{GH} + \overrightarrow{HF} = H + \overrightarrow{HF} = F$$

$$D + 2\overrightarrow{GH} + \overrightarrow{ID} = D + \overrightarrow{DF} + \overrightarrow{ID} = F + \overrightarrow{FA} = A$$

$$E + \overrightarrow{DE} - 2\overrightarrow{EC} = E + \overrightarrow{EF} + 2\overrightarrow{CE} = F + \overrightarrow{FI} = I$$

3. Opção (D)

$$V = 24\sqrt{3} \Leftrightarrow a^3 = 24\sqrt{3}$$

$$\Leftrightarrow a = \sqrt[3]{24\sqrt{3}}$$

$$\Leftrightarrow a = 2\sqrt[3]{3\sqrt{3}}$$

$$\Leftrightarrow a = 2\sqrt[3]{\sqrt{3^3}}$$

$$\Leftrightarrow a = 2\sqrt[6]{3^3}$$

$$\Leftrightarrow a = 2\sqrt{3} \text{ u.c. (medida da aresta do cubo)}$$

Assim, o centro da esfera é o ponto P de coordenadas $(\sqrt{3}, \sqrt{3}, \sqrt{3})$ e o seu raio é:

$$\|\overrightarrow{OP}\| = \sqrt{(\sqrt{3})^2 + (\sqrt{3})^2 + (\sqrt{3})^2} = \sqrt{3+3+3} = \sqrt{9} = 3 \text{ u.c.}$$

Logo, a esfera que contém todos os vértices do cubo é definida por:

$$(x - \sqrt{3})^2 + (y - \sqrt{3})^2 + (z - \sqrt{3})^2 \le 9$$

4. Opção (D)

Os gráficos II e III são gráficos de funções, ao passo que os gráficos I e IV não. Com efeito, nos gráficos II e III, a todo o número real corresponde um único número real, enquanto nos restantes gráficos há pelo menos um número real ao qual correspondem pelo menos dois números reais.

5. Opção (C)

Uma vez que f é ímpar, tem três zeros e f(1) = 0.

Então, o conjunto dos zeros de f é $\{-1, 0, 1\}$. O gráfico da função g obtém-se do gráfico da função f por uma translação associada ao vetor (1, 0), seguida de uma dilatação vertical de coeficiente 2. Então, os zeros de g são $\{0, 1, 2\}$.

Grupo II

1.
$$P(x) = a(x^2 + 1)(x - 2)$$

$$P(1+\sqrt{2}) = -2\sqrt{2} \Leftrightarrow a\left(\left(1+\sqrt{2}\right)^2 + 1\right)\left(1+\sqrt{2}-2\right) = -2\sqrt{2}$$

$$\Leftrightarrow a\left(1+2\sqrt{2}+2+1\right)\left(-1+\sqrt{2}\right) = -2\sqrt{2}$$

$$\Leftrightarrow a\left(4+2\sqrt{2}\right)\left(-1+\sqrt{2}\right) = -2\sqrt{2}$$

$$\Leftrightarrow a\left(-4+4\sqrt{2}-2\sqrt{2}+4\right) = -2\sqrt{2}$$

$$\Leftrightarrow a\times2\sqrt{2} = -2\sqrt{2}$$

$$\Leftrightarrow a = -1$$

Logo,
$$P(x) = -1(x^2 + 1)(x - 2) = -(x^3 - 2x^2 + x - 2) = -x^3 + 2x^2 - x + 2$$
.

2.

2.1.
$$\overline{AC} + \overline{BC} = 2\sqrt{7} \Leftrightarrow 2a = 2\sqrt{7} \Leftrightarrow a = \sqrt{7}$$

Como A(-2,0) e B(2,0), então c=2.

Logo:

$$a^2 = b^2 + c^2 \Leftrightarrow 7 = b^2 + 4 \Leftrightarrow b^2 = 3$$

Então, $b = \sqrt{3}$.

Assim, a equação reduzida da elipse é $\frac{x^2}{7} + \frac{y^2}{3} = 1$.

2.2.
$$C(2, y), y > 0$$

$$3 \times 2^2 + 4y^2 = 48 \Leftrightarrow 12 + 4y^2 = 48 \Leftrightarrow 4y^2 = 36 \Leftrightarrow y^2 = 9$$

Como y > 0, então y = 3 e, assim, C(2,3).

$$m_{AC} = \frac{3-0}{2+2} = \frac{3}{4}$$

$$AC: y = \frac{3}{4}x + b$$

Como A pertence a AC:

$$0 = \frac{3}{4} \times (-2) + b \Leftrightarrow b = \frac{6}{4} \Leftrightarrow b = \frac{3}{2}$$

Logo,
$$AC: y = \frac{3}{4}x + \frac{3}{2}$$
.

$$BC: x = 2$$

AB:
$$y = 0$$

Assim, uma condição que define o triângulo [ABC] é $y \le \frac{3}{4}x + \frac{3}{2} \land x \le 2 \land y \ge 0$.

3.
$$\overrightarrow{DA} + \overrightarrow{CB} = (\overrightarrow{DN} + \overrightarrow{NM} + \overrightarrow{MA}) + (\overrightarrow{CN} + \overrightarrow{NM} + \overrightarrow{MB}) =$$

$$= \overrightarrow{DN} + \overrightarrow{CN} + \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{NM} + \overrightarrow{NM} =$$

$$= \overrightarrow{0} + \overrightarrow{0} + 2\overrightarrow{NM} =$$

$$= 2\overrightarrow{NM}$$

4.

4.1.
$$H = A + \overrightarrow{BC} + \overrightarrow{BF} =$$

= $(2, 1, 0) + ((1, 2, 4) - (0, 0, 2)) + ((-2, 2, 1) - (0, 0, 2)) =$
= $(2, 1, 0) + (1, 2, 2) + (-2, 2, -1) =$
= $(1, 5, 1)$

- **4.2.** A(2,1,0) e a reta é paralela a Oz, logo as equações pedidas são $x=2 \land y=1$.
- **4.3.** *DFH* é o plano mediador de [*AC*], logo:

$$(x-2)^{2} + (y-1)^{2} + z^{2} = (x-1)^{2} + (y-2)^{2} + (z-4)^{2}$$

$$\Leftrightarrow x^{2} - 4x + 4 + y^{2} - 2y + 1 + z^{2} = x^{2} - 2x + 1 + y^{2} - 4y + 4 + z^{2} - 8z + 16$$

$$\Leftrightarrow -2x + 2y + 8z - 16 = 0$$

$$\Leftrightarrow x - y - 4z + 8 = 0$$

5.

5.1.
$$D_f = \{-2, -1, 0, 1, 2\}$$

 $D'_f = \{1, 2, 3, 4, 5\}$

5.2. *f* é uma função injetiva, pois a objetos distintos correspondem imagens distintas.

5.3.
$$D_g = \{x \in \mathbb{R}: 2x + 1 \ge 0 \land x \ne 0\} = \{x \in \mathbb{R}: x \ge -\frac{1}{2} \land x \ne 0\} = [-\frac{1}{2}, 0[\cup]0, +\infty[$$

5.4.

5.4.1.
$$f \circ g\left(-\frac{1}{2}\right) = f\left(g\left(-\frac{1}{2}\right)\right) =$$

$$= f\left(\frac{\sqrt{2\times\left(-\frac{1}{2}\right)+1}}{-\frac{1}{2}}\right) =$$

$$= f(0) =$$

$$= 5$$

5.4.2.
$$g \circ f^{-1}(2) = g(f^{-1}(2)) =$$

$$= g(1) =$$

$$= \frac{\sqrt{2 \times 1 + 1}}{1} =$$

$$= \sqrt{3}$$

6.

6.1.

х	-4		-3		0	1		2		5		6
Variação de f	n.d.	Ŋ	-1	7	2	n.d.	7	3	7	0	7	1

f é estritamente decrescente em]-4,3] e em [2,5]; é estritamente crescente em [-3,0], em [1,2] e em [5,6].

- -1 é um mínimo absoluto da função e −3 é um minimizante.
- 3 é um máximo absoluto da função e 2 é um maximizante.
- 0 é um mínimo relativo da função e 5 é um minimizante.
- 2 e 1 são máximos relativos da função e 0 e 6 são maximizantes.

6.2.
$$f(x) < 1 \Leftrightarrow x \in]-4, -1[\cup]4, 6[$$