

Container Port Capacity and Utilization Metrics

Dan Smith The Tioga Group, Inc.

Diagnosing the Marine Transportation System

– June 27, 2012

Research sponsored by USACE Institute for Water Resources & Cargo Handling Cooperative Program

www.tiogagroup.com/215-557-2142

Key questions

- How do we measure port capacity?
- How do we measure utilization and productivity?
- What do the metrics mean for port development?

Answers

- Port capacity is a function of draft, berth length, CY acreage, CY density, and operating hours
- Most U.S. ports are operating at well below their inherent capacity
- Individual ports and terminals face specific capacity bottlenecks, especially draft

What can we do with publicly available data?

- Infrastructure and operating measures are accessible
- Labor and financial measures are not

Available Port Data	Yield	Available Port Metrics		
Always		Land Use		
Channel & Berth Depth		TEU/Gross Acre	Gross/Net CY Acres	
Berth Length		TEU Slots/CY Acre (Density)	Net/Gross Ratio	
Berths		TEU Slots/Gross Acre	CY Utilization	
Cranes & Types	\	TEU/Slot (Turns)	Moves/Container	
Gross Acres	\ \	TEU/CY Acre	Avg. Dwell Time	
Port TEU		Crane Use		
Avg. Vessel TEU		Number of Cranes	Avg./Max Moves per hour	
Vessel Calls	\	TEU/Crane	TEU/Available Crane Hour	
Sometimes		Vessel Calls/Crane	TEU/Working Crane Hour	
Avg. Crane Moves/hr		Crane Utilization	TEU/Man-Hour	
CY & Rail Acres		Berth Use		
TEU Slots		Number of Berths	Max Vessel DWT and TEU	
Estimated		Length of Berths	TEU/Vessel TEU	
Max Vessel TEU		Depth of Berth & Channel	Vessel TEU/Max Vessel TEU	
Confidential		TEU/Berth	Berth Utilization - TEU	
Costs	l //	Vessels/Berth	Berth Utilization - Vessels	
Man-hours	/	Balance & Tradeoffs		
Vessel Turn Time	,	Cranes/Berth	Net Acres/Berth	
Rates		Gross Acres/Berth	Cost/TEU	
Avg. Dwell Time		CY Acres/Berth	Man-Hours/TEU	
Working Crane Hours		CY Acres/Crane	Man-Hours/Vessel	

TEU per Acre is a Misleading Metric

- U.S. (and foreign) terminals vary greatly in their land use patterns land is the cheapest U.S. input
 - Low TEU/acre = excess capacity or low-cost, low-density operations
 - High TEU/acre = tight capacity or higher-cost operations

Container Terminal Capacity Dimensions

Marine Container Terminal Characteristics

Container Terminal Profiles

- Tioga completed profiles for each U.S. container terminal
- The main info sources were port and terminal websites
- Sources do not always agree, and conditions can change quickly

CONTAINER TERMINAL PROFILE				
Profle date:	Sept. 27, 2009	2010 TEU:	610,918	
Port:	Maryland	Total Acres:	256	
Terminal:	Seagirt Marine, Baltimore	CY Acres:	134	
Terminal Type:	Container Terminal	On-Dock Rail Acres:	66	
Address:	2600 Broening Highway	Other Non-CY Acres:	56	
	Baltimore, MD 21224	Net Terminal Acres:	190	
Operator (Stevedore):	Ports America (410-288-8602)	Berths:	3	
Contact Name:		Total Berth Length:	3,127	
Telephone Number:	410-288-8602	Channel Depth (MLLW):	50	
Fax Number:	410-288-8649	Berth Depth (MLLW):	42	
E-Mail Address:		Panamax Container Cranes:		
Port Website:	www.marylandports.com	Post-Panamax Container Cranes:	7	
Terminal Website:	www.portsamerica.com	CY Rail-Mounted Gantries:		
Inbound Gates:	9	CY Rubber-Tired Gantries:	12	
Outbound Gates:	5	CY Side or Top Loaders:		
Reversible Gates:		CY Straddle Carriers:		
Total Gates:	14	CY Reach Stackers:		
On-Line Access System:	eModal & Navis	Total CY Lift Machines	12	
Appointment System:	no	On-site M&R (yes/no):	no	
Reefer Plugs/Slots:	192	On-dock Rail (yes/no):	yes	
Terminal Hours:	Mon – Fri 0700-1700			
Gate Hours:				

Notes: Seagirt near dock terminal operated by CSX is contiguous to the marine terminal, Norfolk Southern Baltimore terminal is 3-4 miles from the Port. Dundalk and Seagirt terminals are connected by an internal connector bridge.

Assumptions and rules of thumb

- Maximum annual TEU slot turnover = 70 turns (5 day dwell, 350 days/yr)
- Crane available 16 hours/day (two shifts), 250 days/yr
- Modern crane maximum = 35 moves/hr
- Vessel spacing at berth = vessel beam
- Maximum of 260 annual calls per berth (5 per week)
- Working draft = channel/berth draft 3 feet
- Maximum vessel sailing draft = 92% of design draft
- Sustainable capacity = 80% of maximum capacity

Example:

- **7 cranes** @ max of 4,000 hrs/yr = 28,000 crane hours
- 80% = 22,400 sustainable crane hours
- Maximum crane productivity of 35 containers per hour
- 80% = 28 cont./hr x 1.54 TEU/container = 43 TEU/hr
- Sustainable crane capacity = 43x22,400 = 965,888 TEU/yr

Container yard capacity depends on acreage and storage density

- Lower storage densities usually mean less handling and lower cost
- Terminal designers and managers increase density to accommodate rising volume

DENSITY	TYPE	COMMENT	
VERY LOW DENSITY 80 TEU/acre	Ro/Ro or Ship's Gear Wheeled Combination Dedicated Wheeled	Very small, barge, specialized Small, mixed, legacy Older terminals when new	
LOW DENSITY	Wheeled/Top-pick	Transition terminals	
80 TEU/acre	Top-pick/Wheeled		
MID DENSITY	Straddle/Top-pick/Wheeled	"Hybrid" terminal	
100-200 TEU/acre	RTG/Top-pick/Wheeled	Dominant "hybrid" type	
HIGH DENSITY	Straddle Carrier	NIT Virginia, Maher NYNJ	
160-300 TEU/acre	RTG	No US example	
VERY HIGH DENSITY	DMC	APM Portsmouth	
360 TEU/acre	RMG		

RUBBER-TIRED GANTRY (RTG)

RAIL-MOUNTED GANTRY (RMG)

- Terminal managers adjust operations to minimize cost at each volume
- Terminals revert to wheeled operations where possible when business is slow (e.g. 2009)

- U.S. ports average about 190 TEU slots per CY acre
- Averages are due to port and terminal storage type mixes

- On average, U.S. ports turn over CY slots 32 times annually
- Ports with more reserve CY capacity have lower turnovers tighter CYs have higher averages

With existing terminal layouts and handling densities, U.S. container ports have substantial reserve CY capacity

Crane utilization is sacrificed to turn vessels quickly

- Cranes are much cheaper than vessels
- Ports can add cranes relatively quickly

Aggregate vessel capacity is a function of vessel size and service frequency

- Vessel Size is limited by draft (and berth length)
- Vessel call frequency is determined by the number of carrier services (most services are weekly)

Recent "mega-ship" designs depart from past practice by limiting draft to 50-51 feet

Vessel capacity estimates use a modified TEU/Draft relationship to account for emerging design practice

Trade volumes and drafts on the whole service rotation dictate vessel size

- U.S. average is 4,233 TEU
- Average sizes range from 32-76% of the maximum size

- Actual vessel sizes may be widely distributed
- Vessels can exceed the estimated maximum size by light loading or riding tides

2012 Port Metro Vancouver Vessel Calls					
Service	Avg DWT	Avg TEU	Calls		
ANW1	35,433	2,698	52		
C-PNW	93,650	7,500	52		
H-PNW	68,146	5,506	52		
Y-PNW	50,155	4,236	52		
K-PNW	70,112	5,832	52		
CGM-CMA/Maersk	101,916	8,071	52		
EMC UAM	62,441	5,317	52		
MPS	37,535	2,659	52		
MSC Cal Express	65,794	4,986	52		
PNX	100,621	7,889	52		
NWX	105,275	8,586	52		
WAN	18,339	1,329	26		
PNW	72,483	6,280	52		
PS1	63,445	5,294	52		
Westwood	40,744	2,067	52		
Port Average	65,739	5,217	50		

Theoretically, a port can unload and load 200% of a vessel's capacity (100% off, 100% on)

- Most ports handle only 30-60% of vessel capacity due to multiple calls on each voyage –U.S. average of 2,188 TEU
- LALB loads unloads and loads 112% 5401 TEU per voyage

Multiple berth utilization metrics tell unique port stories

- Port capacity and utilization assessments require multiple metrics
- Most U.S. ports have substantial unused capacity inherent in their terminal infrastructure
- Terminals combine multiple operating methods and strive to minimize cost
- U.S. ports operate at lower densities than European or Asian terminals – land is cheap here
- Terminal capacity utilization is often constrained by vessel sizes, vessel utilization, and call frequency
- Channel & berth draft are the "exogenous" constraints
- Every port and terminal is different

Contacts and Follow-ups

CHCP Productivity Report

http://www.marad.dot.gov/documents/070810_Tioga_CH

CP_Productivity_Report.pdf

Tioga website: www.tiogagroup.com

Project manager: dsmith@tiogagroup.com, 925-631-0742