
This book describes the stochastic method for ocean wave analysis. This method
provides a route to predicting the characteristics of random ocean waves -
information vital for the design and safe operation of ships and ocean structures.

Assuming a basic knowledge of probability theory, the book begins with a
chapter describing the essential elements of wind-generated random seas from
the stochastic point of view. The following three chapters introduce spectral
analysis techniques, probabilistic predictions of wave amplitudes, wave height
and periodicity. A further four chapters discuss sea severity, extreme sea state,
directional wave energy spreading in random seas and special wave events such as
wave breaking and group phenomena. Finally, the stochastic properties of non-
Gaussian waves are presented. Useful appendices and an extensive reference list
are included. Examples of practical applications of the theories presented can be
found throughout the text.

This book will be suitable as a text for graduate students of naval, ocean and
coastal engineering. It will also serve as a useful reference for research scientists
and engineers working in this field.
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PREFACE

This book is intended to provide uniform and concise information neces-
sary to comprehend stochastic analyss and probabilistic prediction of
wind-generated ocean waves.

Description and assessment of wind-generated ocean waves provide
information vital for the design and operation of marine systems such as
ships and ocean and coastal structures. Wind-generated seas continu-
ously vary over a wide range of severity depending on geographical loca-
tion, season, presence of tropical cyclones, etc. Furthermore, the wave
profile in a given sea state is extremely irregular in time and space - any
sense of regularity is totally absent, and thereby properties of waves
cannot be readily defined on a wave-by-wave basis.

Characterization of the stochastic properties of ocean waves was first
presented in the early 1950s; Neumann (1953), Pierson (1952, 1955), St
Denis and Pierson (1953) introduced the stochastic approach for analysis
of random seas, and Longuet-Higgins (1952) demonstrated the probabil-
istic estimation of random wave height. The four decades following the
introduction of the stochastic prediction approach have seen phenomenal
advances in the probabilistic analysis and prediction methodologies of
random seas.

For the design of marine systems, information on the real world is
required. Recent advances in technology permit the use of the probabil-
istic approach to estimate the responses of marine systems in a seaway,
including extreme values, with reasonable accuracy. Such technology
lends itself to application of the probabilistic approach as an integrated
part of modern design technology in naval, ocean and coastal engineering.

In view of the growing need for more comprehensive advances in pre-
diction methodologies and for application of the probabilistic approach
in naval, ocean and coastal engineering, this book is designed as a text
book at the graduate level and as a reference book for researchers and
designers. The intent is to provide a thorough understanding of the
modern concept of stochastic analysis and probabilistic prediction of
wind-generated random seas. Specific efforts are made in this work to
explain the basic principles supporting current prediction techniques and
to provide practical applications of prediction methods.

XI



Xll PREFACE

Readers are expected to be familiar with basic probability theory and
fundamental stochastic processes. For the readers' convenience, how-
ever, definitions, theorems and relevant formulae on probability and sto-
chastic process theory used in the text are summarized in the appendixes
without proof or derivation.

I am grateful to the College of Engineering, University of Florida, for
granting me sabbatical leave to prepare this book. Significant progress
was achieved toward its completion during this period of time. I would
like to acknowledge the encouragement and support received from
Professor Eatock Taylor of the University of Oxford during this under-
taking. Thanks are also due to Professor Isobe of the Tokyo University
who provided valuable suggestions on the section addressing directional
wave spectra.

I am indebted to many learned scholars and researchers who directly
or indirectly inspired me to study the stochastic analysis and probabilistic
prediction of ocean waves. I thank those who sponsored my research
which ultimately culminated in this book; in particular, Dr Silva, Office of
Naval Research. Appreciation is extended to my graduate students; in
particular, Drs C.H. Tsai, D.W.C. Wang, I.I. Sahinoglou, K. Ahn and
Lieut. D.J. Robillard, US Navy, who through their dedicated project
support had a significant influence on the final product. Finally, I would
like to acknowledge the contribution of my wife, Margaret, who read the
complete manuscript and provided valuable assistance with the editorial
work.



i DESCRIPTION OF RANDOM SEAS

1.1 STOCHASTIC CONCEPT AS APPLIED TO
OCEAN WAVES

1.1.1 Introduction
The profile of wind-generated waves observed in the ocean changes ran-
domly with time; it is non-repeatable in time and space. In reality, both
wave height (peak-to-trough excursions) and wave period vary randomly
from one cycle to another. It is often observed that waves break when the
wave steepness exceeds a certain limit. Furthermore, during the process
of the wind-generated waves traveling from one location to another after a
storm, waves of shorter length gradually lose their energy resulting in the
wave profile becoming less irregular (this situation is called swell) than
that observed during a storm.

A more distinct difference in the wave profile can be observed when
the water depth becomes shallow. As an example, Figure 1.1 shows por-
tions of wave profiles recorded in severe seas; one in deep water in the
North Atlantic, the other in a nearshore area of water depth 2.1 m. As
seen in Figure 1 (a), positive and negative sides of the wave profile in deep
water are, by and large, similar, while for waves in shallow water (Figure
l(b)), peaks are much sharper than troughs, and the order of magnitude
of the peaks is different from that of the troughs.

As seen in the examples shown in Figure 1.1, evaluation of the proper-
ties of random waves is almost impossible on a wave-by-wave basis in the
time domain. However, if we consider the randomly changing waves as a

( a ) (b )

Fig. 1.1. Wave profiles in severe seas, (a) deep water; (b) shallow water.
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Fig. 1.2. Comparison between histogram of wave profile and theoretical
probability density function: (a) deep water; (b) shallow water.

stochastic process, then it is possible to evaluate the statistical properties
of waves through the frequency and probability domains.

In the stochastic process approach, waves in deep water are catego-
rized as a Gaussian random process for which the probability distribution
of displacement from the mean value (wave profile) obeys the normal
probability law. On the other hand, waves in areas where the water depth
affects the wave properties are categorized as a non-Gaussian random
process. Examples of comparisons between histograms of the wave
profile constructed from data obtained in severe seas and the theoretical
probability density functions are shown in Figure 1.2. Figure 1.2 (a)
shows a comparison for waves in deep water in which the theoretical
probability density function is a normal probability distribution with a
variance evaluated from the data. In Figure 1.2(b) the comparison per-
tains to waves obtained in shallow water, and the theoretical probability
density function given in the figure is as presented in Section 9.2.3. As
seen in these examples, wave profiles in both deep and shallow water are
well represented by theoretical probability distributions, and this permits
us to predict various statistical properties with reasonable accuracy.

1.1.2 Ocean waves as a Gaussian random process
As stated in the preceding section, ocean waves in deep water are consid-
ered to be a Gaussian random process. This was first found by Rudnick
(1951) through analysis of measured data obtained in the Pacific Ocean. In
general, the Gaussian property of ocean waves depends on sea severity and
water depth. It may safely be said that if the water is sufficiently deep, waves
may be considered to be a Gaussian random process irrespective of sea
severity, including very severe sea conditions associated with hurricanes.
Waves in relatively shallow water areas may also be considered as a Gaussian
random process if the sea severity is very mild. This will be discussed in
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detail in Section 5.2.3 in connection with hurricane-generated seas and in
Chapter 9 where wave properties in shallow water areas are presented.

The question arises as to the rationale for ocean waves being a
Gaussian random process. This may be explained based on the central
limit theorem in probability theory as follows.

Let 17 be the wave profile at a fixed time t. Here, rj is a random variable
defined in the sample space (—oo5oo). We may assume that 7? is the sum of a
large number of components X. That is,

v=Xl+X2+...+Xn (1.1)

where the X{ are statistically independent random variables having the
same probability distribution, although the form of the probability distri-
bution is unknown. Let the mean value of X{ be zero and its variance (the
second moment) be o2. Since the X{ are statistically independent, the
probability distribution of 17 (which is unknown at this stage) has zero
mean and variance wo2, where n is large.

We may standardize the random variable 17 and write the new random
variable Z as follows:

n

Z= TJ/(VW) =]£ Xj/(Vnor) (1.2)

Let the characteristic function of Xbe 0x(r)> though the form of (j)x(t) is
unknown. Then, by using the properties of the characteristic function,
the characteristic function of the standardized random variable X/(Vwo)
can be written from Eq. (1.2) as 0x(r/Vwo). Hence, the characteristic
function of Z becomes

<fc(0={&(rfVSo)}» (1.3)
On the other hand, the characteristic function can be expanded in

general as follows:

</>x(r) = l+zrE[%]-^E[x2] + ... (1.4)

Since E[x] and E[x2] of the standardized random variable are 0 and 1,
respectively, 4>x(tl\rno) may be written as

ðx(tlVno) = 1 - (t2l2n)+o(fln) (1.5)

and thereby we have

ðz(t) = {l-(t2/2n)+o(t2/n)}n (1.6)

By letting n—•oo, Eq. (1.6) yields

cf>z(t)=txp{-t2/2} (1.7)

This is the characteristic function of the standardized normal distri-
bution. This implies that the random variable Z obeys the normal
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distribution with zero mean and unit variance. Therefore, 77 has a
normal distribution with zero mean and variance no2, and hence it may
be said that the waves are a Gaussian random process.

Following the concept of the central limit theorem, Pierson et ah
(1958) show an explanatory sketch (given in Figure 1.3) indicating ocean
waves consisting of an infinite number of sinusoidal waves having the
same height with different frequencies and directional angles.

1.1.3 Random seas
The random fluctuation of the sea surface is generally attributed to energy
transfer from wind to the sea. The interaction between air and sea which

Fig. 1.3. Structure of random sea (Pierson etal., 1958).
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leads to wave formation is an extremely interesting phenomenon.
However, the generation and growth mechanism of waves by wind is
beyond the scope of this text, and it may suffice to list such well-known
references on this subject as Jaffreys (1924, 1925), Miles (1957, 1959a,
1959b, 1960, 1962) and Phillips (1966, 1967). Further detailed discus-
sions on this subject may be found in Sverdrup and Munk (1947), Pierson
(1952, 1955), Kinsman (1965) andDonelan (1990), among others.

The potential and kinematic energies of random waves are represented
by the wave spectral density function, often simply called the wave spec-
trum, and it plays a significant role in evaluating the statistical properties
of random waves. The mathematical definition and a detailed discussion
of the wave spectral density function will be given in Chapter 2. Only a
conceptual description of the wave spectrum, necessary for the stochastic
presentation of ocean waves, is given here as outlined below.

First, an example of the wave spectral density function, S((o), com-
puted from data obtained in the North Atlantic (Moskowitz et al 1963) is
shown in Figure 1.4. The spectral density function illustrates the magni-
tude of the time average of wave energy as a function of wave frequency,
and the area under the density function represents the degree of sea sever-
ity. The most commonly used definition of sea severity is the significant
wave height, denoted by Hs (defined in Section 3.6) which is equal to four
times the square-root of the area under the spectral density function. The
significant wave height of the spectrum shown in Figure 1.4 is 8.9 m. As
seen in the figure, the spectrum peaks at the frequency a)=0A3 radians

J 25
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1.6 2.0

Fig. 1.4. Example of wind-generated spectrum (significant wave height
8.9 m).



DESCRIPTION OF RANDOM SEAS

per second (rps) in this example. This implies that waves of length
2iTglo)2=333 m have the largest energy in this sea. It should not be inter-
preted from Figure 1.4 that waves of 330 m in length are the most domi-
nant, frequently observed waves in this sea. The frequency of occurrence
of waves having a specific length must be evaluated from the probability
density function of wave period.

As stated earlier, the source of irregularity of waves observed in a sea is
usually the local wind. Sometimes, however, another wave system, called
swell, runs across or mixes with wind-generated local waves. Swell is
defined as waves which have traveled out of their generating area. During
the course of traveling, shorter waves are overtaken by larger waves result-
ing in a train of more regular long waves moving in its own direction.
Fairly large waves observed at sea with minor or even no wind may be cat-
egorized as swell.

When swell mixes with the local wind-generated waves, it is not easily
identified in the wave record; however, it can be clearly identified in the
wave spectrum. Figure 1.5 shows a wave spectrum of significant wave
height of 4.9 m obtained from data taken in the North Atlantic. The sea is
much less severe than that shown in Figure 1.4. The spectrum has double
peaks, one of which occurs at the same frequency, 0.43 rps, as observed
in the spectrum shown in Figure 1.4. In this case, however, it is under-
stood that a swell of length approximately 333 m is crossing or mixing
with the local wind-generated seas.

0.4 0.8 1.2

FREQUENCY u IN RPS
1.6

Fig. 1.5. Example of combined swell and wind-generated wave spectrum
(significant wave height 4.9 m).
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It is noted that, in extremely severe seas., the major portion of the wave
energy is usually concentrated around a low frequency while the remain-
ing energy spreads over a wide range of higher frequencies. The very large
low frequency energy observed in this case, however, is not associated
with swell. An example of a wave spectrum for extremely severe seas
(significant wave height of 16.1 m) is shown in Figure 1.6. This spectrum
is one of very few wave spectra obtained from records taken in extremely
severe seas.

Since waves in the ocean are not necessarily moving in the same direc-
tion as the wind, the wave energy represented by the spectrum must
consist of energies spreading in various directions. Therefore, we may
consider a directional spectral density function, denoted by S(co,0), and
let the time average of wave energy at any frequency interval Aco and for
any directional angle interval A 9 of the random sea be equal to (1/2) pgaf>
where a- is a positive random variable. That is, by ignoring the factor p#,
we may write

S(<o,0)Ao)AO=(l/2) a] (1.8)

80

O
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60

co 40
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C/)

20

0.4 0.8 1.2 1.6
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2.0

Fig. 1.6. Wave spectrum evaluated from data obtained in extremely severe
seas (significant wave height 16.1 m).
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The time average of the total energy of waves coming from various
directions and including all frequencies is given by

U ? = f I SfaQdudO (1.9)
-I i

This is the basis of the stochastic description of waves in random seas.

AaAe -I i

1.2 MATHEMATICAL PRESENTATION OF
RANDOM WAVES

For the mathematical presentation of waves in random seas, knowledge of
the basic stochastic theory presented in Chapter 2 is required. Hence, the
stochastic description of random waves will be discussed in Chapter 2.
However, a mathematical presentation of random wave profiles based on
Eq. (1.8) is presented in this section.

Let us consider a progressive wave in deep water using the coordinate
system (X,V,Z) fixed in space, and let 6 be the angle taken in a counter-
clockwise direction with respect to the X-axis. Then, the profile of
simple harmonic waves traveling at an angle 6 with the X-axis may be
written as

W 1
)=acosi— (xcos Q+y sin 9) - cot + e \ (1.10)

[g J
where a—amplitude, co^frequency in rps, e=phase.

Next, let us consider the incidental wave profile at time t to be of an
infinite number of sinusoidal wave components composed of different
amplitudes, a;, coming from divergent directions 0y, with various frequen-
cies o)j. Here, a;, 9- and (Oj are random variables covering the range
0<a;<oo, -7r<9j<7r and 0<o>y<o°, respectively. The phase e is also a
random variable distributed uniformly over the range —ir<e-<ir^ and its
magnitude depends on the frequency and angle. Thus, we may write the
profile of random waves as

j c o s (* c o s

The amplitude a- satisfies the condition given in Eq. (1.8) for any fre-
quency and directional interval Aa> A0.

By considering the number of discrete waves given in Eq. (1.11) to be
extremely large, while maintaining the frequency as well as directional
angle components to be extremely small, the summation may be pre-
sented as an integral with respect to co and 0. Then, from Eqs. (1.8) and
(1.11), we may write the profile of the random sea surface by the follow-
ing stochastic integral representation (Pierson 1955, St. Denis and
Pierson 1953):
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r r w 1
>,r)= cosj—(xcos Q+y sin 0)-a)r+e(o>,0) [

J J [g J
- 7 7 0

xV2S(o>,fl)d(ode (1.12)
The integration in the above equation is not an integral in the Riemann
sense. It represents simply a mathematical abstraction, and the equation
should be interpreted in the following manner:

1 r *&•+!
/ \ cos (JC cos 62j+ j +3; sin ^2;+ i)

j=-s i=o
-(o2l+lt+e(co2l+ve2j+1)\

(1.13)

with the limits a)2r—•^ <*)2i+2-(D2i=0, 02s+l-^7Ty ^_2s_1->-77and 02j+2-62j=0.
It is often convenient to express the wave profile given in Eq. (1.12) in

a vector form by writing a)2/g=k and by using the following definition:

r=xi+y)
(1.14)

Equation (1.12) then may be written as

r](r,t)= cos(k-r- a)t+ e)dA(co,6)
— 00 —77

=Re f I* e^'r-M^AA(jo,6) (1.15)

1.3 STOCHASTIC PREDICTION OF WAVE
CHARACTERISTICS

The major portion of this text will be devoted to the presentation and dis-
cussion of stochastic analysis and probabilistic prediction of ocean waves.
We therefore briefly summarize here the principle and approach support-
ing the currently available prediction methodologies.

For stochastic prediction of various properties (height, period, etc.) of
random waves, the development of a probability function applicable for
each of these properties is prerequisite. At the same time, evaluation of
parameters involved in the probability function is mandatory; this may be
called input information to the probability function.

There are two different approaches to acquire input information; one
in the time domain, the other through the frequency domain. If, for
example, one is interested in the statistical properties of wave height, the
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necessary input to the probability function can be evaluated by reading all
individual wave heights from measured data, and estimating the parame-
ters of the probability function based on statistical inference theory. This
approach for evaluating the parameter(s) of the probability density func-
tion is called the random observation method in the time domain (see
Section 3.9). The method is simple, and carries the merit of expediency;
however, the reliability of estimated results is not high unless the number
of observations is sufficiently large.

On the other hand, the spectral analysis approach in the frequency
domain primarily discussed in this text is much more mathematically
rigorous than the random observation method. This approach is based on
stochastic theory developed by Rice in communication engineering (Rice
1944, 1945).

The stochastic analysis and prediction of random waves spans three
domains; time, frequency and probability, as shown in Figure 1.7. Let us
consider the time history of a wave measured at a certain location in the
ocean. The measured record represents the time history of all waves
passing that location irrespective of the direction the waves are coming
from. This type of wave measurement, from which wave characteristics
are evaluated without reference to wave directionality, is called point
measurement.

It is assumed that waves are a weakly steady-state ergodic random
process which will be defined in Section 2.1.1. It suffices here to state that
this assumption is generally satisfied for waves in deep water.

In stochastic analysis, we define the auto-correlation function which
yields the variance of random waves in the time domain, but more impor-
tantly it provides information necessary for transferring from the time
domain to the frequency domain. That is, from information on the auto-
correlation function, we can evaluate the wave spectral density function,
which is often simply called the wave spectrum in the frequency domain.
This can be done by applying the Wiener-Khintchine theorem which
states that the correlation function and the spectral density function are
Fourier transforms of each other.

Although the spectrum can be directly obtained from wave records
without evaluating the auto-correlation function, the above-mentioned
procedure provides the mathematical background on which the probabil-
istic prediction of wave characteristics is based.

Sometimes, several wave records are taken simultaneously. In this
case, auto- as well as cross-correlation function can be evaluated from the
records. The cross-correlation function in the time domain can also
be transferred to the cross-spectral density function through the
Wiener-Khintchine theorem; however, the significant difference between
auto- and cross-spectra is that the latter is a complex-valued function in
contrast to the former which is a real-valued function. The directional
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characteristics of waves can be obtained through analysis of cross-spectra
evaluated for several wave height records, as will be discussed in detail in
Chapter 7.

The wave spectrum is a source of information from which the pro-
babilistic prediction of various wave properties can be achieved in the

Co and Quadrature
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"i _
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Fig. 1.7. Principle and procedure for predicting stochastic properties of
waves in random seas.
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probability domain. Assumptions most commonly introduced at this
stage are:

(i) waves are considered to be a steady-state ergodic random
process;

(ii) waves are a Gaussian random process; namely, wave profiles
are distributed following the normal probability distribution
with zero mean and a variance representing the sea severity;

(iii) the wave spectral density function is narrow-banded; i.e. the
spectrum is sharply concentrated at a particular frequency;
and

(iv) wave peaks and troughs are statistically independent.
Under these conditions, the probability functions applicable to wave
height, wave period, combined wave height and period as well as the fre-
quency of occurrence of breaking waves, group waves, etc., in a given sea
can be analytically derived.

It should be noted that many studies on the statistical properties of
random waves have been carried out by removing some of the assump-
tions cited above. The results of these studies will be discussed later in
appropriate chapters. The assumption of a Gaussian random process
(item (ii)) is almost always considered in the analytical development of
probability functions associated with waves where water depth is
sufficiently deep, but this assumption is not valid for waves in finite water
depth. This subject will be discussed in Chapter 9.



2 SPECTRAL ANALYSIS

2.1 SPECTRAL ANALYSIS OF RANDOM WAVES

2.1.1 Fundamentals of stochastic processes
Throughout this chapter as well as others, we will evaluate various
characteristics of wind-generated waves based on the stochastic process
concept. The fundamentals of the stochastic process concept are outlined
here.

First, the stochastic process (or random process), x(t), is defined as a
family of random variables. In the strict sense, x(t) is a function of two
arguments, time and sample space. To elaborate on this definition of a
stochastic process, let us consider a set of n wave recorders
C1*, 2x, 3x,..., nx) dispersed in a certain area in the ocean as illustrated in
Figure 2.1 (a). Let us consider a set of time histories of wave records
{lx(t), 2x(r),..., nx(t)} as illustrated in Figure 2.1(b). It is recognized that
at any time tp x(tp is a random variable, and a set {lx(t])> 2x(tJ),..., nx(tp}
can be considered as a random sample of size n. This simultaneous
collection of wave data observed at a specified time is called an ensemble. If
we construct a histogram from a set of ensembles of wave records, it may
be normally distributed with zero mean and a certain variance as shown
in Figure 2. l(c).

As the example in the previous paragraph demonstrates, the statistical
properties of random waves x(t) must be obtained with respect to an
ensemble, in principle. However, an ensemble of wave records has never
been considered in practice; instead, the statistical properties are usually
evaluated from analysis of a single wave record. This is permissible if the
waves are assumed to satisfy the ergodic property. This subject will be dis-
cussed later in this section.

Referring to Figure 2.1, an ensemble of wave records obtained in deep
water may obey the normal probability law with zero mean and certain
variance. This situation may or may not remain constant as time pro-
gresses. In particular, there is no guarantee that the magnitude of vari-
ance is always constant. If all statistical properties, such as all moments of
the ensemble wave profile distribution, are invariant under translation of



SPECTRAL ANALYSIS

time, then the waves can be called a steady-state (or stationary) random
process. This condition is very severe, hence, a somewhat relaxed condi-
tion is used for a steady-state random process. That is, consider the
covariance of ensembles at time t- and (tj+r). If the covariance between
two ensembles depends on the time difference r for all time r, then the
random process (waves in the present case) is called a weakly (or covari-
ance) steady-state random process. We may write this condition as follows:

where

Cov[x(tj),x

x(tj) =~

n T)}

=R(T) (2.1)

r) =-

Thus far stochastic processes have been discussed in terms of en-
sembles. We now introduce the ergodic theorem. In general, a random
process x(t) is ergodic if all statistics associated with the ensemble can also
be determined from a single time history x(t). It is taken for granted that
the ergodic property holds for random waves. If this is the case, then the

(a) Set of wave records

Normal
distribution

T )

Wave displacement in m.

(c) Histogram of ensemble (b) Ensemble at time t^ and t̂  + T

Fig. 2.1. Definition of ensemble of random waves: (a) set of wave records; (b)
ensemble at time t- and tj+r; (c) histogram of ensemble.
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ensemble mean of the set shown in Figure 2.1 (a) must be equal to zero,
and the variance evaluated for any member of the ensemble, x(r), should
be equal to that of the ensemble. Furthermore, the probability density
function applicable for the ensemble must also hold for the time history.
With these conditions in mind, ocean waves are considered to be a weakly
steady-state, ergodic random process, and hence the statistical properties
can be evaluated by analysis of the time history of a single wave record.

2.1.2 Auto-correlation function
The auto-correlation function, denoted by Rxx(r), is defined as follows:

=lim—- x(t)x(t+T)dt (2.2)J
-T

As can be seen in Eq. (2.2), the auto-correlation function is evaluated as
the product of two readings taken from the same record where the
reading points are separated by a shift in time r (see Figure 2.2). It is
denoted by RXX(T) in order to distinguish it from the cross-correlation
function between two wave records x(t) and j;(r), denoted by Rxy(r).

The auto-correlation function is essentially a covariance function;
however, because of the weakly steady-state condition, the covariance
function for time t and (r+ r) depends only on the time difference T, and
because of the zero mean, the covariance function becomes the auto-
correlation function.

Properties of the auto-correlation function RXX(T) are listed below
without proof. Readers who are interested in details of the auto-
correlation function may refer to any text book on stochastic processes.

1. Rxx(r) is an even function.
2. RXX(T) is maximum at T=0 and Rxx(0) is equal to the second

Time

Fig. 2.2. Definition of auto-correlation function.
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moment of the wave data E[x2(t)]. Since the mean value of
x(t) is zero, 1^(0) represents the variance of the wave record.
Rxx(0) represents the time average of wave energy P. That is,
from Eq. (2.2), we have

1 CT
^im— {xr-^co 21 J (t)}2dt=P (2.3)

4. The auto-correlation of waves consisting of seas and swell,
which are considered to be statistically independent, is equal
to the sum of the individual auto-correlation functions.

An example of the auto-correlation function obtained for waves mea-
sured in the ocean is shown in Figure 2.3.

2.1.3 Spectral density function (spectrum)
It was shown in Eq. (2.3) that the magnitude of the auto-correlation func-
tion for T=0 represents the time average of the wave energy, P. Let us
express the average energy in terms of wave frequency co in radians per
second. This can be done by applying the following Parseval theorem:

f \X(a>)\2do>

where X{oi) is the Fourier transform of x(t). That is,

X(a>)= ( x(t)c-iMdt

(2.4)

(2.5)

If the Fourier transform is carried out in terms of frequency,/, in cycles
per second (hertz, Hz), then the Parseval theorem may be written as

R(T)/R(0)
1.0

V7

Fig. 2.3. Example of dimensionless auto-correlation function evaluated from
measured waves.
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{x(t)}2dt=j (2.6)

P =

With the aid of Eq. (2.4) or Eq. (2.6), the average wave energy given in
Eq. (2.3) can be written as

lim—— I |Xr(co)|2dct) for frequency a>
r-̂ oo 47Ti J

— 00

J

2df for frequency/ (2.7)

We now define the spectral density function of random waves x(t) as
follows:

^ | 2 (2.8)

(2.9)

Since the spectral density function is an even function, the time average of
wave energy P can be expressed from Eqs. (2.7) and (2.8) or (2.9) as

and in terms of the frequency/,

P =

\fw*~f
d/ (2.10)

The above equations show that the area under the spectral density
function represents the average energy of random waves with respect to
time. Furthermore, from the properties of the auto-correlation function,
the area under the spectrum is also equal to the variance of waves x(t).

It is noted that the spectral density function is often defined as

lhn~ (2.11)

This definition of the spectral density function is certainly correct. Care
has to be taken, however, that for the definition given in Eq. (2.11), the
area under the spectral density function is equal to 77 times the average
energy as well as 77 times the variance.
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2.1.4Wiener-Khintchine theorem
The Wiener-Khintchine theorem plays an extremely significant role in the
stochastic analysis of random waves in that is presents the relationship
between the auto-correlation function defined in the time domain and the
spectral density function defined in the frequency domain. The theorem
states that for a weakly steady-state random wave x(t), the auto-
correlation function RXX(T) and spectral density function Sxx(co) are a
Fourier transform pair. That is,

^to) t-'^da) (2.12)

The proof of this theorem is as follows:

r i r r
RXX(T) Q-l0)Tdr=\im— x(t) x(t+T) e~layrdt dr

= l i m — f [ x(t) x(t+T) e-iw(r+T^ er->oo 2TJ J
— GO —CO

=lim - ^ X ^\

where X*(CD) is the conjugate of X(o)). Then, by taking the inverse
Fourier transform, we have

Since the auto-correlation function and the spectral density function
are both real and even functions, the Wiener-Khintchine theorem can
also be written as follows:

Sxx((o)=-\ ^ x ( r ) e - - d T = - Rxx(r) cos cordr
H J IT

w0 0 2
)=-\ ^x(r)e--dT=-

H J IT J
0

RXX(T)=-\ Sxx(co) e°JTdco= \ Sxx(co) cos COTdco (2.13)
- o o 0

In terms of frequency/in hertz, the Wiener-Khintchine theorem may
be presented as
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Sxx(f)=2\ RXX(T) e"i2^dT=4 RXX{T) cos lirfrdr)=2f / ^ (T ) e"i2^dT=4 f
0

f= | f Sxx(f) ei2<^d/= [ S«(/) cos 27T/-rd/ (2.14)

We summarize here the various functional relationships derived in the
preceding sections as follows:

• Assume that wind-generated waves x(t) are a steady-state,
ergodic random process. Let the mean value E[x(t)] be
zero.

• Evaluate the auto-correlation function RXX(T) from the mea-
sured waves by Eq. (2.2). Rxx(0) represents the average
wave energy with respect to time, P. Rxx(fi) is also equal to
the variance of the waves.

• The Fourier transform of the auto-correlation function
RXX(T) yields the wave spectral density function sxx(a)).
However, care must be taken in the definition of the spec-
tral density function such that the area under Sxx(a)) is equal
to the variance ofx(t).

• If Sxx(o)) is defined as given in Eq. (2.8), then we have the
following functional relationships:

\=P=Rxx(.O)=Var[x{t)]
(2.15)r

2.1.5 Spectral analysis of two wave records
The spectral analysis technique developed for a single wave record can be
equally applicable to two wave records x(t) and j;(r). The analysis is called
cross-spectral analysis.

Let us first consider the cross-correlation function denoted by Rxy(r)
which is defined as

Rxy(T)=E[x(t)y(t+r)]=\im^r( x(t)y(t+r)dt (2.16)
-T

It is noted that in evaluating Rxy(r) as defined in Eq. (2.16), the wave
record y(t) should be shifted backward by time T. If y(f) is shifted forward
by time r, then the cross-correlation function is denoted by Ryx(r). An
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important property of the cross-correlation function is that
Rxy(T)*Ryx(T); instead,

Rxy(r)=Ryx(-T) (2.17)
The cross-correlation function Rxy(r) is not necessarily maximum at

T=0, and unlike the auto-correlation function, Rxy(0) does not have any
significant meaning.

The cross-spectral density function of two wave records x(t) and y(t) is
defined as follows:

S ((o)—\ixn X*((o) Y((o) for frequency co
r-̂ oo 2 TTT

Sxy(f) =lim ^X*(/) Y(f) for frequency/ (2.18)

where X*(a)) and X*(/) are conjugate functions of X(eo) and
respectively.

The Wiener-Khintchine theorem defined for a single random variable
is equally applicable for stochastic analysis of two random waves. That is,
the cross-correlation function and cross-spectral density function are a
Fourier transform pair. Here, the cross-spectral function is a complex
function in contrast to a real-valued function for the auto-spectral density
function.

Let us derive the cross-spectral density function in detail in the fol-
lowing through the Fourier transform of the cross-correlation func-
tion.

00

f R
0

_\\f . r00 . 1
^ U J J

COS 0)TdT

=C>)+i^(o») (2.19)
where
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COS WTdr

{ ^ ( ) ^ X ( ) } s i n W T d r (2.20)
0

The real part Cxy(a)) of the cross-spectral density function is referred to
as the co-spectrum^ while the imaginary part Qxy(co) is referred to as the
quadrature-spectrum. The amplitude spectrum of Sxy(w) can be evaluated
fromEq. (2.19) as

Sxy(co)=V{Cxy(w)}2+{Qxy(oi)}2 (2.21)

and the phase spectrum becomes

(2.22)

The co-spectrum Cxy((o) is an even function, while the quadrature
spectrum Qxy(o)) is an odd function. Properties of these spectra are
summarized below:

(2.23)
and

QyM

Qyx(-oi) = Qxy{<») (2.24)
From the above properties, we have the following relationship:

= cl(o>)-iQx/co)=S*xy(co) (2.25)

and

s£(a») =s|(a>) (2-26)
Syx(-o>)=Sxy(w)

where S^y(a)) is the complex conjugate of Sxy((o).
The cross-spectral density function presented in terms of the fre-

quency/in hertz is as follows:
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Sxy(f)=2 f Rxy(T) -i2*TdT=Cxy(f)+iQxy(f) (2.27)
— 00

where

Cxy(f)=2 | \ RXV(T)+RVX(T) \ cos 27T/Vdr

(2.28)

A comprehensive application of cross-spectral analysis will be seen in
Chapter 7 where the directional characteristics of ocean waves is evalu-
ated through cross-spectral analysis of wave records.

2.1.6 Wave-number spectrum
The wave spectrum discussed thus far is for wave displacement measured
at a certain location (or locations) in the sea. We now broaden the analysis
to displacement of an irregular sea surface in a stationary, homogeneous
wave field. In this case, the one-dimensional Fourier transform pair, X(co)
and x(t)y shown in Eq. (2.5) is extended to the three-dimensional Fourier
transform. By introducing the coordinate vector r and wave-number
vector k, we may write the three-dimensional Fourier transform pair in
the following vector form:

z(r,t)=—*L-z [ [Z(k,w) e-^-'-^dkdco (2.29)(27rrJ J
o> k

where

r=xi+yi dr

Let the displacement of the sea surface be i7(r,r) and define the auto-
correlation as

i?(p,T)=£[rKiV)TKr+p,r+T)] (2.30)
Then, following the Wiener-Khintchine theorem, the wave spectrum

) and auto-correlation function R(p,r) are written as

S(k,w)=- f (R(P,T) e^'
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k

Note that *S(k,a>) carries the constant 1/TT because of the definition of the
spectral density function given in Eq. (2.8). S(k,o)) is called the wave-
number frequency spectrum, and integration with respect to wave number
and frequency yields the variance of random waves.

By integrating *S(k,o>) with respect to frequency, we have the wave-
number spectrum,

S(k)= I S(k,(o)d(o (2.32)

On the other hand, by letting r=0 and by integrating the auto-correlation
function given in Eq. (2.31) with respect to co, we have

=7^V2f 5*)
(277) J

k

J
k

and its inverse yields

)= (S(k)= f i?(p) eik"dp (2.34)

The wave-number spectrum is a density function per unit area of the
k-space irrespective of the frequency associated with the wave number.
Because of this, a stereoscopic photograph of the sea surface provides
information on the wave characteristics at the moment when the picture
is taken (Holthuijsen 1981).

If we integrate 5(k,o>) with respect to wave-number k, we have the fre-
quency spectrum

S(cS)= |S(k5co)dk (2.35)

and by letting p=0 and by integrating with respect to k in Eq. (2.31), we
have

R(j)=\ (S(G>) eMTd(o (2.36)

and its inverse

S((o) =- I R(T) e-iwrdr (2.37)

which is the relationship derived in Eq. (2.12). As seen in the above, S((o)
is a spectral density function irrespective of wave number or wave
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direction, and this is the usual situation in obtaining the time history of
waves recorded at a single point (k=0).

The conversion of the frequency spectrum S(co) to the wave-number
spectrum »S(k) and vice versa can be done for a specified directional angle
by using the dispersion relationship given by (o2=kgtanhkh!> where h is
water depth. That is,
(a) From S(o>) to S(k)

= \S(<o)
dk

'i)=\/kg tanh kh

Here, deo/d& is the wave group velocity given by

(2.38)

dco 1/ 2kh \ g
= 1+ Kdk 2\ sinh 2kh) \ k

X ( w a v e c e l e r i tY)2 \ sinh 2kh)
For deep water waves, we have co=\/rkg and do)/dk=(l/2)\/rgfk.

(b) From S(k) to S(co)

( ^ (2.40)
aw

For deep water waves, k=co2/g. For waves of finite water depth,
however, k can be evaluated for a specified o) but cannot be presented in
closed form. Examples of comparisons of wave spectra given in the fre-
quency space, S(/), and that given in the wave-number space, S(k), are
shown in Figures 2.21 (a) and (b) in connection with the TMA spectrum.

Next, we may write the surface elevation of random waves in terms of
the wave-number spectrum. The formula representing the surface wave
elevation given in Eq. (1.12) may be written as a function of the wave-
number spectrum as follows:

co k

where
5(k,w) dkdco if k=k', co=(of

E[dS(k,(o) dS*(K,«)')]= <
[0 otherwise (2.42)

Equation (2.41) is a Fourier-Stieltjes integral, where the integration is
over all wave-number and frequency space. The derivation of Eq. (2.42)
may be found in Moyal (1949). The wave profile described by Eq. (2.41)
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will be used in the analysis of the directional wave spectrum discussed in
Section 7.4.

2.1.7 Wave velocity and acceleration spectra
It is of considerable importance to obtain the spectral density functions
of wave velocity or acceleration (both in the vertical direction) from the
displacement spectrum or vice versa. In fact, the wave spectrum is
often evaluated from data obtained by an accelerometer installed in a
buoy. In this case, the wave displacement record can be acquired
through double integration of the acceleration record assuming that
there is no base-line shift in the original record. It is convenient,
however, to evaluate the displacement spectrum by applying the follow-
ing general formulation applicable to time derivatives of random pro-
cesses.

Let RXX(T) and Sxx(o)) be the auto-correlation and spectral density
function, respectively, of a wave record x(t). Then, the auto-correlations
of velocity and acceleration can be evaluated by

R{r) {2 AR^r)Rxx{r)

Hence, the variances of velocity and acceleration can be obtained as

(2.44)

We may apply the spectral density functions of wave velocity and
acceleration in the same fashion as for the displacement spectrum. Then,
the relationship between them can be written as

^{)Y=o? lim

Sxx(cS)=lim -

In terms of the frequency/in hertz, we have

Sxx(f) (2-46)
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Fig. 2.4. Wave displacement spectrum Sxx(co) computed from acceleration
spectrum Sxx(a)).

In evaluating the wave displacement spectrum Sxx(o)) from the wave
acceleration spectrum Sxx(co) by applying Eq. (2.45), very large values of
Sxx(co) are commonly observed in the low frequency range as illustrated in
Figure 2.4. This is because Sxx(co)/o)4 becomes very large for small a). In
this case, it is customary to bring Sxx(o)) to zero following the general
trend of the low frequency portion of the spectrum.

2.2 CHARACTERISTICS OF WAVE SPECTRA
The shape of wave spectra, in general, varies considerably depending on
the severity of wind velocity, time duration of wind blowing, fetch length,
etc. This complicated situation was systematized by Phillips and
Kitaigordoskii by applying similarity theory and dimensional analysis as
presented below.

Let us consider the situation of winds blowing with constant velocity
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over the sea surface. First, waves of short length (high frequencies) are
generated, and gradually waves of longer lengths will follow. However, the
growth of waves under this situation cannot be continued indefinitely. At
a certain time in the growing state, the wave profile reaches its limiting
form beyond which it becomes locally unstable and breaking takes place.
This results in an energy loss for restoring stability. Another phenomenon
contributing to the limiting form of a wave profile is the translation of
wave energy from one frequency to another, although its contribution is
less than that of wave breaking.

Because the wave profile is of limited form, the wave spectrum reaches
an upper limit under a given constant wind velocity; namely, a state of
energy saturation in which a balance is set up between the rate at which
energy is gained from the wind and the rate at which it is lost either by
breaking or by nonlinear wave-wave interaction. This situation is called a
fully developed sea, and the range of frequencies where wave energy exists
for this state is defined as the equilibrium range, often called the saturation
range (Phillips 1958, 1966, 1967). This is shown as the frequency co>o)0
in Figure 2.5. The magnitude of wave spectral density in the equilibrium
range represents an upper limit of wave energy.

Based on the concept of an equilibrium range in a wave spectrum,
Phillips carries out a dimensional analysis and derives the following
formula applicable for higher frequencies of the spectrum:

S(a))=zag2a> 5 (2.47)

where a is a constant.
Figure 2.6, taken from Phillips' 1958 paper, demonstrates the equilib-

rium range established in Burling's wind-generated wave spectra
obtained from measurements in a reservoir. Burling analyzes a large
number of records obtained over fetches from 400 m to 1350 m, with
wind velocities ranging from 5 to 8m/s at 10 m height (Burling 1959).
Since Burling's wave data are taken in a reservoir, their frequencies co are
rather high, from 3 to 12 rps. In Figure 2.6 the broken lines indicate the
upper and lower bounds of measured spectral density at each frequency,

S(co)

ipper limit of
spectral density
for a given frequency

•co
|< Equilibrium range

Fig. 2.5. Definition of equilibrium range of wave spectrum, o)>a)Q.



28 SPECTRAL ANALYSIS

with the crosses representing the mean value. The heavy line is Phillips'
formulation given in Eq. (2.47) with a=7.6X 10~3.

From consideration of similarity theory, Kitaigorodskii (1961, 1973)
shows that the spectral density function, in general, can be expressed as a
function of two dimensionless quantities. That is,

g
(2.48)

where
u*a)/g = o)=dimensionless frequency
gXlul =X= dimensionless fetch
u* =wind shear (friction) velocity=VV0/pa
T0 = tangential wind friction
pa = air density
X = fetch length.

In particular, for a fully developed sea, the spectrum is a function of
dimensionless frequency only. That is,

(2.49)

We now address the evaluation of wind shear velocity, w*, from a
knowledge of the mean wind velocity measured at an arbitrary height z,
denoted by Uz. Kitaigorodskii uses the following formula developed by
Charnock (1958) and Ellison (1956) for u*\

Uzlu*=\ 1.0+2.5 \n(gzlul) (2.50)

10
6 8

Frequency o> in rps
10 12

Fig. 2.6. Wind-generated wave spectrum obtained from data by Burling
(Phillips 1958).



2.2 CHARACTERISTICS OF WAVE SPECTRA

Wu (1969, 1980, 1982) carried out an extensive series of studies on
wind characteristics over a sea surface, and obtained the shear velocity as
a function of mean wind velocity at 10 m height as follows:

(2.51)

where C10=surface drag coefficient evaluated from wind velocity at 10 m
height

= (0.8+0.065 Z/10)X10-3 _
The wind velocity at an arbitrary height, Uz, can be evaluated as

U2=Ul0+uAn(z/10) (2.52)

From Eqs. (2.51) and (2.52), the shear velocity w* can be evaluated
from a knowledge of Uz.

Following the analysis leading to Eq. (2.47), Kitaigorodskii presents
Burling's data given in Figure 2.6 as a function of dimensionless fre-
quency. The result is shown in Figure 2.7. As can be seen, the data follow
very well Phillips' formula given in Eq. (2.47). The constant given in Eq.
(2.47) is found to be 6.5X103 for this data. The vertical lines in the
figure give the lower and upper bounds of the range of modal frequencies
obtained for this data.

Another comparison of the high frequency range of wave spectra
obtained in various environmental conditions made by Hess et aL (1969)
is shown in Figure 2.8. The figure includes a variety of data obtained in
laboratory experiments, in very large as well as limited fetches, near the
center of a hurricane, etc. The solid line given in the figure is for the value
a=5.85XlO-3inEq. (2.47).

- a = 6.5 x 10-3

0.07 0.08
u^ a) / 2 7r g

Fig. 2.7. High-frequency range of dimensionless spectra obtained from data
by Burling (Kitaigorodskii 1973).
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Fig. 2.8. High-frequency range of wave spectra obtained in various environ-
mental conditions (Hess etal. 1969).
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Although Eq. (2.47) contributed significantly to the analysis of wave
spectra from data obtained in the ocean, results of field and laboratory
measurements have indicated a need for modification of the formula.
Garrett (1969) first pointed out that the shape of the high frequency
regions of wave spectra is significantly different from that given by Eq.
(2.47). Toba claims, based on a complete analysis of measured waves in
the growing stage of wind-generated seas, that the shape of wave spectra
in the equilibrium range is not proportional to or5; instead, he proposes
the following formula (Toba 1973, 1978);

S(a)) = aguJa)4: (2.53)

The concept of Toba's formula is supported by Mitsuyasu et al (1980)
through the analysis of extensive field measurements. However, they con-
sider the constant a in Eq. (2.53) to be fetch dependent although the
dependency is very weak. Kahma (1981) proposes, through analysis of
his measured data, a formula similar to Eq. (2.53) given by

*S(a/)=4.5X10~3 gUlQlo)A (2.54)

Figure 2.9 shows, on the other hand, an example of the relationship
between dimensionless spectrum and frequency presented by Forristall

10

Fig. 2.9. Dimensionless spectra from Pacesetter data as a function of dimen-
sionless frequency (Forristall 1981).
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(1981) from analysis of data obtained 100 miles off the coast of New
Jersey. The dimensionless spectral density function and frequency in the
figure are denned as 8=8^/^ and f=fujg, respectively. The solid line in
the figure has a slope of/"4 and the dashed line has a slope of/5. As can
be seen, the dimensionless spectrum is proportional to /~4 for
0.01</<0.025, and is proportional to/" 5 for/>0.03.

Another example of the relationship between the dimensionless spec-
trum and frequency from analysis of data obtained in the Gulf of Mexico
is shown in Figure 2.10. The dimensionless spectrum and frequency in
the figure are denned as S=SfJH2

s and /= / / 0 , where Hs is the significant
wave height and/0 is the mean frequency. In this data set, presumably the
maximum dimensionless frequencies are all less than 2.5/, and thereby
the data shows proportionality to the inverse of the 4th power of the fre-
quency. Forristall gives the following formula in this case:

5=0.051/' -4 (2.55)

Donelan et al. (1985) also show, based on their experiments in Lake
Ontario and in the laboratory, that the spectrum is proportional to co~4 in
the frequency region from 1.5o)p to 3.0o>p, where a)p is the peak frequency
of the spectrum.

On the other hand, Kitaigorodskii (1983) and Phillips (1985), through
different approaches, show analytically that the wave spectrum in the

i o •

10

10

10
0.1 1

f

Legend

10

Fig. 2.10. Dimensionless spectra from ODGP in Gulf of Mexico data as a
function of dimensionless frequency (Forristall 1981).



2 .3 WAVE SPECTRAL FORMULATIONS 33

equilibrium range may be inversely proportional to the 4th power of the
frequency.

Battjes et ah (1987) reanalyze wave spectra obtained during the
JONSWAP Project (Hasselmann et al. 1973) and find that Toba's
formula given in Eq. (2.53) provides a statistically better fit to the
observed data. They also show that the proportionality factor a in Eq.
(2.53) is not a constant; instead, there is a relatively large scatter in the
observed data which may be partly attributed to the influence of tidal cur-
rents.

2.3 WAVE SPECTRAL FORMULATIONS
One of the most important applications of information on random seas in
the naval, ocean and civil engineering fields is the prediction of responses
(motions and wave-induced forces and bending moments) of ships and
offshore structures in a seaway and the evaluation of hydro-dynamic
forces acting on nearshore marine structures. In order to carry out sto-
chastic prediction of linear and nonlinear responses for design of marine
systems, wave spectra representing desired sea states are mandatory. In
particular, it is highly desirable to prepare wave spectra expected in the
sea(s) where the system will be operated; however, this is not possible in
all cases. It is extremely important, therefore, to prepare wave spectral
formulations representing various conditions at sea.

Many spectral formulations have been proposed since early 1950.
Among others, Neumann's wave spectral formulation developed in 1953
was a noteworthy contribution. He developed the formulation based on a
theoretical analysis together with wave data primarily visually observed.
Although his formulation is not used now, it contributed significantly
during the 1950s to the forecasting of sea state and the design of ships and
marine structures.

In the following, several spectral formulations are summarized which
satisfy the general characteristics of wave spectra presented in Section
2.2. Only those obtained from measured data in the ocean are included.

2.3.1 Pierson-Moskowitz spectrum
The Pierson-Moskowitz spectral formulation (Pierson and Moskowitz
1964) was developed from analysis of measured data obtained in the
North Atlantic by Tucker wave recorders installed on weather ships.
Analysis was carried out only on selected wave records considered to have
been acquired in fully developed seas. Dimensionless spectra, S(f) ^/U5

y
are classified into five different groups for wind speeds ranging from 20 to
40 knots as shown in Figure 2.11 (a). As seen in the figure, the magnitude
of spectra around the modal frequency shows some scatter. Pierson and
Moskowitz attribute the discrepancy to difficulty in determining the
precise wind speed measured on the ship's deck at 19.5 m above sea level.
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To overcome this difficulty, the wind speed of each group is modified
by taking the 5th-root of the ratio of Sg^/U5 (where S is spectral density at
the modal frequency) to the average value. That is, by evaluating the fol-
lowing factor kj

-Y1/5

(2.56)

and modifying the wind speed as kjU for each group. This results in good
agreement for the five grouped dimensionless wave spectra as shown in
Figure 2.11(b). The value of the modal frequency, Uf/g, is obtained as
6.14.

By drawing the average line in Figure 2.11(b), the following spectral
formulation in terms of frequency a> is derived:

= - ^ e x p -SI
glUY

CO

(2.57)

where ̂ 4 = 8.1 OX 10~3, 5=0.74, and Uis the wind speed at 19.5 m above
the sea surface.

As shown in Eq. (2.57), the Pierson-Moskowitz spectral formulation
depends on a single parameter, the wind speed U. The modal frequency,
o)m, is a fixed value and is also given as a function of wind speed. That is,

com=O.Sl (g/U) (2.58)

4 i- x 10 '
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Fig. 2.11. Dimensionless wind-generated wave spectra for fully developed
seas: (a) unmodified wind speed; (b) modified wind speed (Pierson
and Moskowitz 1964).
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It is very convenient, in practice, that the wave spectrum be given as a
function of significant wave height, Hs, instead of wind speed. For this,
the spectral density function given in Eq. (2.57) is integrated to yield,

f (2.59)

On the other hand, by assuming that the spectrum is narrow-banded,
the area under the spectral density function is equal to (Hs/4)2 (see
Section 3.6):

(2.60)

Hence, from Eqs. (2.59) and (2.60), we can derive the following relation-
ship between the wind speed and significant wave height for fully devel-
oped seas:

HS=2VA/B (U2/g)=0.21 (U2/g) (2.61)

Then, from Eqs. (2.57) and (2.61), the Pierson-Moskowitz spectrum
can be presented in terms of significant wave height. That is,

S(co) = ^ 4 e~0-032 ^/Hs)2/w4 (2.62)
103 or

Furthermore, by differentiating Eq. (2.62) with respect to co, and by
letting the derivative be zero, we have the relationship between the modal
frequency, wm, and significant wave height as follows:

< o m = 0 . 4 V ^ (2.63)
By using the relationship given in Eq. (2.63), the spectrum can also be

written as

— I* «r (2-64)

2.3.2Two-parameter spectrum
In order to represent fully as well as partially developed sea states,
Bretschneider (1959) developed the following spectral formulation:

S(a>)=3.437 § 4

where F^
F2=gTI{2irU)
£7= wind speed
H= average wave height
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CO CO

r=average wave period =\ TS(T)dT\ S(T)dT
S(T)= period spectrum ° °

The spectral formulation given in Eq. (2.65) has some inexpediences
in practical application as listed below. However, Eq. (2.65) can be
reduced to a spectral formulation with two parameters; significant wave
height and modal frequency. This certainly yields a variety of spectral
shapes, although with some restrictions, for a specified sea severity. The
inexpediences involved in Eq. (2.65) are as below:

(i) The area under the spectrum is eight times the variance of
that commonly defined for random waves.

(ii) The average wave period, T, is given based on a period spec-
trum; hence, it is not equal to 2 IT/TO where To is the mean fre-
quency commonly defined based on a frequency spectrum
S(co).

If the area under the spectrum and the average wave period are mod-
ified as stated above, then Eq. (2.65) may be expressed in terms of the
average wave height, H, and the mean frequency, w, as

S(w) = 0.218°^-,H2 e~0A37^4 (2.66)
(O

Furthermore, we may express S(co) in terms of significant wave height,
Hs, and modal frequency wm, by using the conversion formulation applic-
able for narrow-band wave spectra; namely, (om/Td=0.17 and HJH= 1.60
(see Section 2.3.3). Then, Bretschneider's spectrum can be presented as
follows:

S(<o) =^^f H\ e-i-25(o>-/o,)* (2.67)
4 or

This is called the two-parameter wave spectrum and is widely used for the
design of marine systems. It is noted that the above spectral formulation
is reduced to the Pierson-Moskowitz spectrum (Eq. 2.62) by letting
com=0AVg/Ils given in Eq. (2.63).

By using the two-parameter spectral formulation, we can generate a
family of wave spectra consisting of several members for a specified sea
severity. As an example, a family is developed from statistical analysis of
wave data obtained in the North Atlantic in which several modal frequen-
cies for a specified significant wave height are evaluated with a 95 percent
confidence coefficient. Examples of families of spectra obtained for
significant wave heights of 3.0 m and 9.0 m are shown in Figure 2.12.

2.3.3 Spectral formulation as a function of co~5

It is stated at the end of Section 2.2 that wave spectra obtained from
measured data in the ocean indicate the equilibrium range of spectra to
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be proportional to 4 in contrast to co 5 as obtained by applying
similarity theory. Nevertheless, the spectral formulations commonly
considered for the design of marine systems are categorized in the fol-
lowing form:

(a)
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Fig. 2.12. Family of two-parameter wave spectra for significant wave heights
(a) 3.0 m (9.8 ft) and (b) 9.0 m (29.5 ft).
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A
S(ai)=—e-B/<* (2.68)

ay

We now summarize the various statistical properties associated with a
spectrum having the form of Eq. (2.68). It is assumed that the spectrum
is narrow-banded, and therefore the wave height obeys the Rayleigh
probability distribution (see Section 3.2).

(a) Moments r
m-— I ajJS(aj)da)

o

mo=A/4B

f(3/4) A
4

VTT A

rn,=™ (2.69)

As shown above, the 4th moment is not finite. Therefore, the band-
width parameter e of the spectrum is unity which implies that the
spectrum is wide-banded. This contradicts the assumption of the
spectrum is being narrow-banded. Nevertheless, the formulae listed
below are often conveniently used in practice.

(b) Significant wave height, Hs

From I S(aS) da>= (HJ4)2, we have
o

• (2.70)

(c) Average wave height, H
From the Rayleigh probability distribution,

R
o

where R=8m0. Hence, we have

H=(TTA/2B)1/2 (2.71)

(d) Ratio of significant wave height to average height

HJH=Vshr= 1.60 (2.72)

(e) Modal frequency and period
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From

—S((o)da)
we have

a)m=(4B/5)m=0.95Bm

(2.73)

(f) Mean (average) frequency and period
7d=ml/m0=r(3/4)Bm=l.23Bm

T=2ir/7o=5.13Bm (2.74)
(g) Average zero-crossing frequency and period

a)0=Vtn2/m0=(7TB)m=1.33Bm

T0=2ir/7d0=4.72B-m (2.75)
(h) Ratio of frequencies and periods

<oja>=0.71 TJTO = 1A1
(DJ7Q=0.17 TJT =1.29

wo/aj =1.08 To/T =0.92 (2.76)

2.3.4 Six-parameter spectrum
The shape of wave spectra obtained from measured data in the ocean
varies considerably (even though the significant wave heights are the
same) depending on the duration of wind blowing, fetch length, stage of
storm growth and decay and existence of swell. In addition, wave spectra
often have double peaks (bimodal frequencies). For example, Figure 2.13
shows a variety of shapes of wave spectra obtained in the North Atlantic
for the same significant wave height of 3.5 m and wind speeds from 20 to
25 knots. Of the seven spectra shown in the figure, three (JHC 113, NW
23, NW 38) have double peaks, and three (JHC 113, NW 228, JHC 128)
have the same modal frequency of 0.58 but have quite different shapes.

In order to cover a variety of spectral shapes including bimodal spectra
observed in the ocean, the entire spectral shape is decomposed into two
parts, the low frequency components and the high frequency compo-
nents as shown in Figure 2.14. Each part is expressed by three parame-
ters; significant wave height //s, modal frequency com and shape parameter
A. Here, the shape parameter is introduced through the following pro-
cedure.

First, the fundamental spectral formulation given in Eq. (2.68) is
divided by its area mo=A/4B so that the spectrum has unit area. That is,
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4B
~ ,.$ e (2.77)

The above unit-area spectrum can be considered as if it were a probability
density function since it satisfies all the conditions required for the proba-
bility density function. In fact, S'((o) yields the exponential probability
density function/(x) by letting a)4= 1/x. Hence, it can be generalized into
the form of a gamma probability density function with an additional para-
meter A which controls the shape of the density function. That is,

A RA

The spectrum Sf (oS) is now converted to a dimensional wave spectrum
S(o)) having an area equal to (HJ4)2 under the assumption that the spec-
trum is narrow-banded. This results in the spectrum

(2.79)

The constant B in Eq. (2.79) can be determined in terms of the modal
frequency, o>m, by setting the derivative of S(a)) with respect to co to be
zero. That is,

B = /4A+l\
(2.80)
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Fig. 2.13. Variety of wave spectra obtained from measured data in North
Atlantic for significant wave height of 3.5 m (11.48 ft) (Ochi and
Hubble 1976).
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Thus, from Eqs. (2.79) and (2.80) we have the following spectral
formulation carrying three parameters:

l[ 4 m
0)>4A+1 (2.81)

Note that by letting A= 1, Eq. (2.81) is reduced to the two-parameter
wave spectrum given in Eq.(2.67). By connecting the two sets of spectra,
one representing the low frequency components and the other the high
frequency components of the wave energy, the following six-parameter
spectral representation can be derived (Ochi and Hubble 1976):

(2.82)

As seen in the above equation, the spectral formulation carries a total
of six parameters. In reality, however, it is a one-parameter spectrum
since all six parameters are given as a function of significant wave height,
as will be shown later. The values of these parameters are determined
from analysis of data obtained in the North Atlantic. The source of data is
the same as that for the development of the Pierson-Moskowitz spec-
trum, but analysis is carried out on over 800 spectra including those in

RANGE OF LOWER
FREQUENCY SPECTRU

RANGE OF HIGHER
FREQUENCY SPECTRUM

FREQUENCY

Fig. 2.14. Decomposition of wave spectrum into two parts.
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partially developed seas and those having a bimodal shape. From a statis-
tical analysis of the data, a family of wave spectra consisting of eleven
members is generated for a desired sea severity (significant wave height)
with the confidence coefficient of 0.95. The parametric values of these
spectra are shown in Table 2.1. Examples of families of spectra for
significant wave heights of 3 m and 9 m are shown in Figure 2.15.

A significant advantage of using a family of spectra for design of
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Fig. 2.15. Family of six-parameter wave spectra for significant wave heights
(a) 3.0 m (9.8 ft) and (b) 9.0 m (29.5 ft) (Ochi 1978a).



Table 2.1. Values of the six parameters as a function of significant wave height in meters (Ochi and Hubble 1976).

Most probable spectrum

0.95 confidence spectra '

0.84 Hs

0.95 Hs
0.65 Hs

0.84 Hs
0.84 Hs

0.90 Hs
0.77 Hs

0.73 Hs
0.92 Hs
0.84 Hs
0.84 / /

0.54 Hs

0.31 Hs

0.76//s

0.54 Hs
0.54//s

0.44 Hs
0.64 Hs

0.68//s
0.39 i/s

0.54 Hs

0.54 H

0.70e"0 0 4 6 / / s

0 .70e-°0 4 6 H s

0.61 e-°-039/fs
0.93 e"0056 / / s

0.41 e"°-016Hs

0.81 e - °0 5 2 H s

0.54 e~°-039Hs

0.70e"0 0 4 6 H s

0.70e-°-046//s

0.74e"°-052Hs

0.62 e"0-039^

1.15e~°-039Hs

1.50e~°-046//s

0.94e~°-036Hs

1.50 e~°-046//s

0 .88e-°0 2 6 / / s

1.60e-°-033//s
0.61

0.99 e~°-039/ / s

l#37e-o.o39//s

1.30 e-°-039//s
1.03 e"0-030^

3.00

1.35
4.95
3.00
2.55
1.80
4.50
6.40
0.70
2.65
2.60

1 54 e"0-062^

2.48e"°-102Hs

2.48 e~0>102//s

2.77 e~°-112/ / s

1.82 e"0-089/fs

2.95 e"°-105Hs

1 95 e~°-082Hs

1.78 e"°-069Hs

1.78 e~°-069//s

3.90 e~°-085Hs

0.53 e~°-069Hs
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Fig. 2.16. Upper and lower bounds of extreme pitching motion of the
MARINER computed by using a family of six-parameter wave
spectra. (Crosses are computed using spectra obtained from mea-
sured data in the North Atlantic.)

marine systems is that one of the family members yields the largest
response such as motions or wave-induced forces for a specified sea sever-
ity, while another yields the smallest response with confidence coefficient
of 0.95. Hence, by connecting the largest and smallest values, respec-
tively, obtained in each sea severity, the upper and lower-bounded
response can be established. As an example, the lines in Figure 2.16 indi-
cate the upper and lower-bounded values of the probable extreme pitch-
ing motion of the MARINER computed by using a family of
six-parameter spectra. The crosses in the figure show values computed
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using spectra obtained from measured data in the North Atlantic (Ochi
and Bales 1977). As can be seen, the upper and lower bound lines cover
reasonably well the variation in responses computed using the measured
spectra. It is also found that the bounds cover the variation of responses
computed using measured spectra in various locations in the world,
although the formulation is developed based on data measured in the
North Atlantic. Thus, it may safely be concluded that the upper bound of
the response evaluated by applying Eq. (2.82) can be used when design-
ing marine systems.

2.3.5 JONSWAP spectrum
The JONSWAP formulation is based on an extensive wave measure-
ment program known as the Joint North Sea Wave Project carried out in
1968 and 1969 along a line extending over 160 km into the North Sea
from Sylt Island (Hasselmann et at. 1973). The spectrum represents
wind-generated seas with fetch limitation, and wind speed and fetch
length are inputs to this formulation. The original formulation is given
as follows:

^exp {-1.25(/m//)4}yexp{-(/-/m)2/2(^)2} (2.83)

where y =parameter, 3.30 as an average
a =0.0763T022

a =0.07 for/^/m and 0.09 for/>/m
/m=3.5 (g/U)x-°33 _
x = dimensionless fetch=gx/U2

x = fetch length
[/=mean wind speed
g = gravity constant.

The formula may be expressed in terms of the frequency o) in rps as
g2

S(a>) = a —5 exp{-1.25(wjco)4} ywi-^-**)2^*^2} (2.84)

where a)m=2 vfm.
The parameter y is called the peak-shape parameter, and it represents

the ratio of the maximum spectral energy density to the maximum of the
corresponding Pierson-Moskowitz spectrum. The term associated with
the exponential power of y is called the peak enhancement factor, and the
JONSWAP spectrum is the product of the Pierson-Moskowitz spectrum
and the peak enhancement factor.

The value of the peak-shape parameter y is usually chosen as 3.30, and
the spectrum is called the JONrSWAPspectral formulation. The values of y
obtained from analysis of the original data, however, vary approximately
from 1 to 6 even for a constant wind speed, y is actually a random variable
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which is approximately normally distributed with mean 3.30 and vari-
ance 0.62 as shown in Figure 2.17 (Ochi 1979a).

Several studies have been carried out in detail on the scale parameter,
a, and the peak-shape parameter, y. Among others, Mitsuyasu et al.
(1980) show that both parameters can be presented as a function of the
dimensionless modal frequency, denned as J^fjOlg- That is, from
analysis of wave data obtained by Hasselmann as well as their own experi-
mental data, Mitsuyasu et al. derive the following relationship:

a= * * * 70.857
1 0 2 m (2.85)

This is shown in Figure 2.18. They also show that the peak-shape para-
meter y can be presented as

y=-
L53 ? 3

104/n

By inserting Eq. (2.85) into Eq. (2.86), y can be expressed as

(2.86)

( 2 . 8 7 )

This relationship reasonably agrees with measured data as shown in
Figure 2.19.

Furthermore, from analysis of wave data obtained from measurements
in a bay and from experiments in a wind-wave tank, Mitsuyasu et al.
present the dimensionless frequency as a function of dimensionless fetch
length as follows:

(2.88)
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Fig. 2.17. Histogram of peak-shape parameter y and associated normal proba-
bility distribution (Ochi3 1979a).
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Thus, from Eqs. (2.85), (2.87) and (2.88), they show that the parameters
a and y can also be presented as a function of dimensionless fetch. That
is,

8.17_ _
a=-

= 7 n ^-0.142y=7.0 x (2.89)

The JONSWAP spectral formulation is given as a function of wind
speed. It is very convenient, in practice, for the spectrum to be presented
in terms of sea severity. For this, a series of computations is carried out
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Table 2.2. k-valuefor
evaluating equivalent wind
speed for specified y-value of
the JONS WAP spectrum
(Ochi 1979a).

y

1.75
2.64
3.30 (mean value)
3.96
4.85

k

96.2
88.3
83.7
80.1
76.4

using Eq. (2.83) for various combinations of fetch length and wind speed,
and the following relationship derived (Ochi 1979a):

[/=£ 3-0.615 JJ1.08 (2.90)

where k is a constant depending on y-value as given in Table 2.2. £7is in
m/s, x in km and Hs in m. From Eqs. (2.83) and (2.90), the JONSWAP
spectrum can be presented for a specified sea severity, //s, and fetch
length, x.

It is of interest to note that the shape of wave spectra during the
growing stage of hurricane-generated seas is well represented by the
JONSWAP spectral formulation; however, the values of parameters
involved in the formulation are substantially different from those origi-
nally given in Eq. (2.83). This will be presented in Section 5.2.3.

2.3.6 TMA Spectrum
The TMA spectral formulation is developed as an extension of the
JONSWAP spectrum so that it can be applied to wind-generated seas in
finite water depth (Bouws et al. 1985). The concept is based on the
similarity law shown by Kitaigorodskii et al. (1975), and its validity is ver-
ified through analysis of three sets of data obtained (a) near TEXEL in
the North Sea, (b) during the MARSEN Project conducted in the North
Sea and (c) in the ARSLOE Project carried out at Duck, North Carolina,
USA. The data are acquired primarily by wave-rider buoys, and include a
variety of sea conditions with observations at water depths ranging from 6
to 42 m, in areas largely outside the breaker zone.

In order to extend Phillips' spectral formulation given in Eq. (2.47) to
be inclusive of waves in finite water depth, Kitaigorodskii et al. (1975)
developed the following spectrum:
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5 (2.91)
where is a transformation factor given by

k(<o,h)
dco

-3±k
doo

(oh—ooi\/hlg (2.92)
In the above formula coh is a dimensionless frequency defined by oS\fhfg
(h=water depth), and k((o3h) is the wave number associated with the dis-
persion relationship for waves in finite water depth. Figure 2.20 shows the
transformation factor cj)((oh) taken from Kitaigorodskii et al. (1975).

Bouws et al. (1985) apply the transformation factor to the JONSWAP
spectrum and present the TMA spectrum as follows:

S((o) = [JONSWAP spectrum (cS)] • 4>{o)h)

S(f) = [JONSWAP spectrum (/)] -
with u>h=2'nf\/Tiig (2.93)

where JONSWAP spectra S(cS) and S(f) are given in Eqs. (2.84) and
(2.83), respectively. Figure 2.21 (a) and (b) taken from Bouws et al.
(1985) are examples of a TMA spectrum which indicates clearly the
effect of water depth on the magnitude as well as the shape of the
JONSWAP spectrum. Note that Figure 2.21 (a) is given in frequency
space, while that in (b) is given in wave-number space.

l .Or

Fig. 2.20. Transformation factor as a function of dimensionless frequency coh
(Kitaigorodskii et al. 1975).
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0 .1 0.2
FREQUENCY f IN HZ

(a)

0.15
WAVE- NUMBER k IN M

(b)

Fig. 2.21. TMA spectra for different water depths: (a) in frequency space; (b)
in wave-number space. (JONSWAP parameters; /m=0.1 Hz3
a=0.01, 7=3.3, <7a=0.07, o"b=0.09) (Bouws etal. 1985).

2.4 MODIFICATION OF WAVE SPECTRUM FOR
MOVING SYSTEMS

The wave spectrum, in general, is obtained from measurement at a fixed
location in the ocean. Let us consider the situation when a marine system
(a ship for example) is moving in random seas. From the ship's viewpoint
under this situation, the frequencies of encounters with waves are quite
different from wave frequencies. They can be evaluated, however, by
accounting for the ship's speed and direction relative to the waves by the
following procedure (St. Denis and Pierson 1953).

Let a ship be moving with speed Vs in a certain direction, with waves
approaching from an angle x> a s shown in Figure 2.22. For regular waves
with wavelength A and celerity Kw, the period of encounters with a ship
moving with a speed Vs can be obtained as

(2.94)

Hence, the encounter frequency is given by

2TT -°^J-

g
(2.95)

where
(O

a =
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Consider the following four cases:
(i) a<0: in this case, waves approach the ship from the bow, and

(Oe>Q).

(ii) 0<a< 1/2: waves approach the ship from the stern, and
coe<(o. Waves travel and pass the ship quickly. a>e is maximum
when a= 1/2.

(iii) l/2<a< 1: waves approach the ship from the stern, and
&>e . Waves pass the ship slowly,

(iv) a= 1: wave velocity is the same as that of the ship and they
maintain a constant position relative to one another.

(v) a> 1: waves approach the ship from the stern, but the ship
outstrips the waves. coe is negative referred to the moving ship;
i.e. waves appear to come from a direction opposite to that of
their origin.

In order to cover all these five cases, the wave frequency should be
modified by taking the absolute value of Eq. (2.95). Further, the spec-
trum S(co) should be modified by multiplying by the Jacobian, |dw/dcoe|,
so that the area under the encounter wave spectrum is the same as that of
the wave spectrum. Thus, in summary, the frequency and wave spectrum
should be modified by applying the following formulae:

(oe=

J =
1 - ^ .

(2.96)

(2.97)

Fig. 2.22. Relative location of waves and a ship moving with speed Vs.
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(Oe=CO(l-a)

Fig. 2.23. Modification of the wave spectrum for a moving system.

Figure 2.23 shows a sketch indicating the modification of the wave
spectrum for a moving system.

2.5 HIGHER-ORDER SPECTRAL ANALYSIS
Statistical analysis of the time history of wave records taken in the ocean
at deep water depths indicates the waves to be a Gaussian random
process; namely, the wave profiles are normally distributed. On rare occa-
sions, very small deviations from normality exist; however, the deviations
are not of such magnitude that nonlinearity need be considered in pre-
dicting statistical properties of the waves or for predicting the responses of
marine systems in a seaway. Therefore, the spectral analysis methodolo-
gies presented in Section 2.1 are valid as far as random waves in deep
water are concerned. However, this is not the case for random waves in
finite water depths where the frequency components of the wave energy
are not necessarily independent; instead, energy transfer between wave
components takes place. This implies that the waves are no longer
Gaussian and therefore the stochastic properties cannot be evaluated by
the first two moments which yield the mean and variance. The third
moment, or even higher moments, may be required to describe these
waves adequately.

It will be shown that two-dimensional spectral analysis, called bispectral
analysis, yields the third moment, and three-dimensional analysis, called
trispectral analysis, yields the fourth moment, and so on.

One of the most important pieces of information obtained by carrying
out higher-order spectral analysis is the clarification of the interaction
between wave components. This is demonstrated by Hasselmann et ah
(1962) who show that the nonlinear interaction of wave components is
clarified through bispectral analysis. This subject will be discussed later in
detail.

For bispectral analysis, consider the two-dimensional auto-correlation
function, denoted by MXX{TX,T^), and defined as

x(t+r2)]
1 rT

=lim— xC
-T

(2.98)
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Analogous to the definition of the auto-correlation function Rxx(r)
shown in Figure 2.2, MXX(TVT2) can be evaluated by shifting the time
history of a wave record x(t) by time TX and r2, and then by integrating the
product x(t)x(t+ T1)x(r+ r2). It is important to note that there are six auto-
correlation functions having the same value for a given rx and T2. These
are

=MXX(-TVT2-T1)=MXX(T2-T1,-T1) (2.99)

The two-dimensional spectral density function is called the bispectrum
and is defined as follows:

Bxx(ojvco2)=\im ^\x((ox) X(a>2) X * K + a)2) (2.100)

where X(co) is the Fourier transform of x(t) and X^ (w^ a)2) is the conju-
gate of X{(i>l + co2).

The definition given in Eq. (2.100) is often written as

^ X(a>2) X(o>3) (2.101)

where 6>1 + 6>2+o>3=0. This definition is of different form from that given
for the spectral density function Sxx(a)). However, Eq. (2.101) is equiva-
lent to writing Sxx(o)) in Eq. (2.8) as follows:

Sxx(co)=\im ^ ^im |X(co)|lim

=lim T ^ X ( « , ) X(w2) (2.102)
T^co Z7T1

where a)x + w2=0.
It can easily be proved that the Wiener-Khintchine theorem can also

be applied to the two-dimensional case. That is, the bispectrum
Bxx{(joX!io)2) is the two-dimensional Fourier transform of the auto-correla-
tion function MXX(TVT2), and can be written as

Bxx{w^2)=^ j MXX(TVT2) e-iC^+^dTi dr2 (2.103)
— OO —00

In reverse, we have

MJ?^ =E[x(t)x(t+ T>(r+ r2)]

I 5X>15W2) e ^ do)2 (2.104)i r r
= — I 5 X > 1 5 W 2 ) e

— 00 —00

By letting rx = T2=0 and integrating in the positive domain, we have
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Mxx(O,O)=E[x\t)]=lim-^( {x(t)y&t
r-̂ oo 2 1 J

— 00

= f [ B{o)x,o)2)do}xdo)2 (2.105)
0 0

Thus, we have proved that the integrated volume of the bispectrum repre-
sents the third moment of random waves x(t).

It is stated in connection with Eq. (2.99) that there are six auto-
correlation functions for a given rx and r2. Since the Wiener-Khinchine
theorem holds for each of these auto-correlation functions, there are six
bispectra for a given col and (o2 having the same value. These are

Bxx((ov(o2)=Bxx(a)2,(ol)=B(o)l,-(ol-o)2)

(2.106)

In addition, as shown in Eq. (2.100), the bispectrum is a complex
function; therefore, a conjugate function exists for each bispectrum given
in Eq. (2.106). These conjugate functions are

l ^ , - coj =B*XX(- co2, cox + (o2)
= 5 ^ ( ^ + 0)2,-0)2) (2.107)

In order to provide a better understanding of the relationship between
the twelve bispectra given in Eqs. (2.106) and (2.107), Figure 2.24 shows
the symmetric characteristics of the bispectrum. As can be seen, the six
bispectra given in Eq. (2.106) are pairwise symmetric with respect to the
line 0^ = 0)2, while six conjugate spectra given in Eq. (2.107) are pairwise
symmetric with respect to the origin. Because of these symmetries, the
bispectrum 5xx(w13w2) in the fundamental domain which is the octant
denned by 0^CO2<OJ1 and O^o^oo (shaded area in Figure 2.24) repre-
sents all other spectra.

The third moment, E[{x(t)}3], is equal to the sum of the integrated
volumes under the bispectra at six locations (A, B>..., F in Figure 2.24).
Hence, six times the integrated volume under Bxx(a)vco2) in the funda-
mental domain yields the third moment.

Formulae presented so far deal with the two-dimensional spectrum,
but the principle can be generalized to the n-dimensional spectrum. That
is, following the Wiener-Khintchine theorem we may write the w-dimen-
sional spectrum as

r ri r r r
DX, Ct>2,..., 0>n)=—\ . . . M ( T p T2,...,Tn

0 0 0

p 2 n )

0 0 0
CW2T2+-+^T")dT1dT2...dTM ( 2 . 1 0 8 )
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where

1 CT

=lim —

-T

= ̂ n\ J '"I %

x(t)x(t+Tl)...x(t+rJdt

which yield

= f [ ...[ B(wl,a)2,...,a)n)&a)lda>2..Au)n (2.110)
0 0

Thus, it is clear that integration of the n-dimensional spectrum with
respect to (ov co2,..., o)n yields the («+ l)th moment of random waves.

Bispectral analysis of ocean wave records was first carried out by
Hasselman et ah (1962) in which the wave-wave interaction obtained
through bispectral analysis was compared with theory developed by
Hasselmann (1962). An example of their analysis is shown in Figure
2.25. In the figure, the contour lines at 103, 104, 105 and 106cm3s2

represent the absolute value of the bispectrum per unit frequency band

, A(©!,©2)

E C

Fig. 2.24. System characteristics of bispectrum.
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squared. The bispectrum obtained from the wave record is shown in
the octant below the 45 degree line, while the theoretical results are
shown in the upper octant. In the case of perfect agreement between
theory and the evaluated bispectrum, the pattern would be completely
symmetrical about the 45 degree line. For the example shown in the
figure, good agreement is obtained between theory and bispectrum.
The unispectrum of waves is also shown along the two axes in the
figure.

The frequency in Figure 2.25 is given in Nyquist units, denned as the
sampling frequency of the record, which is 0.25 Hz in this example. The
same two plots along the two frequency axes are the wave spectral density
function in cm/Hz units. As can be seen, the modal frequency of the spec-
trum is 0.22 Nyquist frequency (0.055 Hz, 0.35 rps), and the bispectrum
indicates that wave-wave interactions take place between the modal fre-
quency and many other frequencies. The largest value is on the 45 degree

0.25

,0.10

0.05

1x10
lxlO4

lxlO5

lxlO6

0.05 0.1010
102

io3

10 cm/cps
Fig. 2.25. Example of bispectral analysis of waves in finite water depth

(Hasselmann et al. 1962).

0.25
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line at the modal frequency, which indicates a strong interaction of the
peak energy density with itself.

One interesting application of bispectral analysis is the assessment of
the amount of nonlinearity involved in the wave spectrum in order to
evaluate the statistical properties of waves in finite water depth. This
subject will be discussed in Chapter 9.



3 WAVE AMPLITUDE AND HEIGHT

3.1 INTRODUCTION
In this chapter, the stochastic properties and probability distributions
applicable to wave amplitude and height will be presented under various
conditions.

First, the underlying assumptions considered throughout this chapter
are that random waves are considered to be weakly steady-state, ergodic,
and a normal (Gaussian) random process. The normal process assump-
tion is valid only for waves in deep water. Waves in finite water depths are
commonly treated as nonlinear, and considered to be a non-Gaussian
random process, as will be discussed in detail in Chapter 9. With these
basic assumptions, probability distribution functions which represent the
statistical characteristics of random waves are analytically derived.

The most commonly considered probability distribution for wave
amplitude is developed assuming that the wave spectrum is narrow-
banded. The wave profile under this condition is slowly changing with
constant period, and there exists a single peak or trough during each half-
cycle. Waves generated by moderate wind speeds, an example of which is
shown in Figure 3.1 (a), demonstrate that the narrow-banded spectrum
assumption is generally acceptable. In this case, wave amplitude follows
the Rayleigh probability law as will be presented in Section 3.2. The
Rayleigh probability distribution is most commonly considered for the
design of marine system.

(b)

Fig. 3.1. Wind-generated wave profiles: (a) narrow-band random waves; (b)
non-narrow-band random waves.
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Waves generated by substantial wind speeds, on the other hand,
demonstrate that the wave profile is more irregular and often two or three
peaks or troughs exist during each cycle. An example of a wave record
taken in relatively severe seas is shown in Figure 3.1(b). Note that
because of double peaks or troughs, the wave amplitude cannot be clearly
defined; hence, wave peaks and troughs are called the positive maxima
and negative minima, respectively. The statistical characteristics of these
quantities will be presented in Section 3.3.

The joint probability distribution of two wave amplitudes, in particu-
lar, amplitudes separated by a specified time interval or two successive
wave amplitudes, is extremely important for predicting the possible
occurrence of group waves, an event which causes a serious problem for
the safety of marine systems. The derivation of the joint distribution of
two wave amplitudes is discussed in Section 3.4.

The magnitude of wave heights (peak-to-trough excursions), in
general, is not necessarily twice that of the amplitude in random seas;
nevertheless, it is commonly assumed that heights are twice the ampli-
tude. Strictly speaking, however, the probabilistic estimation of wave
height should be made through the probability density function for the
sum of positive and negative amplitudes assuming that these two are sta-
tistically independent random variables. This subject will be discussed in
Section 3.5.

The severity of sea condition is most commonly presented by
significant wave height which is defined as the average of the highest one-
third observed or measured wave heights. The functional relationship
between significant wave height and the wave spectrum is presented
under the narrow-band assumption in Section 3.6.

One way to present a more comprehensive picture of the stochastic
properties of random waves is to consider the probability distribution of
every excursion, xXix2i... illustrated in Figure 3.2. Statistical analysis of
the vertical distance (displacement) between successive peak-to-trough
excursions or vice versa is called half-cycle excursion analysis. As can be
seen in the figure, half-cycle excursions may be categorized as those
crossing the zero-line and those located above or below the zero-line.

TIME

Fig. 3.2. Definition of half-cycle excursion.
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Derivation of the probability density function applicable for half-cycle
excursions is presented in Section 3.7.

The probability distribution of wave height over a long time period
(the lifetime of a marine system, for example) is discussed in Section 3.8.
Long-term statistics is an accumulation of short-term wave statistics, and
plays a significant role in evaluating the fatigue loads of marine systems.

Probability distributions applicable to wave amplitude under the
various conditions discussed in Sections 3.2 through 3.7 are all derived
from the wave spectrum. It is sometimes convenient to obtain statistical
properties (including extreme values) of wave height from information
contained in the wave record without carrying out spectral analysis. This
can be done by applying statistical inference theory, though most com-
monly the estimation is based on the assumption that waves are consid-
ered to be a narrow-band random process. This subject is discussed in
Section 3.9.

3.2 PROBABILITY DISTRIBUTION OF
AMPLITUDES WITH NARROW-BAND
SPECTRUM

3.2.1 Derivation of probability density function
A Narrow-band random process is denned as one whose spectral density
function is sharply concentrated in the neighborhood of a certain fre-
quency o)0. This implies that the random process x(t) has a constant fre-
quency, and may be written as

x(i)=A(t) cos{co0t+e(t)}
=A(t) {cos e(r) cos co0t— sin e(t) sin a>or} (3.1)

where A(t) is the amplitude and e(t) is the phase; both are random vari-
ables.

On the other hand, assuming that the random process x(t) is a normal
random process with zero mean and variance a2, x(t) may be written as

x(t)=2^(an cos na)t+ bn sin ncot) (3.2)

where
2fT

an=—\ x(t) cos ncot dt

2fT

bn=-\ x(t) sin ncot dt
o

Here, the coefficients an and bn are normally distributed with zero mean
and variance o2.
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By writing ncot in Eq. (3.2) as (mo— wo)f+a)or, Eq. (3.2) can be written
as follows:

x(t)=xc(t) cos a)ot—xs(t) sin wor (3.3)

where

(3.4)

n=\

From a comparison between Eq. (3.1) and (3.3), we have

xc(t)=A(t) cos e(t)
xs(t)=A(t) sin e(0 (3.5)

We may write xc(t)> xs(r), v4(r) and e(r) as the random variables xc> xs ̂ 4
and e for a given time t. Since xc and %s are the summations of normal
random variables, they are also normally distributed. It can be proved
that xc and xs are statistically independent normal random variables with
zero mean and variance which is equal to the area under the spectral
density function of x(t). That is,

E[*J=E[*J=O
E[xc*J=O »
E[x%\ =E[xs

2] =o2= S(<o) do) (3.6)
o

where S(<o)=spectral density function of x(i). For proofs, refer to Rice
(1944) or Davenport and Root (1958).

We may write the joint probability density function of xc and xs as

^ ^ oo -oo<Xs<oo (3.7)

Next, let us transform the joint probability density function f(xc, xs) to
the joint probability density function f(A,(o) by using the relationship
given in Eq. (3.5). The transformation yields

l (3.8)

Then, the marginal probability density function of A can be obtained by

r2n A
f(A)=\ / ( ^ , 6 ) d 6 - ^ e ^ w 0^4<«> (3.9)a2

o
The above probability density function is the Rayleigh probability dis-

tribution which is usually written in the form
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(3.10)

where R is a parameter.
It can be concluded therefore that wave amplitude obeys the Rayleigh

probability law under the narrow-band random process assumption, and
that the parameter of the distribution is equal to twice the area under the
spectral density function. An example of a comparison between the prob-
ability density function and the histogram of amplitude constructed from
measured data is shown in Figure 3.3.

The Rayleigh probability distribution was first introduced for pre-
dicting wave amplitude by Longuet-Higgins (1952). However, the para-
meter R of the distribution shown in Eq. (3.10) was not expressed in
terms of the wave spectrum; instead, it was given in the following form of
an estimator considered in statistical inference theory:

(3.11)
1 = 1

where x{ is the observed wave amplitude. This will be discussed in detail
in Section 3.9.

The marginal probability density function of the phase e can be
derived from Eq. (3.8) as

= j f(A,e) dA= (3.12)

0.3

0.2

0.1

/

II1
1 \

\ \\\\ —
2 4 6

WAVE AMPLITUDE IN METERS
10

Fig. 3.3. Comparison between Rayleigh probability density function and
histogram of wave amplitude constructed from measured data
(significant wave height 9.20 m).
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The probability density function /(e) is a uniform distribution. This
implies that the phase of a narrow-band Gaussian random process can
take on any value between 0 and 2TT.

The probability density function of the amplitude of a narrow-band
Gaussian random process can also be developed approximately by the
following procedure.

Let x(t) and x(t) be the wave displacement and velocity, respectively,
and consider the displacement x(t) to be crossing a specified level x in the
upward direction with velocity x as shown in Figure 3.4. Note that the
number of upward-crossings of the level is equal to the number of peaks
for a narrow-band random process. The time required for x(t) to pass
through the distance dx with velocity x is given by dx/x. Hence, the
average (expected) number of the up-crossings of a specified level £ per
unit time can be evaluated based on the joint probability density function
f(x,x) with x= t, as follows:

(3.13)

The random variables x and x are statistically independent for a
Gaussian random process. By letting the variances of x and x be <T% and
a% respectively, Eq. (3.13) can be evaluated as

-l2l2a2
r (3.14)

The average (expected) number of up-crossing of the zero-line can be
evaluated from Eq. (3.13) by letting £=0 as

E[N+]=( xf(O,x)dx=~
27TOV.

(3.15)

UP-CROSSING
DOWN-CROSSING

Fig. 3.4. Explanatory sketch of level-crossing of narrow-band random wave.
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Assuming that the ratio ofN^/N+ and N+ are statistically independent, we
can evaluate the probability that the peak exceeds a level f from Eqs.
(3.14) and (3.15) as

Pr{Peak># =E[NC/N+] =E[N$/E[N+] =e"^/2a3' (3.16)

This probability is equal to 1 — F(£), where F(g) is the cumulative distrib-
ution function of the peak (amplitude). Hence, by differentiating Eq.
(3.16) with respect to £, the probability density function of peak (ampli-
tude) can be derived. That is,

AO=^-2^2/2a2x 0^£<oo (3.17)

This is the same probability density function given in Eq. (3.10) with
R=2a2

x.

3.2.2 Wave envelope process
It is assumed in the previous section that the wave spectrum is narrow-
banded with a constant frequency co0, and the magnitude of wave ampli-
tude varies slowly with time; its frequency is much smaller than a>Q. This
implies that upper and lower envelopes can be drawn by connecting peaks
and troughs, respectively, and thereby the statistical properties of peaks
and troughs may be evaluated through the envelope process instead of
dealing directly with the amplitude. That is, the envelope process is defined
as a pair of symmetric curves that pass through the wave crests and
troughs. It represents a measure of change of wave amplitude in the time
domain.

The probabilistic analysis of random phenomena based on the enve-
lope process was first introduced by Rice (1944, 1945), and numerous
studies on waves and associated problems have been carried out by apply-
ing the concept of the envelope process. These include Longuet-Higgins
(1952), Ewing (1973), Tung (1974), Yuen and Lake (1975) and Tayfun
(1983), among others.

For a mathematical presentation of the envelope process, let us write
the wave profile x(t) as

t+en) (3.18)
n=0

where an is a normal random variable with zero mean and a certain vari-
ance.

Let To be the mean frequency defined as

a)=ml/m0 (3.19)

where m-=jxh moment of wave spectrum. Then, we may write Eq. (3.18)
as
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where

*(r)=Re2,aBe i«»- iB>'+6->+ia"
w=0

=Re pit) i<Kr) e^ r=Re pit) e1*®

X(t)=7ot+(f)(t)

(3.20)

p s i n 0 = 2 ^ anS i n{(Wn-W) f + en}
n

In the above equation, pit) exp{i(/>(r)} is a slow amplitude modulation
of the random process and exp{iwf} is a carrier wave, as shown in Figure
3.5. Here, pit) is the envelope process, and xif) is called the total phase. It is
noted that even when the spectrum is not narrow, it is possible to define
the complex envelope function pit) by writing Eq. (3.18) in the form
given in Eq. (3.20).

Let us write x(r) in terms of the envelope process pit) and the total
phase xit) as

x(t)=xc(t)+ixs(i) (3.21)
where

xsit)=pit) sin

Now, the envelope process pit) for a given wave record x(r) can be evalu-
ated by applying the concept of the Hilbert transform. The Hilbert trans-
form of a function xit) is defined as follows (see Appendix C):

(3.22)

1 . . . 4 .. 1 . . . 1 . . . . i i

.-Envelope process | "

[

Fig. 3.5. Envelope process.
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TIME IN SECONDS
Fig. 3.6. Example of envelope process of random waves obtained through

application of Hilbert transformation technique (Shum and Melville
1984).

As stated in Appendix C, for a real-valued function x(r), we may define
a complex process given by

z(i)=x(t)+ix(t)
Then the envelope of z(t) can be obtained as

p(t)=V{x(t)}2+{x(t)f2

(3.23)

(3.24)

We may apply this method to Eq. (3.21). Note that xc(t) in Eq. (3.21)
is known from the wave record, and furthermore it can be proved that the
Hilbert transform of cosx(t) is sinx(r). Hence, by taking the Hilbert
transform of the wave record, xs(r) can be evaluated and then the envelope
process of a given wave record drawn using Eq. (3.24). An example of the
envelope process of random waves obtained through application of the
Hilbert transform is shown in Figure 3.6. In practice, the envelopes are
generally obtained from a filtered record. The effect of lower and upper
frequencies that are cut off when filtering a wave record is discussed in
detail by Longuet-Higgins (1984).

3.3 PROBABILITY DISTRIBUTION OF WAVE
MAXIMA WITH NON-NARROW-BAND
SPECTRUM

The profile of waves, in particular those observed in relatively severe seas,
is much more irregular than that shown under the assumption of the
narrow-band random process. The profile is irregular in the sense that
often two or more peaks (or troughs) exist during each half-cycle; and
hence wave amplitude cannot be clearly defined. In this situation,
Cartwright and Longuet-Higgins (1956) define the local maxima and
minima of the wave profile and develop probability density functions.
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Let us first define the local maxima and minima on both the positive
(above the mean value) and negative (below the mean value) sides of a
random process. As illustrated in Figure 3.7, the local peaks and troughs
located on the positive side satisfy the condition x(t)>0 and x(t)=0, and
they are defined as the positive maxima for x(r)<0 and positive minima for
x(t)>0, respectively. Similarly, the peaks and troughs on the negative side
of a random process satisfy the condition x(t)<0 and x{t) = 0, and they are
defined as negative maxima for Jc(r)<0 and negative minima for Jc(r)>0,
respectively. For a Gaussian random process, the positive maxima and
the negative minima follow the same probability law. The same is true for
the positive minima and the negative maxima.

With regard to the statistical prediction of local maxima and minima,
distributions of two different formulations are available; one considers
the probability distribution of positive maxima (or negative minima) only,
the other deals with the probability distribution of maxima (or minima)
including positive as well as negative maxima (or minima). In the follow-
ing, the derivation of the former probability distribution is discussed in
detail, and then the latter probability distribution is outlined.

In order to develop the probability density function of the positive
maxima, denoted as Z, consider the probability that Z will exceed a
certain level f. Following the same concept as shown in Eq. (3.16), the
probability is equivalent to the average value of the ratio of the number of
Z above £ per unit time, denoted by Np to the total number of Z per unit
time, denoted by N+. That is

PT{Z>fi = l-F(O=E[Ns/N+]**E[N£/E[N+] (3.25)
where F(£) is the cumulative distribution function of Z, and E[ ] stands
for the expected value.

Rice (1944, 1945) and Middleton (1960) show that the expected
(average) number of positive maxima above the level £ per unit time can
be written as

POSITIVE MAXIMA
'POSITIVE MINIMA

NEGATIVE MINIMA

NEGATIVE MAXIMA

Fig. 3.7. Definition of local maxima and minima of non-narrow-band
random waves.
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oo 0

=l I \x\f(x,O,x)dxdx (3.26)

where /(x>0,Jt) is the joint probability density function of displacement,
velocity and acceleration of the Gaussian random process x(t).

By letting £=0, we may write the expected number of positive maxima
per unit time as

oo 0

E[N+]=| \x\f(x,O,x)dxdx (3.27)
0 - o o

Then, the probability density function of the positive maxima /(£) can
be obtained from Eqs. (3.25) through (3.27) as

A0=-rJi- I

J j \x\f(x,O,x)dxdx
( - o o

I I |x|/(%,0,*)d*d%
0 - o o

0 0
J \x\Fx(^,0,x)dx-\ \x\Fx&0>X)dx

co 0

J J \x\f(x,O,x)dxdx
0 - o o

r
If
0 - o o

\x\f(x,O,x)dxdx

(3.28)

where Fx(x,0,x) is the marginal cumulative distribution function of

For a Gaussian random process with zero mean, x and x as well as x
and jc are statistically independent. The covariance matrix is given by

m0 0 -m21
0 m2 0 (3.29)

where m=j\h moment of spectrum = f(o>S(a>)da).
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Hence, the joint probability density function /(%,O,Jt) becomes
1

f(x,0,x)=-
m4x2+2 m2xx+m0x2

•- e 2A (3.30)
(277-)3/Vm2A

where A=mo»?4-m|. Then, the numerator of Eq. (3.28) becomes

r w<w) dx=—L_ A £ r * exp f-^f-^yi

E ? M I (3.31)
6 Vmo/J

where

exp{-w2/2} du

H (3.32)
The parameter e is called the bandwidth parameter of the spectrum

(Cartwright and Longuet-Higgins 1956), and e=0 represents a random
process with a narrow-band spectrum. Although the parameter e does
not necessarily represent a measure of the energy spreading of a spec-
trum, it plays a convenient role in further development of the theory.
Additional discussion on the bandwidth parameter is given at the end of
this section.

In order to evaluate the denominator of Eq. (3.28), integration with
respect to x is first carried out, and then integration with respect to x is
performed. This gives

J J
0 - c o

dx dx=
4TT\ Vl -e 2 (3.33)

It is noted that the inverse of the above quantity is equal to the average
time interval between successive positive maxima. From Eqs. (3.31) and
(3.33), the probability density function for the positive maxima given in
Eq. (3.28) becomes

2ivm0 r 6 r i
K0=TTZ77==>. ^w= exP"l+Vl-e2|_V27r

exp

o^<r<c (3.34)
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,08
1.0 (TRUNCATED NORMAL)

' 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
RANDOM VARIABLE £

Fig. 3.8. Probability density function of maxima as a function of bandwidth
parameter e.

We may write the above probability density function in dimensionless
form defining the random variable f = £/vrn0. That is,

(3.35)

As can be seen in Eq. (3.35), the probability density function is a function
of the bandwidth parameter e, and /(£) reduces to a Rayleigh probability
density function (in dimensionless form) for e= 0. On the other hand, for e= 1
which represents a wide-band random process consisting theoretically of an
infinite number of frequencies, the probability density function becomes

(3.36)
77

This is a truncated normal distribution (truncated at £=0).
The probability density function /(£) for various e-values are shown in

Figure 3.8. As stated earlier,/(g) can also be applied to the distribution of
negative minima.

The cumulative distribution function of the positive maxima £ (dimen-
sional) and f (dimensionless) can be derived by integrating Eqs. (3.34)
and (3.35) with respect to £and £, respectively. The results are:

(3.37)
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and

(3.38)

Next, the probability density function of maxima including both posi-
tive and negative maxima will be developed. In this case, the procedure
for developing the density function is exactly the same as that of positive
maxima except the sample space is extended into the negative range.
Hence, the integration domain of the random variable x in Eq.(3.27) is
from -00 to 00. The probability density function in dimensionless form
becomes (Cartwright and Loguet-Higgins 1956)

(3.39)

The probability density function of/(£) for various e-values is shown in
Figure 3.9. In this case,/(£) reduces to a Rayleigh probability distribution

-2 - 1 0 1
RANDOM VARIABLE

= O(RAYLEIGH)
0.2
0.4
0.6
0.8
1.0 (NORMAL)

Fig. 3.9. Probability density function of maximum point process as a func-
tion of bandwidth parameter e (Cartwright and Longuet-Higgins
1956).
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(in dimensionless form) for 6=0, and reduces to the standardized normal
distribution for e= 1.

As can be seen in the derivation of the probability density function of
wave amplitude, the bandwidth parameter e plays a significant role. As
mentioned earlier, 'bandwidth' gives the impression that it represents the
range of frequencies covered by the spectrum. However, this is not the
case. Since the parameter 6 depends on the magnitude of the 4th moment
of the wave spectrum, the magnitude of e depends to a great extent on the
frequency range where dominant wave energy exists. The e-value for
ocean waves lies in the range of 0.40 to 0.80, while that for waves in the
surf zone lies in a much higher range; of the order 0.70 to 0.95. Since
wave spectra with e less than 0.4 do not exist in reality, square-shaped
spectra having e less than 0.4 are artificially developed for research pur-
poses as shown in Figure 3.10 (Ochi 1979b).

As a parameter representing reasonably well the degree of spectral
energy spreading over the frequency range, Goda (1970) proposes the
spectral peakedness parameter defined as

60

50

40

LU
Q

i
o
UJ

30

20

10
( £ =0.20)

i 1
I
I
i

(£=0.11)
S1

(£

S-5 |

=0.32) (£=0.20)
I S-3 —

0.4 0.8 1.2
FREQUENCY, <o, IN RPS

1.6 2.0

Fig. 3.10. Square-shape spectra with band-width parameter e less than 0.4
(Ochi 1979b).
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(3.40)
f S((o)doj)

On the other hand, Longuet-Higgins (1983) proposes the spectral
width parameter defined by

v=V(m2m0/mf)-l (3.41)

and the wave spectrum is characterized as being narrow when

3.4 JOINT DISTRIBUTION OF TWO WAVE
AMPLITUDES

In this section, we consider the joint probability distribution of two wave
amplitudes separated by time r. For this, we may assume a random
process with narrow-band spectrum and consider the joint probability
distribution of two points of an envelope process x(t) and x(t+ T) which
are separated by time T.

Let the wave profile x(t) be presented in the form p(r) exp{i0(r)} given
in Eq. (3.20), and write the two components xc(t) and xs(t) as

(3.42)

We may write the random variables xcl and xsl as the value of xc(i) and
xs(r), respectively, at time r, and %c2, xs2 as those at time (r+ r). Since aw are
normally distributed with zero mean, the random variables xcl, xsl, xc2
and xs2 are jointly normally distributed with the following properties:

(i) E[xcl]=E[xJ=E[xc2]=E[xJ=0 (3.43)

(ii) E[xclxsl]=E[xc2xs2]=0 (3.44)

(iii) E[4) =E[^] =E[^J =E[x£=o2 (3.45)

r00

(iv) E[xclxc2] =E[xslxs2] = S(G)) cos(o)—a))Td(L>=p (3.46)
0

r
(v) E[xclxs2] = -E[xslxc2]= S(«)sin(ci>-a))Tdft>=A (3.47)

o
where S((o) is the spectral density function of the random process.
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Derivations of E[JCC1%C2] and E[xclxs2] are given in the following:

COS {

cos (WW-

=^2a'ncos(o>n-7o)T (3.43)
n

where the bar denotes the average value with respect to time t. The ampli-
tudes are related with the spectral density function as

2

and thereby Eq. (3.46) can be derived as follows:

(3.49)

= 1 S((O) COS((i)—a))Td(D=p

0

Similarly, we have

E[xclxs2]=E ^ «n

sin (WW-

\c= \ S((o) sin(w— o))rdco

This is shown in Eq. (3.47) as A.
Thus, from Eqs. (3.44) through (3.47), the covariance matrix of xcl,

xsly xc2 and xs2 can be written as

l o 2 0 p \\
0 o2 -A p
p -A o2 0

^A p 0 a2 /

(3.50)
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Consequently, the joint normal probability density function of the
random variables (xcl, xsl, xc2, xs2) with zero means can be written as
follows:

where,

~"

1 _lyT V-lv
(3.51)

and
I a2 0

0 a2 A
-p X a2

P 0

-p -A\

-A -
0
a2

Then, Eq. (3.51) yields
1 \—hrl1 2^^L

(3.52)

We now transform the random variables (xcl, xsl, xc23 xs2) to random
variables representing amplitudes and phases (A19 e^A2i e2) by using the
functional relationships

xcl(t) =Al(t) cos e^t)
xsl(t) =Al(t)sine1(t)
xc2(x+r)=A2(t+T) cos e2(r+T)

=A2(t+T) sin e2(r+r) (3.53)

That is, by applying the transformation method, the joint probability
density function of A1} ep A2 and e2 becomes

1 f 1
2, 6 2 ) — exp

277 (3.54)

The joint probability distribution of amplitudes Ax and A2 can be
obtained by integrating Eq. (3.54) with respect to ex and e2. For this we
may write
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p cos (e2—e^H- A sin(e2—ex)

=Vp2+A2cos(e2-e1-tan~1(A/p))

Then, we have

(3.55)

e x p

X exp p2+A2cos(e1-e2-tan-1(A/p)) \dex de2 (3.56)
o o

In carrying out the double integration in the above equation, let us first
consider transformation of the two random variables ex and e2 to a single
random variable (ex — e2). It can be easily shown that the double integral
in Eq. (3.56) is equivalent to the constant 2TT times a single integral with
respect to (ex — e2). Furthermore, cos{61-e2-tan~1(A/p)} is periodic.
Hence, Eq. (3.56) can be written as,

(3.57)

where 4>=e2—ex —tan l (A/p) and /0 is the modified Bessel function of zero
order.

This is the joint probability density function of two amplitudes Ax and
^42, separated by the time interval T, in a narrow-band Gaussian random
process.

The joint probability density function f(AlyA2) is often presented in
another form. That is, by writing o2=m0 and by defining &=Vp2+A2/m0,
we have \/\X\ =rn$(l—k2). Then, the joint probability density function
of Ax andA2 given in Eq. (3.57) can be written as

1-k2

1 A\+A\
~2(l-fc2) m0 (3.58)

If &=0, the joint probability density becomes the product of two
Rayleigh density functions; namely the random variables Ax and A2 are
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statistically independent and thereby they are uncorrelated. However, k
is not a correlation coefficient. The correlation coefficient, denoted by 7,
following its definition (see Appendix A) is given by Uhlenbeck (1943)
as

7={^(*)~(l-*2)^(*)-f}/(l-f) (3.59)
where K(k) and E(k) are complete elliptic integrals of the 1st and 2nd
kind, respectively. These are written as

rrr/2
K(k)=\ (l-k2sm20)-md0

0

E(k)=\ (l-k2sm29)md0 (3.60)
0

The values of the correlation coefficient y for various &2-values and its
approximation are given by Longuet-Higgins (1984) (see Section 8.2.3).

By letting the separation time r equal ITT/TD, AX and A2 may approxi-
mately represent the amplitudes of two successive waves.

The joint probability density function of any two amplitudes Ax and
A2, without the restraint of the separation time, may be simply obtained
by modifying the joint probability density function of the exponential dis-
tribution. That is, let the random variables Xx and X2 be two outcomes of
the exponential probability distribution with parameter A, and let p be the
correlation coefficient between the two random variables. Then, the joint
exponential probability distribution can be given by

(3.61)

The random variables Xx and X2 are now transformed to Ax and A2 by
letting the functional relationship between them be as follows:

XX=A2IKR and X2=A2/XR (3.62)

Then, the joint probability density function of Ax and A2 yields the fol-
lowing joint Rayleigh probability density function:

The joint probability density functions derived in Eqs. (3.57), (3.58)
and (3.63) can be applied to solve many interesting properties of random
waves. Examples of their application to the probability distribution of
wave height will be presented in the next section, and their application to
group waves will be discussed in Section 8.2.
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3.5 PROBABILITY DISTRIBUTION OF PEAK-TO-
TROUGH EXCURSIONS (WAVE HEIGHT)

The probability distribution of peak-to-tough excursions may be simply
obtained if we assume that the magnitude of excursions is twice the
amplitude. This assumption is commonly made for random waves in
deep water. That is, the probability distribution of wave height, denoted
by H, for a narrow-band random process can be obtained from Eq. (3.9)
by transforming the random variable from A to H=2A. This results in the
density function of wave height being the Rayleigh probability distribu-
tion given by

exP {^/So2} 0^H«» (3.64)

If the density function is written in the form of Eq. (3.10), then the
parameter R of the Rayleigh distribution is equal to So2.

For the probability density function of waves with a non-narrow-band
spectrum, it may not be appropriate to use the same simple concept con-
sidered in the derivation of Eq. (3.64). This is because twice the magni-
tude of the positive maxima does not represent the wave height, in
general. Nevertheless, it is common practice to consider the probability
distribution of wave height to be of the same form as given in Eq. (3.34)
but with the random variable f doubled.

For the probability distribution of wave height, it may be more
appropriate to consider either the sum of two statistically independent
amplitudes or, more precisely, the sum of two amplitudes separated by
one-half of the average period. In order to apply the first concept for the
derivation of wave height distribution, we may consider two Rayleigh
probability distributions given by Eq. (3.9) with independent amplitudes
Al and A2. The probability density function of the sum of these two
random variables H can be obtained by the following convolution inte-
gral:

f(H)= C

Tayfun (1981) derives the wave height distribution by considering the
sum of amplitudes Ax and A2 that are separated by one-half the period.
That is, by writing the wave height as H=Al+A2, the probability density
function of wave height may be written by applying Eq. (3.57) in the fol-
lowing form:
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f(H\r= 772) = f f(H-A2, A2; r= T/2) cL42 (3.66)
0

Taking into account all values of the period, the density function of H
can be obtained as

F rH

= 1 I f(H-A2,A2;r=T/2)f(T)dA2dT (3.67)
0 0

where /(T) is the probability density function of the period. Since the
computation of the density function given in Eq. (3.67) is extremely com-
plicated, Tayfun assumes that the period is a constant, and is the mean
period given by T=2TT/7O where ~co is the mean frequency. Then, the prob-
ability density function of wave height is given by

f(H) = f f(H-A2, A2; T= 77/3) cL42 (3.68)
o

In evaluating/(/f), Tayfun non-dimensionalizes Ax and A2 by dividing by
VR.

Figure 3.11 shows an example of a comparison between the probabil-
ity distribution given by Eq. (3.68), Rayleigh probability distribution,
and the histogram constructed from the measured data. It can be seen
that the peak-to-trough distribution computed by Eq. (3.68) yields a
larger probability density around the mean value than the Rayleigh distri-
bution and that it agrees well with the observed data.

For the probability distribution function applicable to peak-to-trough
excursions, Naess (1985a) considers the following probability which is an
extension of the concept given in Eq. (3.25). That is, assuming a narrow-
band random process and assuming the wave height is equal to twice the
amplitude and, in addition, taking into consideration the correlation
between peak and trough which are separated by a time equal to one-half
of the dominant wave period, we may write

Pr {wave amplitude>£} =Pr {peak>£, trough<-£}
(3.69)

where E[N^_^\ ^expected number of simultaneous occurrences (per unit
time) of an up-crossing of the level £ followed by a down-
crossing of the level -£at a time 772 later

E[AT+j_]= expected number of upward zero-crossing (per unit
time) followed by downward zero-crossing at a time 772
later.
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DIMENSIONLESS WAVE HEIGHT, H/H
rms

Fig. 3.11. Comparison between histogram of a peak-to-trough wave excursion
and Rayleigh distribution and the probability density function given
inEq.(3.68) (Tayfun 1981).

Naess shows that the expected number of crossings E[A^ _̂ ] with time
difference r= 772 between peaks and troughs for Gaussian waves may be
evaluated by extending a procedure given in Eq. (3.13) to four random
variables (xvxvx2 and x2) where the subscript 1 stands for the up-crossing
displacement and velocity, while the subscript 2 are those for the down-
crossing. That is,

= ffxx

f f x1x2exp|--xTi:-1x|dx1dx2 (3.70)

-00 0

-00 0

where x=(&*p-&;c2)

x=
R(0)
R(0)
R(T)

\ R(r)

r
R(T) = S(co) cos OD

o

-i?(0) R(T) R(T)\
-R(0) -R(T) -R\T)

R(0) -R(0)
R(Q) -R(O)j

-R(T)
-R(T)

with T= 772
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By evaluating Eq. (3.70), Eq. (3.69) yields

r ? I
Pr{wave amplitude>£} =exp ~^2 (3.71)

where o2 is the variance of x(t) and r(T/2)=R(T/2)/o2.
From Eq. (3.71), the probability density function of wave amplitude

becomes

/ ( ^ = o-2{l-r(r/2)}eXP[ o-2{l-r(772)}J

(3.72)

and thereby the probability density function for the peak-to-trough
excursion (wave height H) can be derived as follows:

TT C Tip

4o-2{l-r(772)}J

0<//<oo (3.73)

Equation (3.73) is the Rayleigh probability distribution with a parame-
ter which is a function of the dominant wave period T. When the band-
width of a spectral density function is zero (namely, a strictly
narrow-band random process), r(772) becomes - 1 , and hence/(//) is the
same as that given in Eq. (3.64).

3.6 SIGNIFICANT WAVE HEIGHT
As stated in Section 3.1, significant wave height (introduced by Sverdrop
and Munk (1947)) is the measure most commonly used for representing
the severity of sea conditions. It is defined as the average of the one-third
highest observed or measured wave heights. However, it is rarely evalu-
ated following the definition; instead, it is commonly evaluated by using
the variance computed from a spectrum, or by applying the statistical
inference theory discussed in Section 3.9. The principle underlying the
evaluation of significant wave height based on the Rayleigh probability
density function is as follows.

By assuming a narow-band wave spectrum, wave height follows the
Rayleigh probability distribution. For convenience, we may write the
Rayleigh distribution as

2xf(x)=--exp{-x2/R) 0^x<oo (3.74)R
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where R=Sm0 if x represents wave height and m0 is the area under the
spectral density function.

Let us write the lower limit of the highest one-third of the probability
density function as **. Since significant wave height deals with the highest
one-third wave heights, we can write the probability of exceeding x* is 1/3
as follows (see Figure 3.12):

~°2x 1— exp{—x 2IR) dx=—R 3 (3.75)

which yields

By evaluating the moment about the origin, we have

(3.76)

R

(3.77)

where //^significant wave height.
Then, from Eqs. (3.76) and (3.77), the significant wave height can be

obtained as

Since the parameter R of the Rayleigh distribution for peak-to-trough
excursions is eight times the variance, the significant wave height
becomes

Hs—  1.42V8 mo=4.Ol Vm^ (3.79)
Thus, the significant wave height is equal to four times the square-root of
the area under the spectral density function with the narrow-band

Pr{X >x* } = 1/3

Fig. 3.12. Computation of significant wave height from probability density
function.



3 . 6 SIGNIFICANT WAVE HEIGHT

random process assumption. If this assumpton is removed, significant
wave height can be approximately evaluated through the same procedure
but by applying the probability density function of positive maxima given
in Eq. (3.34). It is necessary, however, to double the evaluated value in
this case since Eq. (3.34) is applicable to the positive side only.

The results of computations of significant wave height for various
bandwidth parameters e are shown in Figure 3.13. The range of 6 for
waves observed in the ocean is on the order of 0.4 to 0.8; hence, it appears
that the significant wave height evaluated on the basis of the narrow-band
assumption yields an overestimation of approximately 1.5-8 percent.

The formula for evaluating significant wave height given in Eq. (3.78)
can be generalized to evaluate the average of the highest \ln observations,
denoted by xllv> for the Rayleigh distribution. That is,

- (p(V2\nn)}]VR (3.80)xVn=

For large n, the second term in Eq. (3.80) becomes negligibly small in
comparison with the first term, and hence, Eq. (3.80) may be approxi-
mated by

XM = (3.81)

It is noted that the formula given in Eq. (3.81) agrees with the prob-
able extreme wave height expected in n observations (where n is large),
which will be derived in Chapter 6.

4.0
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WIDE-BAND SPECTRUM,

0.2 0.4 0.6 0.8 1.0

£ - VALUE

Fig. 3.13. Significant wave height as a function of bandwidth parameter e.
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3.7 PROBABILITY DISTRIBUTION OF HALF-
CYCLE EXCURSIONS

The definition of half-cycle excursions is given with reference to Figure
3.2; the four different local peaks and troughs associated with the half-
cycle excursions are defined as the positive maxima., positive minima,
negative maxima and negative minima as illustrated in Figure 3.7.
Statistical analysis of displacement (vertical distance) between successive
local peak to local trough excursions or vice versa is called half-cycle excur-
sion analysis.

Half-cycle excursions can be categorized into two groups; those cross-
ing the zero-line and those located above or below the zero-line. We may
define these half-cycle excursions as Type I and Type II excursions, respec-
tively. Although there are ascending and descending excursions for each
case, the statistical properties remain the same.

The probability density function of half-cycle excursions includes the
probability density functions of both Type I and Type II excursions taking
into consideration the frequency of occurrence of each type (Ochi and
EckhorT 1984). For this, we may write the dimensionless probability
density function of the half-cycle excursion as

KD=qA(O^q2h2(O (3.82)

where £ = dimensionless half-cycle excursion
= (half-cycle excursion)/Vmo

m0 =area under the spectral density function
/z1(£),/z2(£) ^probability density function of Type I and

Type II half-cycle excursions, respectively
qvq2 — weighting factors for h^) and h2(g), respectively.

It may be thought that Type I excursions are twice the magnitude of
the positive maxima whose probability density function is given in Eq.
(3.34). However, this is not the case for the following reason.

For convenience, let us consider descending excursions AjC and AnB
shown in Figure 3.14. The former is a Type I excursion, while the latter is
a Type II excursion. Nevertheless, the probability distribution of the pos-
itive maxima is applicable to both Al and An. Therefore in evaluating the
probability distribution of Type I excursions AjC, the maxima An belong-
ing to the Type II excursions must be deleted by taking into consideration
the frequency of occurrence of each excursion.

The expected numbers of Type I and Type II half-cycles, denoted by
NAC and iVAB, respectively, are given by

NAB=NB (3.83)
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where NA and iVB are the expected numbers of positive maxima and posi-
tive minima, respectively. NA and NB are given by Cartwright and
Longuet-Higgins (1956) as

N*=tr[^vrr)VmJm°
(3.84)

Thus, the probability of occurrence of Type I and Type II descending
excursions on the positive side, denoted by px and p2 can be evaluated
from Eqs. (3.83) and (3.84) as

NAn 2V1-62

1+Vl-e2

A/A 1 + V l - e 2 (3.85)

The conditional probability density function of descending Type I
excursions, given that positive maxima have occurred, can be written as
Pxh^Z). Since the probability of occurrence of positive maxima is/>p the
(unconditional) probability density function of descending Type I excur-
sions becomes p\hx{£). Here hx{£) is twice the magnitude of the positive
maxima. By applying the probability density function given in Eq. (3.35),
we may write the probability density function of descending Type I half-
cycle excursions (in dimensionless form) as

(3.86)

where /(£) is the probability density function of positive maxima in
dimensionless form given in Eq. (3.35).

TYPE I I
EXCURSION

Fig. 3.14. Type I and Type II excursions.
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The probability density function of ascending Type I excursion is the
same as that given in Eq. (3.86) because the statistical properties of a
Gaussian random process on the positive and negative sides are identical.

For the probability density function of Type II half-cycle excursions,
we must first consider the conditional probability density function of the
positive maxima, given that the positive maxima are greater than positive
minima. Under this condition, the joint probability density function of
positive maxima and positive minima is given in dimensionless form as
follows:

fe <3'87)
where F(£j) is the cumulative distribution function of positive maxima in
dimensionless form given in Eq. (3.38), and/(^) is the probability density
function of positive minima in dimensionless form given by

I/A2

(3.88)

The probability density function of Type II half-cycle excursions can
be derived from Eq. (3.87) by applying the technique change of random
variables. Since Type II half-cycle excursions are the difference in the
magnitude of positive maxima and positive minima, we may write
£=£— v. Then, the probability density function h2(g) can be obtained by
replacing the random variable £in the numerator of Eq. (3.87) by (£+1>),
and by integrating with respect to v. That is,

-f1-1
0

The probability of occurrence of Type II descending half-cycle excur-
sions^ is given in Eq. (3.85). Since positive minima yield both ascending
and descending half-cycle excursions on the positive side, the probability
density function of Type II excursions becomes 2p2h2(£) on the positive
side. The same probability density function can be applied to Type II
half-cycle excursions on the negative side for a Gaussian random process.

The desired probability density function for half-cycle excursions is
obtained by combining the two probability density functions given in
Eqs. (3.86) and (3.89). By taking into consideration the condition
required for the sum of two probability density functions, the result is
given as follows:
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Pi+2p2
 Wl"1

(3.90)

where
p\

\ + 2p
-=weighting factor for hx (

2p2
q2

=~?—~—^weighting factor for h2(£)
P + 2P

(3.91)

As shown in Eq. (3.85),^ and^2 are functions of the bandwidth para-
meter e; hence, it can be seen from Eq. (3.90) that the probability density
function of half-cycle excursions (in dimensionless form) depends on
only the bandwidth parameter e.

As an example of the probability density function of half-cycle excur-
sions, Figure 3.15 shows the density function computed from wave data
obtained during hurricane CAMILLE. The data used in the computa-
tion were obtained during the growing stage of the hurricane in a
significant wave height of 12.3 m. There is a total of 525 half-cycle excur-
sions in the record and this agrees well with the predicted number of 524
excursions; twice the sum of the expected number of Type I and Type II
half-cycle excursions computed by Eqs. (3.83) and (3.84). On the other
hand, the total number of excursions computed by the narrow-band
random process assumption is 360; a significant underprediction of the
measured value. The difference can be attributed to the consideration of
Type II excursions in the analysis.

0.4

>. 0.3
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s
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£ 0.2
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i
S o.i

°0

THEORETICAL PROBABILITY
DENSITY FUNCTION

HISTOGRAM

2 3 4 5 6

DIMENSIONLESS HALF-CYCLE EXCURSION

Fig. 3.15. Comparison between histogram of half-cycle excursions (dimen-
sionless) and theoretical probability density function.
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It is noted that half-cycle excursion analysis considers every excursion
of a random process irrespective of its magnitude; therefore, the probabil-
ity density function given in Eq. (3.90) can be used for stochastic analysis
of the properties of various random processes; for example, for analysis of
fatigue loads of marine systems (Ochi 1985).

3.8 LONG-TERM WAVE HEIGHT DISTRIBUTION
The statistical properties of waves presented so far are those in a steady-
state sea condition, which is often referred to as the short-term wave sta-
tistics. It is of interest to examine the statistical properties of waves
accumulated over a long time period. Long-term wave statistics plays an
important role for the design of marine systems, since the accumulation
of responses of a marine system in each short-term sea state over its life-
time provides information vital for evaluating fatigue loads of the system.
The methods for estimating long-term individual wave statistics and a
marine system's long-term response are essentially the same. For the
latter case, however, the effects of additional conditions such as loading,
heading to waves, speed, etc., have to be considered.

The long-term statistics of individual wave height is an accumulation
of the statistics for all short-term sea conditions, taking into account the
frequency of occurrence of each short-term sea state. Here, it is assumed
that the wave height in the short term follows the Rayleigh probability law.
By letting Hs and To be the significant wave height and average zero-
crossing period, respectively, the probability that the magnitude of wave
height in the long term will exceed a specified value ca' may be written, in
principle, as follows:

Pr{HL>a} =X Pr{tfL>a|Hs,T0}Pr{tfs,T0} (3.92)
where HL= wave height in the long term.

The above equation for evaluating the statistical property of long-term
wave height is conceptually correct. However, long-term statistics does
not deal with a steady-state random process; hence, it is necessary to take
into account the number of waves for each piecewise steady-state short-
term sea in order to evaluate the probability. This was first brought to our
attention by Battjes (1972) in his derivation of the probability density
function of long-term wave height.

We may compute the average number of zero-crossings for each short-
term sea condition, denoted by w*, from the wave spectrum as follows (see
Section 4.4):

n*=-^~ J~(60)2T (3.93)
2 77 M mQ

where m0, m2
=zeroth and second moment, respectively, of the

short-term wave spectrum
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T= duration of short-term sea in hours.
By incorporating the number of waves in each short-term sea, Eq.

(3.92) may be modified as

%9fQ} Pr{TQ

Pr{f/L>a} = A_5> _ (394)
2

The total number of waves in the long term can be evaluated from the
denominator of Eq. (3.94) as follows:

=7. 7iW*Pr{rn/fj rr{HA (3.95)/total number of waves\
• , i \

V in the long term I
Since estimation of the duration of each short-term sea involved in Eq.

(3.93) is difficult, the average duration is considered in practice.
The long-term probability density function of wave height is devel-

oped by Battjes (1972) using the joint probability density function of
significant wave height and average zero-crossing period as follows:

\Mx) roi f(Hs,T0) dHsdT0

f(x)=lJ-T- (3.96)

where/*(#) =probability density function for the short-term
wave height

IQ1=short-term average number of waves per unit time.
An example of the cumulative distribution of long-term individual

wave heights obtained at three locations in the North Atlantic and the
North Sea is shown in Figure 3.16. The data at each location consist of
records of 12 minutes duration taken every 3 hours for one year. As seen
in the figure, the cumulative distributions plotted on Weibull probability
paper show that the long-term wave heights appear to follow the Weibull
distribution with an exponent close to unity; that is, the distributions are
close to the exponential probability distribution.

It may be of interest to note the total number of waves a marine struc-
ture might expect to encounter in its lifetime. An example of computa-
tions made for a 50-year lifetime of a semi-submersible-type offshore
structure in various sea states in the North Sea up to a significant wave
height of 13 m, taking into consideration various wave spectral shapes
and headings to the seas, indicates this may be on the order of 3.58X108

by applying half-cycle excursion analysis, and 3.05 X108 by applying the
narrow-band random process assumption (Ochi 1987). The number
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Fig. 3.16. Example of long-term probability density function of wave height
(Battjes 1972).

will certainly be larger for marine vehicles, depending on their design
speed.

The long-term wave statistics discussed in this section is the accumula-
tion of all wave statistics in a given sea state (short-term wave statistics),
with the sequence of the occurrence of sea states ignored. This informa-
tion is sufficient, in general, for the marine systems design considerations;
however, a more accurate estimation of long-term wave statistics may be
achieved by taking the sea state history into consideration. Athanassoulis
et at. (1992) and Athanassoulis and Soukissian (1993) developed a
method for evaluating long-term wave statistics reflecting the sequence of
occurrence of sea state at a given site. Waves in the long-term are consid-
ered to consist of two-level stochastic processes; one the slow-time com-
ponent representing sea state (significant wave height) variation with
time, the other the fast-time component associated with individual waves
in a given sea state. They consider the number of maximum of the sea-
surface elevation above a specified level occurring during a long time
period [0, J], and they apply renewal theory. Although their approach is
excellent, the application of renewal theory requires information regard-
ing the time history of sea state for a sufficiently long period of time at a
specified site. This may cause some difficulty in the application of the
method at the present time.
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3.9 STATISTICAL ANALYSIS OF AMPLITUDE
AND HEIGHT FROM WAVE RECORDS

3.9.1 Introduction
Analyses and predictions of probabilistic properties of waves presented in
this chapter so far are based on stochastic analysis of the wave spectrum.
It is often important, however, to evaluate statistical properties of waves
from measured data without carrying out spectral analysis, but instead,
through analysis of random samples of a wave record by applying statisti-
cal estimation theory.-There are two ways to take random samples: one is
to read wave heights (xv x2>.. o xn) as shown in Figure 3.17(a), the other is
by reading wave deviations by drawing the mean line, as shown in Figure
3.17(b). These readings are not necessarily in sequence nor at equal
intervals for wave deviation sampling.

Most commonly, we assume that waves are a narrow-band, Gaussian
random process, and thereby wave heights obey the following Rayleigh
probability law. The parameter R of the distribution will be estimated
through statistical analysis of the random sample.

(3.97)

The Rayleigh probability density function is derived in Section 3.2 fol-
lowing Rice's method developed in communication engineering. The
probability distribution, however, was originally developed by Lord
Rayleigh in 1880 in connection with the analysis of the resultant intensity
of a large number of independent sounds. The distribution was intro-
duced by Longuet-Higgins for predicting the magnitude of random
waves not through spectral analysis but instead based on a concept similar
to that considered by Lord Rayleigh. That is, assuming that a wave enve-
lope exists and wave energy is being received from a large number of
different sources whose phases are random, Longuet-Higgins shows that
the probability distribution of such a sum (envelope) can be given in the
form of Eq. (3.97).

The parameter R of the Rayleigh distribution is estimated based on a
function composed of a set of random sample of size n. This is called the
estimator of the parameter R. The accuracy of the estimation certainly
depends on the sample size n; the larger the sample size, the more reliable

(a ) (b)

Fig. 3.17. Random sampling as applied to wave records.
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the value can be acquired. For a large number of n (theoretically, infinite),
the value of the estimator can be considered as the parameter. But, if the
number is small, it is only possible to estimate the upper and lower limit
values (confidence bands) of the parameter for a specified probability of
assurance.

Prior to presenting the methodology for estimation, we outline the
general requirements for determining the estimator. As will be shown
later, the estimator itself is a random variable and it has its own probabil-
ity distribution. It is commonly known that the best estimator should
satisfy the following two conditions:

(i) The expected value of the estimator should be equal to the
parameter. For the present case, E[i?] =R. Then, the estima-
tor R is called an unbiased estimator.

(ii) The variance of the estimator is the smallest of all estimators;
it is then called the minimum variance estimator.

A very useful technique for obtaining the best estimator is the
maximum likelihood method. Although the maximum likelihood estima-
tor does not always satisfy the above two conditions, it does satisfy the
conditions for the Rayleigh probability distribution.

3.9.2 Maximum likelihood estimation
The method for finding the maximum likelihood estimator of the
Rayleigh probability distribution from a random sample of wave heights is
the following.

Each element of the random sample (xv x2,..., xn) is statistically inde-
pendent, and is an outcome from a population having the Rayleigh prob-
ability distribution. Therefore, a joint probability distribution function of
(xpx2, ...,xn) is given by the product of the n Rayleigh distributions
which is called the likelihood function denoted by L. We have

The maximum likelihood estimator, R is defined such that the likeli-
hood function L is larger than any other likelihood functions evaluated
using other possible estimator R'. That is

L(xvx2, ...,xn\R)>L(xvx2, ...,xn\R') (3.99)
Therefore, the desired estimation can be determined by maximizing L;
namely, as a solution of dLAIR=0. In practice, however, the estimator $ is
evaluated by maximizing the logarithm of L and thereby as a solution of
the following equation:
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From Eq. (3.100), we have

(3.100)

(3.101)

where x- are random samples of wave height.
As can be seen in the above equation, the estimator R is the average

value of the sum of the squares of the sample elements x{. The significant
wave height of the sea from which the random sample is taken can be
evaluated by Eq. (3.78) with the estimator R. That is,

HS=1A2VW (3.102)

Here, VjT is called the root-mean-square (rms) value.
As can be seen in Eq. (3.101), the accuracy of the estimator R depends

on the sample size n. It is common practice to consider a random sample
size (wave height readings in the present case) of 120 to 150 to be
sufficient for estimating a reliable R-value.

Figure 3.18 is an example of a comparison between the Rayleigh prob-
ability distribution with parameter R estimated from Eq. (3.101) and the
wave height histogram constructed from the record. The estimated R-
value from the sample of 125 readings is 33.9 m2 as compared with
35.6 m2 evaluated from spectral analysis.

Another way to estimate the parameter R of the Rayleigh distribution
is to use the estimator evaluated through random sampling of the devia-
tion from the mean value. As shown in Eq. (3.64), the parameter of the
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Fig. 3.18. Comparison between histogram of wave height and Rayleigh proba-
bility density function computed with estimator R.
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Rayleigh distribution applicable to wave height is equal to eight times the
variance of a Gaussian random process. Therefore, estimation of the
parameter can be achieved by estimating the variance a2 of the normal
probability distribution; namely, we may take a random sample of devia-
tions from the mean value (xv x2,..., xn) as shown in Figure 3.17(b). The
likelihood function in this case becomes

«/2

By differentiating In L with respect to a2, the estimator of the variance
can be obtained as

(3.104)

where x{ are random samples of wave profile (displacement).
It can be proved theoretically that the expected value of the estimated

variance, E[cr2], is equal to (n— l)^2/^, and hence the estimator &2 is
biased. Therefore, Eq. (3.104) may be used for large n. For small sample
size, it is recommended that the following formula be used for estimating
a2:

~ f (3.105)

The significant wave height can be estimated from Eq. (3.102) with
R=S&2. That is,

Hs=4.0lV^2 (3.106)
As seen in Eq. (3.104), the maximum likelihood estimator of the vari-

ance, &2 is the average value of the sum of the squares of the sample ele-
ments x{. Hence, \/~&2 in Eq. (3.106) is also called the root-mean-square
(rms) value, the same name as V ^ in Eq. (3.102), although these two
estimators are entirely different. Table 3.1 summarizes the formulae for
estimating the parameter of the distribution applicable to significant wave
height from observed random samples.

It is noted that estimation of the parameter of the Rayleigh probability
distribution can be made either by R (Eq. 3.101) or by a2 (Eq. 3.104)
from the measured wave record. However, the latter method yields a
more accurate result than the former, in general. This is because the
sample size of the latter is much larger than the former. Figure 3.19 shows
the same comparison between the histogram and probability density
function as shown in Figure 3.18, but using the estimator &2. The
number of readings xi in this case is 1120 compared to 125 for the estima-
tor R. This results in an estimator &2 of 35.2 m2, which is closer to the
variance evaluated through spectral analysis.
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Table 3.1. Estimation of significant wave height from observed random
sample.

Random sample, x RMS-value Estimation of significant wave
height

Wave height

Wave displacement

\A2VR

4 . 0 1 ^

0.15

- 0.10

~ o.o5

WAVE HEIGHT IN METERS

Fig. 3.19. Comparison between histogram of wave height and Rayleigh proba-
bility density function computed with estimator &2.

3.9.3 Estimation of Rayleigh distribution parameter from a
small number of observations

The methods of estimating the parameter R of the Rayleigh probability dis-
tribution in the preceding section are based on the condition that the sample
size, n, must be large, on the order of 120 waves or greater. If the sample size
is small, a reliable specific value of the parameter can no longer be esti-
mated; instead an interval, called the confidence interval in which the true
value of the unknown parameter R lies can be estimated. The estimation is
made with a measure of assurance, 1 —  a, called the confidence coefficient.
Here, the parameter a, called the level of significance, may be interpreted as
the probability of committing a possible error in the estimation.

The confidence interval can be estimated based on the probability
function of the estimator. It is first necessary, therefore, to derive the
probability density function of the estimator R.
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The estimator R is defined in Eq. (3.101) in which the set of x{ is
assumed to be a random sample from the Rayleigh distribution with the
parameter R. Hence, the probability density function of xf (denoted by
y{) can be obtained by applying the change of random variable technique
(see Appendix A) as

/U)=|exp{-j; , / i?} (3.107)

This is the exponential probability distribution, and its characteristic
function can be written as

)= [
o

<t>yi(t)= [ e^^-y^dy^iX-iRty1 (3.108)

Since y{ are statistically independent, the characteristic function of
R= (l/n)%r-=lyi can be obtained following the properties of the character-
istic function

- — 1 (3.109)

which is the characteristic function of the gamma probability distribu-
tion. We thus obtain that the estimator R obeys the gamma probability
law given by

where F{n) is the gamma function.
The cumulative distribution function may be written as

iw ' ( 3 - 1 H )

where

is the incomplete gamma function.
In determining the confidence interval of the estimator $ for a

specified confidence coefficient 1 - a , it is common practice to choose the
confidence interval such that the possibility of committing an error may
occur at the lower and upper portions of the distribution with an equal
probability of error a/2, as shown in Figure 3.20.

Thus, the confidence interval of the estimator i? can be determined
from the following probability:
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f(x)

ct/2

Fig. 3.20. Sketch indicating the confidence interval for the confidence
coefficient 1 — a.

= l - a (3.112)
where R^ and R^ satisfy the cumulative distribution function of the
gamma probability distribution given by

F(R^) = a/2 and F(RlJ) = l-(a/2) (3.113)

Hence, for a specified a, the upper and lower bounds of R can be
obtained from Eqs. (3.111) through (3.113) as

XVT IVr

(3.114)

which results in the confidence interval of the parameter R with
confidence coefficient 1 -abeing

±<R<n
R (3.115)

It is possible to evaluate the confidence interval given in Eq. (3.115)
through the x2 distribution. That is, it can be proved that if R has the
gamma distribution with parameters n and n/R as given in Eq. (3.110)3
then the random variable 2{nlR)R obeys the x2 distribution with 2n
degrees of freedom. Therefore, we write the probability representing the
confidence interval given in Eq. (3.112) as follows:

(3.116)

where A ^ L and X22n)u a r e the values of the x2 distribution with 2n degrees
of freedom for which the cumulative distribution is a/2 and l-(a/2),
respectively. These values may easily be found in the x2 distribution table.

Thus, the confidence interval of the parameter R with confidence
coefficient 1 - a can be determined from Eq. (3.116) as follows:

2nR
X(2n)U

2nR
(3.117)
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The above formula to evaluate the confidence interval is valid for any
number of samples of size n. However, the x2 distribution is asymptot-
ically equal to the normal distribution with mean n and variance 2n for
large n, say n=30 or greater. Hence, for the present case, the random vari-
able 2(n/R)R is asymptotically normally distributed with mean 2n and
variance 4n. Then, by standardizing the normal distribution, the
confidence interval given in Eq. (3.116) can be written as

where Ua/2 is the value of the standard normal distribution for which the
cumulative distribution is a/2 (Ua/2 is negative).

Thus, for a sample size n greater than 30, the confidence interval for
the parameter R with confidence coefficient 1 —a becomes as follows:

l+(\Ual2\/Vn)^lHUa/2/Vn) v-11*'

where Ua/2<0.
For estimating the parameter R of the Rayleigh distribution through a

random sample of displacement from the mean value of the wave record,
it was shown in Eq. (3.104) that the random variable &2=^n

i=l xf/n is the
estimator for o2. In this case, the random sample x{ is considered to be an
outcome from a population which is normally distributed with zero mean
and variance o2. It can be proved, in general, that if a random variable x
obeys the normal probability law with zero mean and variance a2, then
2"=1 xf/o2 follows the x2 distribution with n degrees of freedom. Hence,
for the present case, the random variable n^lo2 has the x2 distribution
with n degrees of freedom. The mean and variance of the distribution are
n and 2w, respectively. Since the sample size n is usually larger than 30, we
may estimate the confidence interval based on the normal distribution by
applying the same method used for the derivation of Eq. (3.118). That is,
by standardizing the random variable n^lo2^ the confidence interval
should satisfy the following probability:

\-a (3.120)

where Ua/2 *s defined in connection with Eq. (3.118).
Then, we can obtain the confidence interval of o2 as

a <o2< ^= (3.121)
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and thereby the confidence interval of the parameter R of the Rayleigh
distribution applicable for wave height with the confidence interval I — a
is given as follows

8 &2 S&2

< R < 7= (3.122)

where Ua/2<0.
a/2

3.9.4 Goodness-of-fit tests
In analyzing wave data obtained in the ocean or in the laboratory, it is
sometimes necessary to examine whether or not the observed data can be
considered as a sample from a population having a presumed probability
distribution. For example, waves in finite water depths are assumed to be
a non-Gaussian random process in general, but they may quite likely be a
Gaussian random process if the sea severity is mild. Therefore, it is neces-
sary to examine the data sample with a statistically based assurance. This
can be done by carrying out so called goodness-of-fit tests in statistical infer-
ence theory.

Although several goodness-of-fit tests are available, each having its
advantage and disadvantage, only typical tests suitable for analysis of
wave data are discussed here. One is the x2 t e s ^ which has been used
extensively in various fields of applied statistics, the other is the
Kolmogorov-Smirnov's test, which has the advantage of being applicable
even for a sample consisting of a small number of observations.

(i) Chi-square (x2) test
This test establishes the confidence with which a sample of observed fre-
quencies of occurrence of particular events can be assumed to belong to a
hypothesized distribution. The test is valid only for a large number of
observations (at least 120 or so is necessary). The test procedure is as
follows.

Classify the observed data into k mutually exclusive and exhaustive
divisions, even though the widths of divisions may not necessarily be
equal. It is recommended that the number of divisions, k> should be
greater than eight. Let n{ be the number of observed outcomes of the
event which fall into the ixh division (i= 1, 2 , . . . , w), and let Sf=1 n{=N.

Next, let p{ be the probability of the hypothesized theoretical distribu-
tion in the ixh division. Here, SJ=1/>2-= 1 and the number of samples in the
zth division is theoretically p{N. It is highly desirable that p{N should be at
least five. If it is difficult to meet this condition, it is common practice to
combine or rearrange the classification of data until the p{N reaches a sat-
isfactory size. Then, we have the statistical criterion that



100 WAVE AMPLITUDE AND HEIGHT

(3.123)

is approximately the x2 distribution with k-l degrees of freedom pro-
vided N is large. When the parameter of the theoretical distribution
(hypothesis) is unknown (this is the usual case), then the unknown para-
meter must be estimated from the data. If there are more than one
unknown parameters, then the degrees of freedom are reduced by one for
every unknown parameter to be estimated.

If the observed value of n is exactly equal to p-iV, then £7=0. This
implies that the observed data follow the hypothesized probability law. It
can be said therefore that a small value of U provides more assurance that
the observed sample obeys the hypothesized probability distribution.
Hence, we may reject the hypothesis that the sample is from the popula-
tion having the presumed probability distribution if

U>Xk-i-a (3.124)
where xl-\-a stands for a value of the x2 distribution with k-l degrees of
freedom and level of significance a. In other words, the observed data are
considered to be significant at level a, and they do not substantiate the
hypothesized probability distribution. The level of significance a is
usually taken as 0.05; namely, x2 t e s t is conducted with 95 percent
confidence, or with a 5 percent possible error.

An example of the use of the x2 test to examine whether or not waves
observed at a water depth of 8.7 m during a storm can be considered to be
a Gaussian random process follows. The data are taken for 17 minutes in
which 140 waves are recorded. Spectral analysis of the data is performed
from which the variance of this wave data is obtained as 0.398 m2. A total
of 1140 wave displacements from the zero-line are read from the record,
and they are classified into 13 divisions as shown in Figure 3.21. In the
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Fig. 3.21. Example of x2 test on waves observed in finite water depth.



3-9 ANALYSIS OF AMPLITUDE AND HEIGHT 101

computation, two divisions at the positive ends of the data are combined
to meet the requirement that p{N in each division be greater than five.
Hence, the test is carried out for k= 12 divisions.

Included also in Figure 3.21 is the hypothesized normal probability
distribution with zero mean and variance 0.398 m2. The U-value com-
puted from Eq. (3.123) is 25.32 as compared to 19.68 from the x2 distri-
bution with &-l = l l degrees of freedom for level of significance,
a=0.05. Since the £/-value is greater than the hypothesized x2 value with
11 degrees of freedom for a=0.05, it may be said that the measured waves
cannot be considered to be a Gaussian random process at the 5 percent
level of significance.

(it) Kolmogorov-Smirnov test
This test does not consider the difference between the observed fre-
quency of occurrence and the probability of the hypothesized distribution
in a classified division; instead, it is concerned with the difference in the
cumulative distribution between observed and the hypothesized proba-
bility law. The observed sample, therefore, is not classified into groups,
but is rearranged in an ordered sequence for this test.

Let xvx2> "-:>xn be the ordered sample of size w, and let its cumulative
distribution be Fn(x) given by

for xr^x^xr+1 r=l, 2,..., (w-1)
for%-xw (3.125)

Fn(x) is a step function. In the case where several values are observed to
be the same for x=Xp Fn(xj) jumps significantly. Let F(x) be the cumula-
tive distribution function of the hypothesized probability distribution.
The Kolmogorov-Smirnov test is based on the statistics

Dn=sup\Fn(x)-F(x)\ (3.126)
where sup implies the maximum value over the entire range of the sample
domain. Kolmogorov shows that if a sample of size n is large (on the order
of 35 or greater) the probability of Dn exceeding the value e is given
approximately by

(3.127)
r = l

Since this series converges rapidly, we may take the first term only,
namely 2exp{-2we2}. By letting this value be equal to the level of
significance a, we have

1.63/Vw fora=0.01
e=V-ln(a/2)/2w=<{ 1.48/Vw fora-0.025

136/Vn fora=0.05 (3.128)
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The test is then carried out by which we may reject the hypothesis with
level of significance a if the statistics Dn exceeds e.

It can also be shown that 4w£)̂  is approximately the \2 distribution
with two degrees of freedom, denoted by \\,« (see Kendall and Stuart
1961). Hence, the assumption that the observed data come from the
hypothesized distribution should be rejected with level of significance a if

The Kolmogorov-Smirnov test has the feature that it can be applied to
data from a small sample size provided that the parameter of the hypothe-
sized distribution is either assumed or known in advance.

As an example of the Kolmogorov-Smirnov test, the same wave data
for which the \2 t e s t w a s made (see Figure 3.21) are used, but this time
the test is carried out by reading 50 samples of wave height instead of
wave displacement. We may hypothesize that wave height follows the
Rayleigh probability distribution with the parameter eight times the vari-
ance (o2=0.398) which is obtained from the spectral analysis.

The largest discrepancy between the cumulative distribution of the
ascending ordered sample and the hypothesized Rayleigh distribution is
observed at r= 12 where x= 1.45 m in a total of 50 ordered samples. The
cumulative distribution of the Rayleigh distribution with R=So2 is 0.483
for x= 1.45 m, while the cumulative distribution for r= 12 in a total of 50
ordered sample becomes Fn(x) = 12/50=0.240 and thereby we have
Dn=0.243. Since Dn exceeds the e-value 0.192 for n=50 with a=0.05
computed by Eq. (3.128), the hypothesized probability distribution is
rejected with a level of significance a=0.05.

If we test by applying the formula given in Eq. (3.129), 4nD% is equal
to 6.77 which is greater than 5.99, the computed \2 value with two
degrees of freedom for level of significance a=0.05. Hence, we may con-
clude that wave height obtained at a location where the water depth is
8.7 m during this storm cannot be considered to obey the Rayleigh prob-
ability law. This supports the results of the x2 t e s t computed by Eq.
(3.124) which concluded that the waves could not be considered a
Gaussian random process.



WAVE HEIGHT AND ASSOCIATED
PERIOD

4.1 INTRODUCTION
For a complete description of wind-generated random waves, it is neces-
sary to consider wave height and period as well as the direction of travel.
In particular, serious consideration must be given to the combined effect
of height, period and direction, if any correlation exists. Wave data mea-
sured in the ocean show that period dispersion for very large wave height
is not widely spread; as is also the case of height dispersion for large wave
periods. In other words, height and period of incident waves are not sta-
tistically independent. Hence, the joint probability distribution of wave
height and period plays a significant role in predicting statistical proper-
ties of waves such as the frequency of occurrence of wave breaking in a
seaway.

Wave breaking takes place when wave height and period cannot main-
tain the equilibrium condition needed for stability. Therefore, for esti-
mating the possibility of the occurrence of wave breaking in a given sea
condition, knowledge of statistics on wave height and associated period,
namely, the joint probability distribution, is necessary.

Further, the joint probability distribution of wave height and period is
of the utmost importance for the design of floating marine systems. This
is because one of the most important considerations for the design of a
floating marine system lies in estimation of the possible occurrence of res-
onant motion which may occur when wave periods are close to the
natural motion period of the system. The latter depends on the size and
underwater configuration of the system, determined by the designer.

If the wave period is sufficiently long or sufficiently short in compari-
son with the natural period of a system's motion, the system may be in no
danger even though wave height is large. On the other hand, the magni-
tude of motion will reach a level critical for the system if wave periods are
close to the system's natural period. In designing a floating marine
system, it is therefore extremely important to know the statistical
information concerning wave height with periods that are close to the
system's natural period in areas where the structure will be operated.

Several probability distributions of combined wave height (or ampli-
tude or maxima) and wave period (or time interval between peaks) have
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been developed. Longuet-Higgins (1975, 1983) developed the joint
probability distribution of wave height (peak-to-trough excursions) and
associated zero-crossing period, while a group of researchers at the
Centre National pour l'Exploitation (CNEXO) developed a joint distrib-
ution of positive maxima and the time interval between them (Cavanie et
at. 1976, Arhan et al 1976). On the other hand, Lindgren (1970, 1972),
and Lindgren and Rychlik (1982) deal with the joint distribution of local
peak-to-trough excursion and associated time interval (half-period).
Lindgren's distribution is mathematically elaborate but the distribution is
not given in closed form, and the computation is too complex to use in
practice. A critical comparison of these three joint probability distribu-
tions along with measured data is given by Srokosz and Challenor (1987).
Based on the results of their comparison, Longuet-Higgins' and
CNEXO's joint distributions appear to be more appropriate in ocean
engineering; hence, these will be presented in Sections 4.2 and 4.3,
respectively.

As to the statistical properties of wave period, the probability distribu-
tion derived as the marginal distribution of the joint wave height and
period distribution has been usually considered. Although the probability
distribution of the period of a random process was derived by Rice (1944)
in connection with the level-crossing problem, Rice's distribution has not
been applied to the analysis of ocean wave period since his distribution
appears to be appropriate for a random process having relatively high fre-
quencies. The probability distribution of wave period derived from the
joint distribution of wave height and period will be presented in Section
4.4.

Statistical information on wave height and the direction of travel of
incident random waves is developed by Isobe (1988) by evaluating the
ratio of two rectangular components of the horizontal water particle
velocity. The joint probability distribution of wave amplitude and direc-
tion thus developed will be presented in Section 4.5.

4.2 JOINT PROBABILITY DISTRIBUTION OF
WAVE HEIGHT AND PERIOD

The joint probability density function applicable to wave height and
period was first developed by Longuet-Higgins (1975), and this joint dis-
tribution is superseded by his revised distribution developed in 1983.
Here, the latter distribution is summarized below.

Assuming waves to be a Gaussian random process, we may write the
wave profile as
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(4.1)=xc(t) cos~ajt—xs(t) sin Tor

n = l

co—mean frequency defined in Eq. (2.74). (4.2)

This is the same presentation as given in Eq. (3.42).
It is further assumed that waves are a narrow-band random process

whose spectrum is concentrated in the vicinity of the mean frequency To.
By employing the mean frequency o>, a significant advantage will be seen
in the development of the joint distribution of wave profile x(t) and its
velocity x(t). Consider the joint distribution of xc, xc, xs and xs. It can be
proved that these random variables are statistically independent and nor-
mally distributed with the mean

E[*J=E[*J=E[*J=E[*J=O
and the covariance matrix given by

Vo 0 0 o\
0 fi2 0 0
0 0 /x0 0
0 0 0 i±2j

(4.3)

(4.4)

where

\

= I S(o))d(o=m0I
0

/JL2= I (a>—7o)2S(o))da)=(m0m2-mf)/m0

mj=jxh moment of the spectrum.

Hence, the joint probability density function of xc, xc, xs and xs is
obtained as

1

x x)=,x^x%)
(277)

- c s L.
J

v2 ls I-
J
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Since waves are assumed to be narrow-banded in the vicinity of the
mean frequency a), x(t) may be written as given in Eq. (3.20). That is,

(4.6)

where p(t) = amplitude, <£(r)=phase.
Note that we have the following relationship:

n exp{i(a>M-cD)i+eH} (4.7)

We now change the random variables from (xc,xc,xs,xs) to (p,(/>,p,(/>) by
letting

x c=pcos cf)
xs=psin(f) (4.8)

The joint probability density function (p,</>,p,c/>) then can be obtained as

(p, <£,/>,</>) =—f2 exp -f- exp - ^ / ^
( 2 T T ) V M I 2MJ I 2 ^ J

-oo<p<oo 0^0^277 -OO<^)<OO (4.9)

By integrating Eq. (4.9) with respect to p and >̂, we have the joint
probability density function of p and 4> as

p2

f(p<t>) = 2/x2

(4.10)

Next, it will be shown that the phase velocity </> may be expressed in
terms of period. For this, consider the spectral width parameter v defined in
Eq. (3.41). That is,

- l ) 1 / 2 = v W M o ( l M (4.11)
\ /

Here, v can be expressed as a function of the average zero-crossing fre-
quency, 7o03 and the mean frequency, To; and hence, for narrow-banded
random waves v is much less than unity. That is,

(4.12)

From Eqs. (4.11) and (4.12), we have

V^0«w (4.13)

On the other hand, the marginal probability density function of the
phase velocity, cf> can be obtained from Eq. (4.10) as
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(4.14)

By letting (/i,o//A2)0=£, it can be seen that the probability density func-
tion of z is sharply concentrated around z=0. Hence, by assuming it is a
point probability distribution, we may write

(4.15)

and thereby V/xo/^2
 a n d <£ are in the same order of magnitude. Hence,

from Eq. (4.13), we have

4><^aj (4.16)

If this is the case, the period of x(t) given in Eq. (4.6) may be approxi-
mated as

^ (4.17)

Hence, we have

$=(2TTIT)-W (4.18)

By using the relationship given in Eq. (4.18), the joint probability
density function /(p,</>) can be converted to that of amplitude and period
f(p,T). For dimensionless presentation of the joint probability density
function, let us define

iQ=dimensionless amplitude

r]= T/T=dimensionless period (4.19)

where mo=area under the spectral density function

T=mean period=2TTI1X>Z=Z2Trimjm^).

Then, the joint probability density function of £ and 17 becomes

( 4 - 2 0 )

where L is a normalization factor required so that the joint probability
density function satisfies the conditions that the integration of the density
function over the entire sample space becomes unity. Longuet-Higgins
obtains L as

L=\\+—\ (4.21)
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Thus, following Longuet-Higgins' derivation, the joint probability
density function of wave height and period in dimensionless form is given
by

(4.22)

It is noted that the above dimensionless density function differs slightly
from the original density function given by Longuet-Higgins shown
below in that his definition of dimensionless wave amplitude is given by
p\/2m0 as compared with p/V^o defined here. By defining the di-
mensionless wave amplitude as r=p/V2m0, the joint probability den-
sity function becomes as follows:

l+^)Wexp <-m\
0<r<oo 0<77<o° (4.23)

The location of the mode where the joint probability density function
fi&V) peaks is obtained from the condition d//d£=O and df/dr]=O. That is,
the mode is located at

(4.24)

and the value of'fi&rj) at this point becomes

j (4.25)

Figure 4.1 shows the contour curves of the joint probability density
function given in Eq. (4.23) for ^=0.3 and 0.4.

In applying the joint density function given in Eq. (4.23), Shum and
Melville (1984) define the amplitude as a continuous function of time for
a given wave record. Their approach to apply the Hilbert transform tech-
nique demonstrates a significant contribution toward avoiding the
ambiguity in defining wave amplitude and period. They also develop a
method for a more accurate resolution of wave period from the record.
Figure 4.2 shows a comparison of Longuet-Higgins' theoretical joint
probability density function and data obtained during hurricane
CAMILLE in which 3109 combinations of amplitude and period are
accumulated.

The marginal probability density function of wave amplitude can be
obtained from Eq. (4.22) as
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0
00 (4.26)

The above equation reduces to the Rayleigh probability distribution
(in dimensionless form) for v=0. Even though v^O, the value of
(1 + (i>2/4)) <P(ij/v) is very close to unity for z><0.6; hence it may safely be
assumed in practice that the marginal probability distribution becomes
the Rayleigh distribution.

The joint probability density function of wave height, H, and period in
dimensionless form can be obtained from Eq. (4.22) by letting £=H/'\/m0

as
1

8V2#i/ \

(4.27)

3 r

DIMENSIONLESS PERIOD V
(a)

DIMENSIONLESS PERIOD V
(b)

Fig. 4.1. Contours of dimensionless joint probability density function of wave
amplitude and period for (a) i/=0.3 and (b)v=0A (Longuet-Higgins
1983).
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4.3 JOINT PROBABILITY DISTRIBUTION OF
POSITIVE MAXIMA AND TIME INTERVAL

For non-narrow-band random waves, the amplitude as well as period
cannot be defined in the strict sense, since there are multiple crests (positive
maxima). Therefore, the joint probability density for non-narrow-band
random waves developed by Cavanie et al. (1976) is that referred to positive
maxima, B, and the time interval, T, between them, shown in Figure 4.3.

The basic principle of the derivation is to first obtain the joint proba-
bility distribution of the maxima and associated acceleration, and then
convert it to the joint probability distribution of the maxima and period.
The former joint distribution can be derived by the same approach as pre-
sented in Section 3.3; but the acceleration term is retained in the present
case. The probability that the positive maxima, H, exceeds a specified
level £ with acceleration x is given by

Pr{H>£with acceleration x} = (4.28)

where N^=average number of positive maxima above a specified level
with acceleration x per unit time

N+ = average number of positive maxima per unit time.

0.5 1.0 1.5
DIMENSIONLESS PERIOD

Fig. 4.2. Comparison of theoretical joint probability density function of
dimensionless wave amplitude and period and data obtained during
Hurricane CAMILLE (Shum and Melville 1984).
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By letting/(x,x,jc) be the joint probability density function of wave dis-
placement, velocity and acceleration, N^ and N+ can be written by

— r00
N&= \x\f(x,0,x)dx

h = \ \x\f(x,O,x)dxdx
o -00

(4.29)

By the same procedure as shown in Eq. (3.28), the joint probability
density function of the positive maxima and acceleration can be written

j f |*|/(x,O,Jt)di;d*
(4.30)

0 - o o

Here, the probability density function/(X,0,JC) is given in Eq. (3.30). By
performing integration of the above equation, the joint probability dens-
ity function of maxima and associated acceleration can be derived as

where mj=jxh moment of the spectrum
A=m0m4—m\

6= v 1— ml/m0m4 (seeEq. 3.32).

2A

(4.31)

Fig. 4.3. Definition of positive maxima and time interval between them.
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We next transform the joint distribution of maxima and acceleration to
that of maxima and time interval by using the functional relationship
given by

x= -W2C=-{2TTIT)2^ (4.32)

By applying the change of random variable technique, the joint proba-
bility density function of the maxima and time interval can be derived. In
order to present the joint density function in dimensionless form, let us
write

t=yVrn0 r=T/Tm (4.33)

where mo=area under the spectrum
Tm=average time interval between successive positive maxima

Then, the dimensionless joint density function may be presented as

where

Table 4.1. Average time interval f
as a function of e (Arhan et al.
1976).

€

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

f(e)

0.9988
0.9963
0.9928
0.9886
0.9838
0.9787
0.9732
0.9675
0.9617
0.9558

e

0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

f(e)

0.9500
0.9445
0.9396
0.9355
0.9331
0.9335
0.9393
0.9573
1.0133
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The joint probability density function given in Eq. (4.34) needs to be
modified since the average time interval computed by

T=f fT=f f 7/(£T)dfdT (4.35)
0 0

is not unity; instead, r depends on e-value as shown in Table 4.1. Hence,
by reading f(e) for a given e from the table and defining the dimensionless
time interval as

T * = Z T W F = T \ (4-36)

T(e) Tm r(e)
the joint probability density of the positive maxima and its time interval in
dimensionless form is given by

71 2\ 5-4
77 6(1 -€Z)TiT*

4 [(T2T2-a2)2+a4/32]| (4.37)

By assuming twice the positive maxima as wave height, Arhan et al.
(1976) give the dimensionless joint probability density function of wave
height and period as

„, , 1 a3h2

T^TtC^2-^2)24"^2]] (4-38)
8 €2 T J T 4 J

where h=2£=2£/Vrn0.

Figure 4.4 shows the dimensionless density function /(/Z,T*) for the
bandwidth parameter e=0.6 and 0.8.

It is noted that the theoretical joint probability density functions of
wave height and period presented in Sections 4.2 and 4.3 are developed
under the condition of a steady-state, Gaussian and narrow-banded
random process. It appears that these joint probability density functions,
in particular the period distributions, are sensitive to the shape of the
wave spectrum as pointed out by Sobey (1992). In general, these theoret-
ical joint density functions may be compared with data obtained in ordi-
nary wind-generated seas in deep water areas.
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0 • • ' 1 2

DIMENSIONLESS PERIOD T\
1 2

DIMENSIONLESS PERIOD r

Fig. 4.4. Contours of dimensionless joint probability density function of wave
height and period for (a) 6=0.6 and (b)e=0.8 (Arhan el at. 1976).

4.4 PROBABILITY DISTRIBUTION OF WAVE
PERIOD

As stated in Section 4.1., the probability distribution function of wave
period, more precisely the zero-crossing period, may be derived as the
marginal distribution of the joint probability distribution of wave height
and period discussed in Section 4.2. The average value of the zero-
crossing period which provides information necessary for estimating the
long-term probability distribution of wave height (see Section 3.8) may
be independently derived.

Let us consider the expected number of wave crossings of the level x
with velocity x per unit time. This is analogous to the concept of evalu-
ating the expected number of positive maxima per unit time discussed in
Section 3.3. As was shown in Figure 3.4, the required time to cross the
distance dx with velocity x is given by dx/|x|. On the other hand, the prob-
ability that the displacement is in (x, x+dx) with velocity (x, x+dx) can be
written in terms of the joint probability density function as/(x, x)dxdx.
This is interpreted as the amount of time the wave spends in (x, x+dx).
Hence, the number of crossings per unit time with velocity x becomes

/(x, x)dx dx/(dx/|x|) = |x|/(x, x)dx (4.39)
and thereby the expected number of crossings of the level x irrespective of
the velocity magnitude can be obtained as

N. ;= \x\f(x,x)dx (4.40)
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We may consider only the up-crossings, and by letting the level x=0,
the average number of zero-crossing with positive slope can be written
as

^o+=\( \*\f(0,x)dx (4.41)

For a Gaussian random process with the covariance matrix given in
Eq. (3.29), Eq. (4.41) becomes

00 1
^ (4.42)

0

Thus, the inverse of No+ which represents the average zero-crossing
period, TQy is given by

T0=27r\/m0/m2 (4.43)

It is noted that the moments are evaluated for the spectral density
function given in terms of the frequency co. For the spectral density func-
tion given in terms of the frequency/, the average number of crossings as
well as the average zero-crossing period are given by

(4.44)

where m0/, m2/are the moments of the spectral density function S(f).
Next, the probability density function of wave period will be derived

from the joint probability density function of wave height and period. By
integrating the joint probability density function given in Eq. (4.22) with
respect to £, the density function of period in dimensionless form can be
derived as follows (Longuet-Higgins 1983):

(4.45)

where

r=mean period= 27r(mo/ml)
v =spectral width parameter given in Eq. (4.11).

The probability density function/(r]) is shown in Figure 4.5 as a func-
tion of the parameter v. The mean value of the distribution computed
from Eq. (4.45) is infinite, hence the variance of the distribution does not
exist theoretically. As to the mean period, Longuet-Higgins suggests the
use of the average zero-crossing period, To. The dimensionless average
period, therefore, may be written as
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3 1 "

1 2

DIMENSIONLESS PERIOD V

Fig. 4.5. Dimensionless probability density function of wave period as a func-
tion of parameter v (Longuet-Higgins 1983).

'ilk 3/4

Fig. 4.6. Definition of interquartile range (IQR).

(4.46)

The spectral width parameter v denned in Eq. (4.11) can generally be
evaluated from knowledge of the moments of the wave spectrum.
Longuet-Higgins, however, shows that the parameter can be evaluated
from observed data by using the interquartile range (IQR). The IQR is de-
fined as the distance between two points rjm and r]3/4 of the probability
density function/(17) for which the probability less than these values is 1/4
and 3/4, respectively (see Figure 4.6). In other words, the IQR covers 50
percent of the distribution. It can be evaluated from the probability
density function given in Eq. (4.45) as

1 1
(4.47)
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where

L =
Figure 4.7 shows IQR and 77ave computed by Eqs. (4.47) and (4.46),

respectively, as a function of v. By evaluating T)m and r]3/4 as well as IQR
from the cumulative distribution function constructed from wave period
data, the parameter v can be obtained from Figure 4.7.

Information on statistical properties of successive wave periods is useful
for estimating a possible critical resonant condition of a marine system with
waves. At present, two joint probability density functions applicable for
successive wave periods are available; one is the two-dimensional Weibull
distribution developed by Kimura (1980), the other is the two-dimen-
sional probability distribution developed by Myrhaug and Rue (1993)
which is based on Bretschneider's assumption (1959) that the square of
the wave period obeys the Rayleigh probability law. These probability dis-
tributions are empirically derived and hence more justification of their
validity through comparison with measured data is highly desirable.

0.6

n R

0.4

2^0.3

0.2

0.1

/

/

/

/

/

/

1.00

0.95

0.90

0.85

0.80

0 0.1 0.2 0.3 0.4 0.5 0.6
V

Fig. 4.7. Interquartile range (IQR) and dimensionless average period as a
function of parameter v (Longuet-Higgins 1983).
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4.5 JOINT PROBABILITY DISTRIBUTION OF
WAVE HEIGHT AND DIRECTION OF WAVE
ENERGYTRAVEL

An interesting method for estimating the probabilistic relationship
between individual wave height and the direction in which the energy is
traveling is developed by Isobe (1988). The basic concept of his method
is to consider the joint probability distribution of envelope processes of
wave displacement and the two rectangular components of the horizontal
water particle velocities; the ratio of the latter two components yields the
direction of traveling energy. His method is outlined below.

Consider waves in a finite water depth h and let rj(r), u(t) and v(t) be
wave displacement and the two rectangular components of the horizontal
particle velocity, respectively. We may write

h
00

«=i

• 2 /

00

y=i

^ cos

/• sin

COS

COS

=ki(xcos6j+ysindp-<of-eii (4.49)
(4.50)

where

dy^ij—amplitude and phase, respectively, of incident wave
h = water depth
z = height above the bottom
ij = component of frequency and angle, respectively.

Assuming a narrow-band process, we may write the frequency co as the
sum of mean frequency lo and its deviation Aco. That is

(o^lo+Aa); (4.51)

By substituting Eqs. (4.50) and (4.51) into Eq. (4.48), r](t), u(t) and
v(i) can be presented as the sum of cosine and sine terms as follows:

rj{t) = r]c cos lot 4- ?7S sin lot
u(t) = uc cos lot + us sin lot
v(t) =vc cos lot +vs sin lot (4.52)

where r)c, r)^ uc3 ws, vc, and vs are all slowly varying envelope functions
which may be written as
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where

0»=*,<A;COS Oj+y sin 6>) - 4 ^ r - e ^ (4.54)

Six random variables involved in Eq. (4.53) are all normally distrib-
uted with zero mean. Here, the random variables with subscript c and
those with subscript s are statistically independent and their covariance
matrix is given by

i)i
where

!m00 ml0 m0l
Xo=\ m10 m20 mn I (4.56)

tn m02

and

=E[v
2]=m00

20=E[u2] =m2

=E[v*\ =E[v2] =m02

S] =E[r)u] =ml0

E[ucvc] =E[usvs] =E[uv] =mu (4.57)
Next, by taking the x-axis as the principal direction, we have

mn=0. Furthermore, the random variables are non-dimensionalized
as follows:

Us=ujVm20 Vs=vs/Vm02 (4.58)

The amplitude and phase of the displacement as well as the surface
particle velocities of an individual wave can be determined from the
cosine and sine components of the envelope function. For this, let Np be
the dimensionless wave amplitude and let 8 be the phase of the surface
displacement. Then, Nc and Ns become
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iVc=iVpcos5
Ns=Np sin 8 (4.59)

Furthermore, by using 8 as a reference phase, we may write
Uc = Upcos 8-Uqsin 8
Us = Upsin8+Uqcos8 ( 4 6 0 )
Vc = Vp cos 8 — Vq sin 8
Vs = Vp sin 8+Vq cos 8

where the components with subscript p are in phase with the water
surface displacement, while those with subscript q are 90 degrees out of
phase. Thus, by using the functional relationship given in Eqs. (4.58)
through (4.60), the joint normal probability density function of six
random variables 77C, ?]S, MC, MS, VO and ^s is transformed to the joint prob-
ability density function of iVp, 6, £/p, £7q, Vp and Vq. After some mathemat-
ical manipulation, the following joint probability density function of iVp,
£7p and Vp can be derived.

where
A =l-rfo-r^ + 2rlorolrn-r2

u

-2r10Np(7p-2r01NpFp+2r10r01UpFpJj (4.61)

The direction of wave energy travel is given by a=tan ! (vp/up). Hence,
in order to obtain the joint probability density function of wave amplitude
Np and direction <x> the random variables Up and Vp are expressed in

f h l d ( l F ) Th ip
terms of the polar coordinate (lF,a). That is,

p
Vp=(W/y)sma (4.62)

where y is a factor associated with the non-dimensionalization shown in
Eq. (4.58), and it can be obtained as

7'=Vrn02/m20 (4.63)

By applying the functional relationship given in Eq. (4.62), the joint
probability density function /(ATp,£7p,Vp) given in Eq. (4.61) is trans-
formed to the joint probability density function/(iVp, W,a). Then, by inte-
grating this density function with respect to l^from 0 to o°, the desired
joint density function of wave amplitude (in dimensionless form Np) and
direction of energy traveling a can be derived as follows:
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where
+^AL2exp{-cW2/(2a)r

a=(l—r^i) cos 2a+2r10r01 cos a(sin a/y)
+ (l-»f o)(sina/y)2

b =r10 cos a+rol(sin a/y)
c =cos2a+(sin a/y)2

(4.64)

erf(x)=V2hr( exp{-r2/2}dr

As can be seen in Eq. (4.64) the joint probability density function of
wave amplitude and direction of energy travel can be expressed as a func-
tion of r10> r01 and y. In other words, the distribution can be evaluated
from knowledge of variance and covariance of wave displacement, veloc-
ities u and v given in Eq. (4.57).

In particular, in case the directional distribution of wave energy is
narrow and symmetric, we have rol=O and r l o=l. Hence, Eq. (4.64) can
be simplified as

3 {43 a exp
a

where cos a>0.
An example of the joint probability density function of wave amplitude

and direction,/(Np,a) for rlo=O.9, rol = O.2 and y=0A is shown in Figure
4.8.

0

Fig. 4.8. Example of joint probability density function of dimensionless wave
amplitude and direction of energy travel (rlo=O.9, rol=O.2 and
7=0.4) (Isobe 1988).
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Kwon and Deguchi (1994) further develop the joint probability distri-
bution of wave height, period and direction of energy travel following the
same procedure as developed by Isobe. In this case, the density function
is initiated for eight random variables including f\c and r)s in addition to
the six random variables shown in Eq. (4.53).



5 SEA SEVERITY

5.1 STATISTICAL PRESENTATION OF SEA
SEVERITY

5.1.1 Probability distribution of significant wave height
Statistical presentation of sea severity provides information vital for the
design and operation of marine systems. For the design of marine
systems, information is necessary not only on the severest sea condition
expected to occur during the system's lifetime (50 years for example), but
also on the frequency of occurrence of all sea conditions, the latter being
especially necessary for evaluating fatigue loadings.

The most commonly available information on sea severity is the statis-
tical tabulation of significant wave height constructed from data accumu-
lated over several years. Of course, the greater the number of
accumulations, the more reliable the data. As to the time interval between
data sampling, it is highly desirable that data be obtained at least at 3-
hour intervals so that a relatively fast change in sea condition will not be
missed. During a storm, sampling at no more than one hour intervals is
strongly recommended (see Section 5.2.1).

Table 5.1 is a tabulation of 5412 significant wave heights obtained over
a 3-year period in the North Sea (Bouws 1978). The data indicate that
the measurements were made, on average, five times per day throughout
the 3 years. In order to estimate the extreme significant wave height
expected to occur in 50 years (for example) at this location, it is first
required to find a probability distribution which accurately represents the
data.

In general, the sea severity as evaluated from wave measurements
depends to a great extent on the geographical location where the data are
obtained, since the crucial factors for sea severity are frequency of occur-
rence of storms, water depth, wind direction, etc. In addition, sea severity
depends on the stage of growth and decay of a storm, even though wind
speed is the same. Thus, there is no scientific basis for selecting a specific
probability distribution function to represent the statistical properties of
sea state (significant wave height). Because of this, various probability
distribution functions have been proposed which appear to best fit

123
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Table 5.1. Significant wave height data obtained from measurements in the
North Sea (Bouws 1978).

Significant wave height (m) Number of observations

0-0.5 1280
0.5-1.0 1549
1.0-1.5 1088
1.5-2.0 628

2.0-2.5 402
2.5-3.0 192
3.0-3.5 115
3.5-4.0 63

4.0-4.5 38
4.5-5.0 18
5.0-5.5 21

5.5-6.0 7
6.0-6.5 8
6.5-7.0 2
7.0-7.5 1

Total 5412 in 3 years

particular sets of observed data. These include: (a) log-normal distribu-
tion (Ochi 1978b); (b) modified log-normal distribution (Fang and
Hogben 1982); (c) three-parameter Weibull distribution (Burrows and
Salih 1986, Mathisen and Bitner-Gregersen 1990); (d) combined expo-
nential and power of significant wave height (Ochi and Whalen 1980);
and (e) modified exponential distribution (Thompson and Harris 1972).

It is a general trend that the greater part of significant wave height data
is well represented by the log-normal probability distribution; however,
the data diverge from the log-normal distribution for large significant
wave heights, which are critical for estimating extreme values. As an
example, Figure 5.1 shows the cumulative probability distribution of sig-
nificant wave height data given in Table 5.1 plotted on log-normal prob-
ability paper. Included also in the figure is a straight line which represents
the cumulative probability distribution of the following log-normal prob-
ability distribution:

Another general trend observed on the statistical distribution of signif-
icant wave height is that the cumulative distribution function of large
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significant wave heights can be well represented by the Weibull probabil-
ity distribution., but approximately 30 percent of the lower portion of data
fail to follow. As an example, Figure 5.2 shows a comparison between the
cumulative distribution function of the same data shown in Figure 5.1
plotted on Weibull probability paper. The straight line in the figure is the
Weibull distribution given by

f(x)=c\cxc~ (5.2)

As seen in Figure 5.2, the lower portion of the data deviates from the
Weibull distribution to a great extent. In order to improve this situation,
the following three-parameter Weibull distribution is often considered:

Note that the three-parameter Weibull distribution carries a minimum
non-zero value V as one of its parameters, and it is difficult to explain
the physical meaning of this minimum significant wave height in the
distribution. The sample space of significant wave height has to be
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wave height data given in Table 5.1 and the log-normal probability
distribution.
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Fig. 5.2. Comparison between cumulative distribution function of significant
wave height data given in Table 5.1 and that of Weibull probability
distribution.

chosen between zero and °°> where a significant wave height of zero
represents calm water, which is an important portion of the distribu-
tion. For this reason, there is some reservation in considering the three-
parameter Weibull distribution for the analysis of significant wave
height data.

Since significant wave height data, except for large values, are well
represented by the log-normal distribution, and since large significant
wave heights are well represented by the Weibull distribution, Haver
(1985) proposes an empirical model by combining these two distribu-
tions at a certain value. In this model, however, specification of the transi-
tion point is arbitrary.

Judging from the results of fitting the cumulative distribution of signif-
icant wave height data by various probability distributions, it appears that
the cumulative distribution of the desired probability law is, by and large,
close to that of the log-normal probability distribution, but converges to
unity much faster than the log-normal distribution for large significant
wave heights.

In order to find an appropriate probability distribution which satisfies
the condition stated above, various probability distribution functions are
standardized so that a comparison of distributions can be made under the
uniform condition of zero mean and unit variance. The definition of the
standardization is given in Appendix A. It is found from the results of
analysis that the cumulative distribution function of the standardized
generalized gamma distribution is nearly equal to that of the log-normal
distribution up to 0.90, but the former converges to unity much faster
than the latter above 0.90. This feature of the generalized gamma distrib-
ution is considered to make its use advantageous in the statistical analysis
of significant wave height data (Ochi 1992).



5.1 STATISTICAL PRESENTATION OF SEA SEVERITY 127

The probability density function, /(#), and cumulative distribution
function, F(x), of the generalized gamma distribution (non-standardized
form) are as follows:

(5.4)

) (5.5)

where T{m) is a gamma function, and the numerator of F(x) is an incom-
plete gamma function.

A comparison between the cumulative distribution function of the
same data shown in Figures 5.1 and 5.2 and the generalized gamma dis-
tribution is given in Figure 5.3. The parameter values of the generalized
gamma distribution in this example are m=1.60, c=0.98 and A=1.37.
From a comparison of Figures 5.1 through 5.3, it can be seen that the
generalized gamma distribution accurately represents the data in the
domains where the log-normal and the Weibull distributions fail to satis-
factorily agree with the measured data.

Other examples of comparisons between the generalized gamma dis-
tribution and measured data are shown in Figures 5.4 and 5.5. The data
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Fig. 5.3. Comparison between cumulative distribution function of significant
wave height data given in Table 5.1 and the generalized gamma
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presented in Figure 5.4 were obtained in the North Sea off the Norwegian
coast (Mathisen and Bitner-Gregersen 1990), while those presented in
Figure 5.5 were obtained in the North Pacific off Canada (Teng et al.
1993).

The values of the three parameters, m, c and A involved in the general-
ized gamma distribution may be simply estimated by equating the sample
moments to theoretical moments, since the sample size of significant
wave height data is usually very large, on the order of several thousand or
greater. The theoretical jth moment of the generalized gamma distribu-
tion is given by

(5.6)
A'" r(m)

From a set of three equations fory=2, 3 and 4 in Eq. (5.6), we can
derive the following two equations by eliminating the parameter A:
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Fig. 5.4. Comparison between cumulative distribution function of significant
wave height data obtained in the North Sea off the Norwegian coast
and the generalized gamma probability distribution (data from
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; r[ m+-
2 {E[%2]} 3/2

I\m)

r\m+f (5.7)

The parameters m and c are determined from the above equations, and A
can be obtained from Eq. (5.6) by lettingy=2 or 3.

As stated earlier, the prime purpose of representing the significant
wave height data by an appropriate probability distribution is for the
estimation of (a) the extreme sea state expected to occur in a long time
period, say 50 or 100 years, and (b) the frequency of occurrence of all sea
states, and from this the long-term statistics of individual waves needed
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Fig. 5.5. Comparison between cumulative distribution function of significant
wave height data obtained in the North Pacific off Canada and the
generalized gamma probability distribution (data from Teng et al.
1993).
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for evaluating fatigue loads on marine systems. The estimation of extreme
sea state will be discussed in Section 6.1, while the estimation of long-
term wave statistics was presented in Section 3.8.

5.1.2 Joint probability distribution of significant wave height
and period

Information on long-term sea severity is broadened to a great extent by
including, in addition to wave height, wave period, usually the average
value of the zero-crossing wave periods in a specified sea, denoted by To.
The combined significant wave height and average zero-crossing period
information is presented in tabular form, often called the contingency table
or the scatter diagram.

Table 5.2 shows an example of the contingency table of significant
wave height and zero-crossing period obtained from NOAA Buoy 46001
located in the North Pacific. It comprises a tabulation of 13 years of data
obtained at one hour intervals. The statistical information comprising the
contingency table may be obtained through rinding the appropriate joint
probability distribution which best represents the data. For example, the
joint log-normal probability distribution has been proposed (Ochi
1978b), but this joint distribution does not represent the severe sea states
data very well.

Since it is somewhat difficult to derive the joint probability distribution
of significant wave height, //s, and average zero-crossing period, To,
directly from data, a method commonly considered for the derivation of
/(//s, To) is to find the marginal probability density function/(//s) and con-
ditional probability density function f(T0\Hs). The parameters involved in
the latter distribution function are evaluated from analysis of each condi-
tional distribution of To for a specified //s, and presented them as a func-
tion of Hs. Then, the joint probability density function can be derived as
the product off(Hs) and f(T0\Hs).

Burrows and Salih (1986) present the results of two combinations for
the marginal Weibull distribution; one a conditional Weibull, the other a
conditional log-normal distribution. Mathisen and Bitner-Gregersen
(1990) demonstrate that the combination of the three-parameter Weibull
distribution for f(Hs) and the log-normal distribution for f(T0\Hs) best
represents data obtained off the coast of Norway. The joint probability
density function of this model can be written as

f(Hs,T0)=f(Hs)f(T0\Hs)

I exP "



Table 5.2 Contingency table of significant wave height and average zero-crossing period obtained from NOAA Buoy 64001 data
(Teng etaL 1993).

^ a v g ( s )

Hs(m)

0.0-0.5
0.5-1.0
1.0-1.5
1.5-2.0
2.0-2.5
2.5-3.0
3.0-3.5
3.5-4.0
4.0-4.5
4.5-5.0
5.0-5.5
5.5-6.0
6.0-6.5
6.5-7.0
7.0-7.5
7.5-8.0
8.0-8.5
8.5-9.0
9.0-9.5
9.5-10.0
10.0-10.5
10.5-11.0
11.0-11.5
11.5-12.0
12.0-12.5
>12.5

Sum

%

1 0|
- 1

|2.0|

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0

0.00

2.0
-
3.0

12
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

17

0.02

3.0
-
4.0

76
345
131
6
I
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

559

0.54

4.0
-
5.0

141
1990
3834
2033
485
22
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

8505

8.19

5.0|

- I
6.0|

74
2157
5942
7979
6411
2719
751
85
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

26120

25.14

6.01

- 1
7.0|

24
966

2840
5119
6301
6513
5132
2827
1073
252
29
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

31076

29.91

7.0
-
8.0

0
238
594
1539
2687
3383
3659
3469
3083
2149
1256
408
87
12
0
0
0
0
0
0
0
0
0
0
0
0

22564

21.72

8.0|
_ 1

9.0|

0
41
108
272
635
950
1046
1323
1392
1300
1138
946
728
454
199
68
20
1
0
0
0
0
0
0
0
0

10621

10.22

9.0|

- I
10.0|

0
11
31
44
109
138
219
268
325
386
432
346
293
275
227
184
122
73
22
1
1
0
0
0
0
0

3507

3.38

10.0
-

11.0

0
0
1
0
10
16
19
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67
79
68
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76
54
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47
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18
6
3
2
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0
0

743
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- I
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0
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5
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1
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- I
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- I
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4
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0

0
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0

0
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0
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0

0
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1
Sum|

1
327

5753
13481
16992
16639
13741
10827
8018
5931
4170
2941
1778
1197
832
496
319
200
121
64
27
17
6
5
2
1
1

103886

%l
1

0.31
5.54
12.98
16.36
16.02
13.23
10.42
7.72
5.71
4.01
2.83
1.71
1.15
0.80
0.48
0.31
0.19
0.12
0.06
0.03
0.02
0.01
0.00
0.00
0.00
0.00



132 SEA SEVERITY

Here, the parameters of the conditional log-normal distribution are given
as a function of significant wave height Hs as follows:

<r(Hs)=b1+b2exp{biHs} (5.9)

where a15 a2, a3, bly b2, and b3 are constants determined from data.
In general, the approach for deriving the joint probability density func-

tion of significant wave height and the average zero-crossing period
through a combination of the marginal distribution f(Hs) and the condi-
tional distribution/(ro|/fs) appears quite promising. However, as stated
in the previous section, use of the Weibull probability distribution with
three parameters distorts the sample space of significant wave height. On
the other hand, the generalized gamma distribution accurately represents
the marginal distribution,/(Hs), over its entire domain. Taking this into
consideration, the joint probability density function/(//s, 7̂ ) is developed
by combining the generalized gamma distribution for the marginal distri-
bution/(//s), and the log-normal distribution for the conditional distribu-
tion f(T0\Hs) (Ochi et al. 1996). In this case, the joint probability
distribution may be written as

The parameters /x(/fs) and cr(Hs) are those given in Eq. (5.9), which are
developed by Mathisen and Bitner-Gregersen (1990).

As an example, the joint probability density function given in Eq.
(5.10) is applied to the data given in Table 5.2, and a comparison between
the data and contour curves of the density function is shown in Figure
5.6. As can be seen, the joint probability density function accurately
represents the contingency table. It is of interest to observe in the figure
that the contour curve of 1X 10~6 covers almost all of the data points, and
that this indicates the domain of Hs and To to be considered for the design
of marine systems operating in the site.

Another interesting method to construct the joint probability distribu-
tion of two random variables from a knowledge of the individual marginal
distribution function has been developed by several statisticians;
Morgenstern (1956), Plackett (1965), Kimeldorf and Sampson (1975),
among others. Athanassoulis et al. (1994) first introduced this approach
for analysis of sea state data as will be shown later. Here, Plackett's
method is outlined below.

Let F(x) and F(y) be the cumulative distribution functions of two
random variables X and Y, respectively, and let F(x,y) be the joint
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cumulative distribution function. Here, F(x9y) must satisfy the Frecht's
inequality given by

max{F(x)+F(y) —1,0} ^F(x,y)^min{F(x),F(y)} (5.11)
Next, evaluate the probabilities of data in four quadrants separated by

drawing two lines parallel to the axes at an arbitrary point (x,y) in the
sample space. By letting these probabilities be

p1=Pr{X<x9Y<y}=F(x9y)
p2=Fr{X<x,Y>y} =F(x)-F(x9y)
p3=Fv{X>x,Y<y} =F(y)-F(x,y)
p^=Pr{X>x9Y>y} = 1 -F(x)-F(y)+F(x9y) (5.12)

and denning the coefficient of contingency, denoted by ifj as

(5.13)
P2P3

Plackett (1965) constructs a bivariate distribution F(x9y) for given mar-
ginal cumulative distribution functions F(x) and F(y) as a solution of the
following equation derived from Eqs. (5.12) and (5.13):

16.00

14.00 -

Q 12.00 -

II
'B 10.00 -
bo

3
I
o

8.00 -

6.00 -

.SP 4.00 -

2.00 -

1 x 10"6

\

1 x 10* \

\ /
l x l 0 " \ X /

1 x 10"3 V / /
\ /K/1 m-2 \ / / X 2 ° /1 X l 0 \ h// }*

1 x 10"1 v 7 / > 2 454
\ ////tt^2^

N//Vi9yf2561138
/ / Y / 2 5 2 2149 1300

/y2KM073 3083 1392
///Ay 2%27 3469 1323

/ y / 7 3 1 5132^591046/
///& /2719/6513 3̂ 83 950/

/%A486 64^6301 ̂ 687 635
//6/2033 7/979 51>« 1539^72

///tai/3834 5942̂ 840 59>T 108̂
/y/34^1990 215J^9g6^38^<f^

/

1

22
73

.422-
184
227
275

^93

1«3i2
3 >
325
i68
'219/
13ff
109

> /
3 1 /

r

2
3

^€—
18
29
32

-47

A541
76
75/
68/
7?6/
/ 8

/41 /
19/
16
iQ

1 I
1 /

1

1
2

-v4
4 \
9 '
12
11
12
15
15 I
14/
10/
/

/5 /
5/

7/ // /1 //

\ 2

4
\ 3

\ 3 \ /// /3 / /
/ 1 / /

/ /
/ /

/ /
/ /

/
7/

Fig.

2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00

Average Zero-Crossing Period in Seconds

5.6. Comparison between joint probability density function and data
given in Table 5.2.



134 SEA SEVERITY

A-1) {F(x,y)}2- [1 + {F(x)+F(y)} (if,-
+ il/F(x)F(y)=O (5.14)

As a solution of Eq. (5.14), Mardia (1967) shows that the joint cumu-
lative distribution function is given by

(5.15)
where

The joint probability density function/(x^y) then becomes
A<l>-l){F(x)+F(y)-2F{x)F{y)} + \

where f(x) and f(y) are the probability density functions of x and y,
respectively.

The coefficient of the contingency, e/f, may be evaluated numerically
through the maximum likelihood method but it is extremely complicated.
One way to evaluate it is to use the sample correlation coefficient, p, by
the following equation

p=- li— 1 ^2 (5.17)

Athanassoulis et al. (1994) compare the joint probability density func-
tion of significant wave height, Hs, and average zero-crossing period, T09
constructed by interpolating data obtained in the North Sea off the
Norwegian coast (Mathisen and Bitner-Gregersen 1990) with various
combinations of marginal probability density functions. Figure 5.7(a)

(a)

6-
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0.020
0.030

0.050
0.070

0 36 9 12 0 3 6 9

AVERAGE ZERO-CROSSING PERIOD IN SEC.

Fig. 5.7. Comparison between the joint probability density function of _
significant wave height, Hs, and average zero-crossing period, To (a)
obtained from data and (b) computed by applying Plackett's method
(Athanassoulis et al. 1994).
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shows the joint density function obtained from the data, and Figure
5.7(b) shows the computed joint density function which best represents
the data. In this example, the gamma probability function is chosen for
the marginal density function of Hs and the log-normal probability func-
tion for To. The seven contour curves in Figures 5.7(a) and (b) are equiv-
alent in sequence; namely, curve 1 in (b) is equivalent to the outermost
probability density curve 0.005 in (a).

5.1.3 Time series analysis of sea state data
Another approach to acquire long-term sea state information is to analyze
a long-term time series of significant wave height data. For this, data mea-
sured continuously or for short time intervals over a long period of time
are required. For a series of records with small intervals between record-
ings, the series may safely be assumed to be that of a continuous random
process. However, it is a non-stationary random process. Hence, the
general characteristics of the process such as (a) effect of sampling time
interval, (b) existence of piece-wise stationarity and (c) statistical inde-
pendence of successive sea states, etc., must be carefully examined.

Regarding the effect of sampling time interval on the statistical
characteristics of significant wave height, it is necessary to consider the
time duration of sea state (Labeyrie 1990). Athanassoulis and Stefanakos
(1995) review available data on time duration of sea states and conclude
that a period of 3-6 hours between samplings can be considered
appropriate for the time series analysis of significant wave height data.

From analysis of data obtained for 6 years by a wave-rider buoy located
off the coast of Oregon, Medina etal. (1991) show seasonal characteristic
effects on the long-term analysis of significant wave height, Hs, and signif-
icant wave period, Ts. They claim that both Hs and Ts follow the log-
normal probability law with annually periodic parameters. As an
example, Figure 5.8 shows the variation of the parameter fi in the log-
normal probability distribution over a one year period. Al and A2 in the
figure are the /^-values for significant wave height, //s, and significant
wave period, Ts, respectively (Hs is given in cm and Ts in s). The figure
clearly shows the seasonal trend of the parametric values. In developing a
numerical model for synthesizing the time series of significant wave
height data, Medina et al. standardized the time series seasonally.

Athanassoulis and Stefanakos (1995) analyze a twenty-year time series
of hindcast significant wave height data at five locations in the North
Atlantic. In their analysis, assuming a yearly statistical periodicity, the
annual mean value is subtracted from each set of annual significant wave
height data. Then the average value and standard deviation of seasonal
fluctuation are evaluated as a function of time. These are given by
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Fig. 5.8. Estimation of parameter /JL of log-normal distribution. (Al is î-valu
for significant wave height in cm, A2 is that for significant period
in s.) (Medina et al. 1991.)

N

N

(5.18)
y=i

Yfir)=seasonal significant wave height fluctuation in the7th
where

Xj(r)=annual time series significant wave height data in the
7th year

Xj = annual mean value of significant wave height in the 7th
year.

An example of the seasonal fluctuation averaged over 19 years of data
is shown in Figure 5.9. Included also in the figure is the first-order
Fourier representation of the data. Athanassoulis and Stefanakos
examine the effect of time length of data acquisition on the seasonal
fluctuation of significant wave height, and find that 10 years of data
appear to be sufficient for evaluating the seasonal variability.

By letting /JL(T) and a(r) be the smoothed curves of the low-order
Fourier series of m{i) and S(T), respectively, the seasonal significant wave
height fluctuation in the7th year can be standardized. That is,
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Fig. 5.9. Example of seasonal variation of significant wave height
(Athanassoulis and Stefanakos 1995).

W3{T)=-J^ . V (5.19)

From a comparison of the residual time series W^r) for segments of
different seasons, it is found that Wfir) can be considered as a stationary
random process, W(T). Hence, it can be concluded that the seasonal sig-
nificant wave height fluctuation is a periodically correlated stochastic
process, written as

Y(T) = /X(T) + CT(T)IF(T) (5.20)

and based on this relationship, a simulation model can be developed.
The methodology of how simulation models are developed for a time

series of significant wave height is a subject beyond the scope of this text.
It may suffice to state that besides the two references stated above, inter-
esting and different techniques are available, Scheffner and Borgman
(1992), for example.

5.2 HURRICANE-ASSOCIATED SEAS

5.2.1 Introduction
Wind-generated random seas defined in this text are those generated by
ordinary winds blowing continuously for several hours with almost con-
stant speed. The situation is different for random seas associated with
tropical cyclones/hurricanes. Although a hurricane is defined as an
intense tropical cyclone with mean wind speed greater than 75 miles per
hour (65.2 knots, 33.5 m/s), this definition is not strictly observed in the
discussion in this section. A significant feature of random seas associated
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with hurricanes is that the input source of energy generating waves is
advancing at a speed of 5 to 12 knots. Therefore, the rate of change of
wind speed at a location in the path of a hurricane is much greater and
thus the time duration of a given wind speed is much shorter than that
observed during an ordinary storm.

Many studies have been carried out on hurricane-generated seas, pri-
marily through hindcasting and forecasting techniques. These include
Cardone et al. (1976), Bretschneider and Tamaye (1976), Ross and
Cardone (1978), Ross (1979), Young and Sobey (1981), and Young
(1988), among others.

In hindcasting and forecasting mathematical models for sea severity
generated by hurricanes, it is common to consider several parameters of a
hurricane such as maximum sustained wind speed, central pressure,
storm forward velocity, radius of maximum wind, etc. Although these
hindcasting and forecasting models provide valuable information for
individual hurricanes, it is difficult to draw general conclusions from
them regarding the severity of the sea and the shape of wave spectra
during hurricanes.

For estimating the severest sea at a specific location in the ocean under
hurricane conditions, Donoso et al. (1987) consider the hurricane track rel-
ative to the site, in addition to the hurricane parameters. By using the histor-
ical record of hurricane parameters for storms that have passed within 100
nautical miles (185 km) of a selected location in the Gulf of Mexico, they
estimate the extreme significant wave height expected to occur at the site.
Although their approach for estimating the sea severity associated with hur-
ricanes is interesting and useful, the magnitude of estimated extreme sea
states depends entirely on the mathematical model employed.

On the other hand, the results of analysis of measured wind speed and
sea severity during hurricanes indicate that there exists a relatively simple
relationship between the sea severity and mean wind speed as far as deep
water is concerned. In fact, there are two different categories: one is the
growing state of hurricane-generated seas in which the wind speed is
increasing at an extremely high rate and hence the sea severity is difficult
to follow, the other is the sea condition resulting from winds of relatively
mild severity blowing continuously for one week or longer and then fol-
lowed by a tropical cyclone. The sea severity of these two cases are pre-
sented in the following section.

5.2.2 Sea severity measured during hurricanes
It is of interest to observe the sea condition at a specific location in the
ocean as a hurricane approaches and examine the relationship between
wind speed and significant wave height. As an example, Figure 5.10 shows
the relationship between the measured mean wind speed at 10 m height
and significant wave height obtained by NOAA Buoy EB10 in hurricane
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ELOISE. The buoy was located at 88.0°W, 27.5°N. in the Gulf of Mexico,
approximately 330 km off the Florida coast. The hurricane traveled about
660 km in open sea in the Gulf before it reached the buoy, and its center
passed within 16 km of the buoy. The open circles in the figure indicate the
wind and wave relationship during the growing stage of the hurricane.

It can be seen in Figure 5.10 that the sea severity increases almost linearly
with increase in wind speed during the growing stage, and becomes severest
(significant wave height 8.8 m) when the wind speed becomes maximum
(35.2 m/s) as the hurricane leading edge approaches, and is then followed
by a transition stage. That is, the wind speed significantly reduces in magni-
tude (from 35.2 m/s to 8 m/s) during the two hours following the hurricane
eye passing near the buoy. The sea state follows the change in energy source
by reducing in severity from a significant wave height of 8.8 m to 5.0 m.
Then, during the following two hours, the hurricane trailing edge passes
and the wind speed and sea state come back to nearly the same levels as they
were in the growing stage. After that, the sea severity reduces almost linearly
with reduction in wind speed. Thus, it can be seen that sea state severity is
highly dependent on wind speed during the hurricane.

The wind-speed-sea-severity relationship during the growing stage of
hurricanes is obtained for an additional seven hurricanes and the results
are summarized in Figure 5.11 (Ochi 1993). Wave data for seven hurri-
canes were measured by NOAA buoys in deep water (NOAA Buoy Office
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Fig. 5.10. Relationship between mean wind speed and significant wave height
observed during hurricane ELOISE (Ochi 1993).
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1975, 1978, 1981, and 1986), and data for hurricane CAMILLE were
obtained by a resistance-type wave gage attached to a tower located in a
water depth of 104 m (Patterson 1974). Some wind speeds measured at
5 m above the buoy are converted to 10 m height. Some wind speeds
included in the figure were below hurricane level (33.5 m/s) when they
passed over the buoys, but the wind severity reached hurricane level later.

As can be seen in Figure 5.11, sea severity increases almost linearly
with increase in wind speed during the growing stage of the hurricanes.
By establishing an upper-bound by drawing a straight line which includes
the majority of the points in the figure, the significant wave height, //s, can
be simply obtained as a function of the mean wind speed at 10 m, £/10, as

H=0.24V10 (5.21)
where Hs is in meters and Ul0 in meters per second.

Included in the figure is the functional relationship between wind speed
and significant wave height for fully developed seas obtained from the
Pierson-Moskowitz spectrum (1964). The original Pierson- Moskowitz
spectral formulation for fully developed seas is given as a function of the
mean wind speed referred to 19.6m height above sea level, however, the
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wind speed is converted to 10 m height in the figure. As expected, the
figure shows that the sea severity during the growing stage of a hurricane
for a given wind speed is much less than that for fully developed seas. This
is because the time duration of a given wind speed is extremely short during
hurricanes in comparison with that required for fully developed seas.

Sometimes we observe a sea condition resulting from winds of mild
severity blowing continuously for one week or longer and then followed by
a storm, usually a tropical cyclone. In this case, the sea becomes severe.
For example, before tropical cyclone GLORIA passed near NOAA Buoy
41002 (32.3°N, 75.3°W) in 1985, the sea condition (significant wave
height) in that area was 2.5-4.0 m for 10 days with consistently blowing
winds of 7-11 m/s. That is, the sea had the potential for being easily aug-
mented in severity when GLORIA came to the area. Another example of
this situation can be observed in the sea state during a storm in the North
Atlantic (Snider and Chakrabarti 1973). In this case, winds of 6-14m/s
were blowing for some time before a storm came to Station J (53°N,
18°W). When the storm approached the area, the significant wave height
increased from 5.5m to 16.8m in 21 hours at an almost constant rate.

Figure 5.12 shows the relationship between the mean wind speed and

4 8 12
SIGNIFICANT WAVE HEIGHT IN M

Fig. 5.12. Relationship between mean wind speed and significant wave height
(solid circles are Hurricane GLORIA, open circles are North
Atlantic storm). (North Atlantic data from Sneider and Chakrabarti
1973.)
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significant wave height measured by the NOAA buoy during tropical
cyclone GLORIA (solid circles) and that measured by a Tucker meter
installed on the Ocean Weather Ship during a storm in the North
Atlantic (open circles). Included in the figure is the functional relation-
ship applicable for fully developed seas. As can be seen, the relationship
between the average wind velocity and sea severity during the tropical
cyclone and the storm with similar weather background is almost the
same even though the geographical locations are far apart. The relation-
ship between the average wind speed and significant wave height is close
to that applicable for fully developed seas. This does not imply that, for a
given significant wave height, the shape of the wave spectrum is close to
that of a fully developed sea, since the sea severity at issue is not associ-
ated with the long sustained strong wind speed required for fully devel-
oped seas.

5.2.3 Wave spectra and wave heights in hurricane-generated
seas

The shape of wave spectra obtained from data taken during hurricane-
generated seas is different from that obtained in seas associated with
ordinary storms. As an example, Figure 5.13 shows a comparison
between a wave spectrum computed from data obtained during

0.2 0.4 0.6 0.8 1.0 1.2

FREQUENCY co IN RPS

Fig. 5.13. Comparison between hurricane ELOISE wave spectrum and wave
spectra in ordinary wind-generated seas having the same significant
wave height 8.8 m.
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hurricane ELOISE and various spectra with the same severity (signifi-
cant wave height of 8.8 m) obtained from data taken in the North
Atlantic. As can be seen, the energy density is concentrated primarily in
the neighbourhood of the peak frequency of the spectrum for the hurri-
cane-generated seas, contrasting with the energy being spread over a
wide frequency range, including double peaks, for wave spectra
obtained during ordinary storms.

Ross (1979) presents the results of a least square fit of the hurricane
wave data to the JONSWAP spectral formulation. Although these spec-
tral shapes are well represented by the JONSWAP formulation (see Eq.
2.83), values of the parameters of the formulation are quite different from
those originally specified. Through regression analysis of data, he derives
the parameters of the formulation as a function of the radial distance
from the eye of the hurricane as follows:

a =0.035/£82

y =4.70X;013

/m=0.97X-°-21 (5.22)

where

7m =dimensionless modal frequency =fmU/g

Xr=dimensionless radial distance=XrglU1

fm = modal frequency

U =wind speed at 10 m height above the sea surface

Xr=radial distance from the eye of hurricane.

Foster (1982) represents approximately 400 wave spectra obtained
during hurricanes by the JONSWAP spectral formulation. From statisti-
cal analysis of these data, he presents the parameter a of the JONSWAP
formulation as a function of significant wave height and modal frequency
as follows:

a=4.5Hs
2fi (5.23)

It is also found from Foster's analysis that there is a strong correlation
between the peak energy density, S(fm), and significant wave height, Hs,
for hurricane-generated seas, as shown in Figure 5.14, which can be pre-
sented as

S(/m)=0.75//s
234 (5.24)
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On the other hand, the peak energy density can be obtained from Eq.
(2.83) as

(5.25)

Thus, from Eqs. (5.23) through (5.25), the peak-shape parameter, y, can
be expressed as a function of significant wave height and modal frequency
as follows:
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Fig. 5.14. Wave energy density at modal frequency versus significant wave
height (Foster 1982).
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7=9 5H034f (5.26)

It is noted that the value of the peak-shape parameter, y, for hurricane-
generated seas ranges from 0.6 to 4.0, and its mean values is much
smaller than 3.30 as originally given. A histogram of y constructed from
data obtained during hurricane-generated seas and its probability density
function is shown in Figure 5.15. By using these relationships, a wave
spectral formulation specifically applicable for hurricane-generated seas
in the form of the JONSWAP formulation presented as a function of sig-
nificant wave height and modal frequency is as follows:

ZjO.34-f \exp{ —(/—/m) /2(o-/ rn)z} /c 01\

where the units are meters and seconds. The above formula can also be
written as a function of frequency CJ as follows:

4.5
(2TT)4

/9.5 exp{-(«-a; m)2/2<><om)2}
(5.28)

Figures 5.16(a) and (b) show examples of comparisons between wave
spectra obtained from data during hurricanes ELOISE and KATE,
respectively, and those computed by Eq. (5.28).
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It has been shown that the shape of wave spectra during hurricanes is
different from that observed in ordinary wind-generated seas. Statistical
properties (such as extreme height) of waves during hurricanes, however,
appear to be the same as those observed in ordinary storms. Borgman
(1973) shows in his extensive study on the prediction of the largest wave
height during hurricanes that the largest waves can be predicted based on
extreme value statistics associated with the Rayleigh distribution.

Some results of analysis of wave data obtained during hurricanes show
that the Rayleigh probability distribution overestimates the magnitude of
the highest waves (Forristall 1978, 1984; Haring et al 1976, among
others). However, the overestimation of high waves during hurricanes by
applying the Rayleigh distribution may not be attributed to sea severity
perse, but due to a combination of sea severity and finite water depth. As
will be presented in Chapter 9, the statistical distribution of wave profiles
evaluated from data obtained in finite water depths deviates from the
Gaussian distribution when the sea state is severe, and the Rayleigh distri-
bution overestimates high waves under this situation.

Conversely, when wave records obtained in hurricane-generated seas
show the Gaussian property, the probabilistic prediction of wave height,
including extreme height, may be made based on the Rayleigh probability
distribution. As an example, Figure 5.17 shows a comparison between
the Rayleigh distribution and a histogram of wave height (dimensionless)
constructed from wave data obtained during hurricane CAMILLE in the
Gulf of Mexico (29.0°N, 88.7°W) where the water depth is reported as
103.7 m. This water depth may be increased by several meters due to
storm surge during the hurricane. The significant wave height evaluated
from the spectrum is 12.3 m. Thirty-two (32) waves in 180 measured
waves have double peaks but do not show any noticeable excess of high

1- 0.3

I 2 3 4 5 6 7
DIMENSIONLESS WAVE HEIGHT

Fig. 5.17. Comparison between histogram of wave height (dimensionless)
obtained during hurricane CAMILLE and Rayleigh probability
density function.
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crests nor round troughs; that is, waves can be considered as a Gaussian
random process in this case.

Although some discrepancy between the histogram and the Rayleigh
distribution can be seen in Figure 5.17, the data pass the ̂ 2-test for a level
of significance a=0.05. The extreme wave height measured in this sea is
22.6 m as compared with a probable extreme wave height of 19.8 com-
puted based on the Rayleigh distribution. The measured extreme height
exceeds the estimated probable extreme value, but this is not surprising
since the probability that the extreme value will exceed the probable
extreme value is theoretically 0.63 (see Section 6.2). The sea state given
in this example is not the severest sea measured during hurricane
CAMILLE, but this sea severity (significant wave height 12.3 m) appears
to be the maximum which can be considered as a Gaussian random
process for the water depth at this site.

Estimation of extreme wave height during a hurricane, including
various sea conditions in the growing and decaying stages, will be dis-
cussed in Section 6.4.



ESTIMATION OF EXTREME WAVE
HEIGHT AND SEA STATE

6.1 BASIC CONCEPT OF EXTREME VALUES
This section presents the theoretical background for predicting extreme
values (extreme wave height, extreme sea state, etc.) which provide
invaluable information for the design and operation of marine systems.
The extreme value is denned as the largest value of a random variable
expected to occur in a specified number of observations. Note that the
extreme value is defined as a function of the number of samples. In the
naval and ocean engineering area, however, it is highly desirable to esti-
mate the largest wave height expected to occur in one hour, or the sever-
est sea state expected to be encountered in 50 years, for example. This
information can be obtained by estimating the number of waves (or sea
states) per unit time, and thereby the number of samples necessary for
evaluating the extreme value is converted to time.

The concept supporting the estimation of extreme values is order statis-
tics which is outlined in the following. Let us consider a sample set con-
sisting of wave heights taken in the sequence of observations
(x15x2, ...,xw). Each element of the random sample x{ is assumed to be
statistically independent having the same probability density function
f(x). In the case of wave height observations, each x{ is considered to obey
the Rayleigh probability law. Next, let us rearrange the elements of this
random sample in ascending order of magnitude such that j ^ is the small-
est wave height, and yn is the largest wave height in the set; namely,
3^2• --3V Then, (ylyy2i --ojO *S called the ordered sample.

Once the sample wave heights are ordered, the sample elements
yvy2i "^yn

 a r e statistically independent random variables and each has
its own probability density function. Note that the largest extreme wave
height yn is a random variable. This can be easily understood because
every time we take a sample of n waves, presumably the magnitude of the
largest height will be different.

The cumulative distribution function of yni denoted by G(yn) is given
by

}"l (6.1)

149
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and thereby the probability density function, denoted by g(yn) becomes

}"-\-yn (6-2)
Here, f(x) and F(x) are the probability density function and cumulative
distribution function, respectively, of wave height, and they are called the
initial probability density function and distribution function, respectively, in
order statistics. For the derivation of Eqs. (6.1) and (6.2) the reader is
referred to extreme value statistics (Ochi 1990a, for example).

As an example, Figure 6.1 shows the extreme value probability density
functions g(yn) for n=50, 100 and 200 for waves having a significant
height of 5.66 m, assuming wave height follows the Rayleigh probability
distribution. It can be seen that the shape of the probability density func-
tion g(y^) is much more sharply concentrated about its modal value than
the initial probability density function, and that the modal value shifts to
higher wave height with increase in number n. It is easily understood,
therefore, that the probability of extreme wave heights (or amplitudes)
exceeding a specified value depends on the number of waves. Since the
largest value in a specified number of waves, yn, is a random variable and
obeys its own probability law, the question arises as to the use of the
extreme value distribution in the design considerations of marine
systems. This subject will be discussed in detail in Section 6.2.

Note that Eqs. (6.1) and (6.2) show that the extreme values cannot be
evaluated without knowledge of the initial distribution, f(x) or F(x),
which may not always be known in practice. Estimation of extreme values

X AND Y,n

Fig. 6.1. Initial and extreme value probability density functions of wave
height with significant wave height of 5.66 m.
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under this situation, however, can be made by assuming a specific form of
the initial cumulative distribution function. This subject will be discussed
in Section 6.3.

6.2 PROBABLE AND DESIGN EXTREME WAVE
HEIGHT

As stated in the previous section, the extreme value probability density
function g(yn) is sharply concentrated around its modal value. Hence, it
is reasonable to assume that the modal value may be most likely to occur.
This modal value is denoted by Yn as shown in Figure 6.2, and is called
the probable extreme value or characteristic value. The magnitude of yn can
be obtained as the solution of the following equation:

(6.3)

\2=0 (6.4)
Assuming wave height (or amplitude) obeys the Rayleigh probability

law, we may write the initial probability density function as

which yields from Eq. (6.2)

-? * -A* (6.5)

R

where
for x being wave amplitude
for x being wave height

mo=area under wave spectrum.

Then, Eq. (6.4) becomes

\2m0

[Sm0

- ^ | = 0 (6.6)

g(yn)

Fig. 6.2. Explanatory sketch of initial probability density function/(x) and
extreme value probability density function^yn).
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Since yn is large, (2yJR)2 in the first term is much greater than
(2AR), and thereby (21R) can be discarded. Furthermore, n is supposed
to be very large. Then, the solution of Eq. (6.6), yn, can be simply
obtained as

for amplitude
!0 for height

In the above equation, the extreme wave height is obtained as a func-
tion of the number of waves, n. For practical purposes, however, it may be
more meaningful to express the extreme wave height in terms of time
rather than as a function of number of waves. This expression can be
made by using the formulation of the average number of zero-crossing per
unit time derived in Eq. (4.42). That is,

(6.8)

where m- is theyth moment of the wave spectrum.
Then, the probable extreme wave amplitude, jyw, is expressed as a func-

tion of time T:

where i" Is time in hours.
An example of probable extreme wave height as a function of time will

be shown later along with design extreme wave height.
For the non-narrow-band case, the probability density function and

cumulative distribution function derived in Eqs. (3.34) and (3.37),
respectively, should be used in Eq. (6.4). By writing the dimensionless
extreme value as t>n=yj\fm~^ the solution of the equation is found
approximately for bandwidth parameters less than 0.9. That is, for
e<0.9, it is possible to use the following approximation for a large
number of observations, n (Ochi 1973):

(6.10)

By neglecting terms of small order of magnitude, Eq. (6.4) becomes,

V l - 6 2 ( l + V l - 6 2 )
-exp{-42/2}+W(l-e2)exp{0 +o(Q=0 (6.11)
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Then, the solution of Eq. (6.11) can be obtained as the probable
extreme wave amplitude for non-narrow-band waves. In dimensional
form, we have

(6.12)

As is shown in the above equation, the probable extreme amplitude is a
function of bandwidth parameter e. Figure 6.3 shows the probable
extreme wave amplitude in dimensionless form as a function of the
number of observations for various bandwidth parameters. The figure
indicates that there is no significant difference in the probable extreme
amplitude up to 6=0.6, irrespective of the number of observations.

Since the range of e-values of ocean waves spans from 0.45 to 0.80, it
may safely be concluded that the effect of the bandwidth parameter can
be ignored in the estimation of extreme wave amplitude (or height).

Next, let us express the probable extreme wave amplitude, given Eq.
(6.12), which is applicable for a non-narrow-band spectrum in terms of
time instead of number of observations. The expected number of positive
maxima per unit time is given by Eq. (3.33), i.e.

(6.13)

Then, from Eqs. (6.12) and (6.13), the probable extreme wave amplitude
to occur in time T hours becomes

/ , f(60)2r
(6.14)

lxlO2 2 4 6 8 ixlO3 2 4 6 8 lxlO4

NUMBER N

Fig. 6.3. Probable extreme wave amplitude (dimensionless) for various band-
width parameters e as a function of number of observations (Ochi
1981).
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Note that the above equation is exactly the same as that for narrow-
band spectra given in Eq. (6.9). This leads to an important conclusion:
the magnitudes of extreme waves in a specified period of time are the
same irrespective of the bandwidth parameter. In other words, the
narrow-band assumption is acceptable for the estimation of extreme wave
amplitude in terms of time.

The probable extreme wave amplitude (or height), Yn, is interpreted as
being that most likely to occur, since it is the modal value of the probabil-
ity density function. It is then important to examine the possibility that
the extreme wave amplitude exceeds the probable extreme amplitude.
Results of computations show that the probability is high for a large
sample size n. That is, from Eq. (6.1) and by obtaining the cumulative
distribution function from Eq. (6.5) along with Eq. (6.7), we have
approximately,

(6.15)

The above equation implies that there is a 63.2 percent chance that the
largest wave will exceed 3v This probability is extremely high; hence, it is
highly desirable in the design of marine systems to consider a sufficiently
large wave amplitude (or height) for which the probability of being
exceeded is very small. In other words, a very small number a should be
chosen which may be called the risk parameter^ and the extreme wave yn
evaluated for which the following relationship holds (Ochi 1973):

lim Pr {extreme wave>jpw} —lim {1 — G( yn)}

=lim{l-(F(y,)y}=a (6.16)

Considering that a is small and n is large, we have

(6.17)

On the other hand, based on the narrow-band assumption, the cumu-
lative distribution function of the Rayleigh distribution F(yn) becomes

y2'R} (6-18)

Hence, from Eqs. (6.17) and (6.18), we have

yn=V\n(n/a) VJR=V21n(w/a) VrnQ for amplitude (6.19)

From comparison with the probable extreme value derived in Eq.
(6.7), it is clear that the extreme value with the risk parameter a, where

1, can be evaluated through a modification of the number of observa-
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tions by multiplying by I/a. Thus, for non-narrow-band waves, the
design extreme value from Eq. (6.12) becomes

V f 2 V l - e 2 n\ /—
2 l n i+VT 1 1 ^ ~a I ° f ° r a m P l i t u d e (6.20)

The value of the risk parameter is at the designer's discretion, although
results of many computations indicate that a=0.01 appears to be
appropriate in practice. For supplementing this statement, Figure 6.4 is
prepared. The figure shows the design extreme wave amplitude (in
dimensionless form, yj^fm^ for various a-values along with the probable
extreme wave amplitude under the narrow-band assumption.

As an example, let us consider the case w=300 which is approximately
the number of waves observed in one hour in severe seas. The probable
extreme value (dimensionless) is 3.40, compared with 4.52 and 4.70 for
design extreme values with a=0.01 and 0.005, respectively. The design
extreme value with a=0.01 is approximately 33 percent greater than the
probable extreme wave, but the design extreme value with a=0.005 is
only 4.0 percent greater than that with a:=0.01.
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values as a function of number of waves (Ochi 1973).
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In estimating extreme waves for the design of marine systems, the
question arises as to the number of encounters by a marine system with a
particular sea severity in its lifetime. The design extreme waves with the
risk parameter discussed so far are for a short-term sea state. Suppose a
marine system is designed to withstand a severe wave height yn with
a=0.01 in a specified sea, this implies that the design extreme wave pro-
vides a 99 percent assurance of safety when the marine system encounters
this sea state once in its lifetime. Therefore, if the marine system is
expected to encounter seas of this severity five times, for example, in its
lifetime, it is necessary to divide the risk parameter by 5 in order to main-
tain 99 percent safety assurance throughout its lifetime.

Next, let us express design extreme waves in terms of time rather than
number of waves. As stated earlier, the narrow-band assumption is
acceptable when the extreme values are estimated as a function of time.
Hence, from Eq. (6.14), the extreme wave amplitude to be used in the
design considerations of marine systems becomes

(6.21)

Figure 6.5 shows design extreme amplitudes for various values of
(m2/m0)V2 with a=0.01. As can be seen, for a given time, the extreme
amplitude increases with increasing (m2/m0)l/2.
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Fig. 6.5. Design extreme wave amplitude (dimensionless) for various
(m2/w0)1/2-values as a function of time (Ochi 1973).
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In order to see the effect of time duration on the magnitude of extreme
waves in a given sea. Figure 6.6 shows an example of probable extreme wave
amplitude and design extreme wave amplitude with a=0.01 as a function
of time. The significant wave height of this sea state is 7.54 m. As can be
seen, the magnitude of extreme wave amplitudes increases substantially
during the first half to one hour, and thereafter increases slowly with time.
This is the general trend of the extreme value irrespective of sea severity.

In the foregoing evaluation of extreme wave height, it is assumed that
the wave peaks (positive maxima) are statistically independent. One way
to evaluate the effect of statistical dependence of wave peaks on the mag-
nitude of extreme values is to assume that waves are a stationary random
process and positive maxima are subject to the Markov chain condition
(Ochi 1979b). For a random process subject to the Markov chain condi-
tion, Epstein (1949) shows that the cumulative distribution function of
the extreme value in n observations can be presented as

Design extreme height ( « = 0.01)

Probable extreme height

2 3

TIME IN HOURS

Fig. 6.6. Probable and design extreme wave amplitudes as a function of time
(significant wave height 7.54 m).
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Gn(g)=Pr{extreme value in n observations<£}

< 6 - 2 2 )

where F^( )=cumulative distribution function of two successive
maxima £ and r\

Fg( )=cumulative distribution function of maxima £.
By applying Eq. (6.22) successively down to n= 1, we can write Gw(£)

as
w-l

I 2 " ( 6 « 2 3 )

and from this the probable extreme value can be obtained as the value
which satisfies the following equation:

°d2
 d2

^ GM) = Ay2 ° % : =0 (6.24)

Here, /(£) in the denominator is the probability density function of
positive maxima given in Eq. (3.34) in which £is written as f. /(&17) in the
numerator is the joint probability density function of two successive
maxima. It can be derived through the same procedure as employed for
the derivation of /(£)> but in this case it is necessary to consider the
joint normal probability distribution of (xpO^x'p^O,^), where
x2(t)=x1(t+Tn) and Tm is the average time interval between successive
positive maxima given in Eq. (4.33).

A numerical evaluation of the probable extreme value is carried out for
a total of 14 spectra, including nine ocean wave records (6=0.42 to 0.78)
and five artificially made square-shape spectra (e=0.11 to 0.40), the
latter are shown in Figure 3.10 in Section 3.3. The results of the
computations show that the effect of statistical dependence of wave peaks
exists for wave spectra whose spectral bandwidth e is less than 0.5, and
that extreme values estimated based on the assumption of dependent
peaks are approximately 10 percent greater than those estimated based
on the assumption of independent peaks. Since bandwidth parameters of
ocean waves less than 0.5 seldom occur in deep water areas except for
very mild sea states (significant wave height less than 2 meters), the effect
of statistical dependence of wave peaks on the magnitude of extreme wave
height appears to be negligibly small in practice.

The principle for estimating extreme wave height discussed so far is
based on the cumulative distribution function constructed from the time



6.3 WAVE HEIGHT AND SEA STATE FROM DATA 159

history of wave data. We may recall that the envelope process is intro-
duced in Section 3.2.2, and that the statistical properties of the time
history of the wave envelope may be approximately identical to those of
wave amplitude if waves are assumed to be a narrow-band random
process. Regarding estimation of extreme wave height based on the enve-
lope process concept, Pierce (1985) finds from analysis of measured wave
data that the envelope maxima are generally 5 to 9 percent larger than the
time history maxima.

On the other hand, Naess (1982) develops a probability distribution
applicable to extreme values of the envelope process and finds that the
envelope method can be applied for estimating extreme values of
random processes whose spectral bandwidth e is less than 0.4. However,
wave spectra with e less than 0.4 cannot be observed in the ocean, in
practice. Further, Yim el al. (1992) develop three practical methods for
evaluating the expected maxima of a Gaussian time series for ocean
system analysis, and conclude that the employment of the envelope
concept does not improve the accuracy in estimating the extreme values.
Judging from the results of these studies, it appears that the envelope
concept does not contribute appreciably to estimating extreme wave
height.

6.3 ESTIMATION OF EXTREME WAVE HEIGHT
AND SEA STATE FROM DATA

In the previous section, estimation of extreme wave height is based on the
Gaussian, with either the narrow-band or non-narrow-band, random
process concept. We often encounter the situation wherein we have mea-
sured (or hindcast) data from which we want to estimate the extreme
wave height without knowledge of the probability distribution. For
example, we want to estimate the extreme wave height from measured (or
hindcast) data obtained in an area where water depth is finite. As another
example, we want to estimate the extreme sea state (significant wave
height) expected to occur in 50 years from accumulated significant wave
height data. In these examples, the initial probability distributions are not
known.

In order to estimate the extreme values under this situation, let us con-
sider again Eq. (6.4) which should be satisfied by the probable extreme
value, yn. That is

=0 (6.25)
We may write the above equation as

(6.26)• :
f(yn)

and by dividing by 1 —F(yn), we have
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1 = n-\ f(yn) f(yn)
\-F{yn) F{yn)\-F{yn)f\yn)

It is assumed that the initial distribution satisfies the L'Hopital rule in
the form of

f(v)T S forlatg'5- (6-28)
then, Eqs. (6.27) and (6.28) yield

l-F(yn) F(yn)
Since n is large and j / n is also large in the sample space, the right side of

the above equation may be written approximately as n. Hence, we have

db"" (6-30)
The left side of Eq. (6.30) is defined as the return period. Thus, Eq.

(6.30) implies that, in practice, the probable extreme value expected to
occur in n observations can be evaluated from the initial cumulative dis-
tribution function F(x) (x is replaced byyn) for which the return period is
equal to n. In practice, the yn is evaluated by taking the logarithm of Eq.
(6.30) for convenience. The extreme wave height for design considera-
tion, yn(a)> c a n a^so b e evaluated from Eq. (6.30) by replacing n by nla.

It is a common practice to determine the initial cumulative distribu-
tion function by representing measured data by some known distribution
function such as the log-normal or Weibull distribution, and the extreme
value is estimated based on this presumed distribution. Often, however,
the extreme value is determined by simply extending the cumulative dis-
tribution function obtained by plotting the measured data. In this case,
loss of accuracy in estimating the extreme value is inevitable to some
extent due to the visual extension of the plotted data line. Examples of the
application of Eq. (6.30) for estimating extreme wave height and sea state
are presented below.

The first example is wave height data obtained during hurricane
CAMILLE: the histogram of wave height (dimensionless) is shown in
Figure 5.17. The wave data are measured for 30.4 minutes during which
180 wave heights are observed, and the significant wave height is 12.3 m.
As discussed with reference to Figure 5.17, the data may be represented
by the Rayleigh probability distribution; hence, the extreme values are
estimated based on the Rayleigh distribution; the parameter of which is
obtained from spectral analysis. Figure 6.7 shows the logarithm of the
return period computed based on the Rayleigh distribution. The prob-
able extreme wave height expected to occur in 30.4 minutes is estimated
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from j>n (n= 180) as 19.8 m. The observed extreme wave height is 22.6 m
which exceeds the probable extreme wave height by 14 percent; however,
the extreme wave height for design considerations with the risk parameter
0.01 is 27.1 m, far greater than the observed value.

Another example is estimation of the extreme sea state expected to
occur in 50 years from the significant wave height data given in Table 5.1.
Figure 6.8 shows the logarithm of the return period of the data. Included
in the figure is the logarithm of the return period of the generalized
gamma probability distribution shown in Figure 5.3. We first estimate the
extreme significant wave height by visually extending the data points
shown in Figure 6.8. Since 5412 observations of data are taken over a
period of 3 years, the expected number in 50 years is 90 200
(In n= 11.41). As shown in the figure, the probable extreme significant
wave height j ; w for this value is 8.05 m. On the other hand, the extreme
value for design consideration of a marine system yn(a) with a=0.01 is
9.20 m. It is recognized from Eq. (6.30) that the extreme significant wave
height for design consideration in 50 years with the risk parameter
a;=0.01 is equivalent to the probable extreme significant wave height in
50/a years, namely 5000 years.

Next, let us estimate the extreme significant wave height by repre-
senting the cumulative distribution function by the generalized gamma
distribution shown in Figure 5.3. By applying the theoretical cumulative
distribution function of the generalized gamma distribution given in

/

/

/

/

/Observed

10 15 20
WAVE HEIGHT IN METERS

25 30

Fig. 6.7. Example of estimation of extreme wave height from hurricane
CAMILLE data.
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Fig. 6.8. Example of estimation of extreme sea state (significant wave height)
(data from Bouws 1978).

Eq. (5.5), the probable and design extreme significant wave heights for
a=0.01 become 10.1 m and 13.6 m, respectively. These values are sub-
stantially greater than those estimated by visually extending the return
period computed from data. It is noted that estimation of the extreme
values by extending the return period is simple, however, the data in the
sample space of large cumulative distributions are very sparse; usually on
the order of less than 0.2 percent of the data. Therefore, some uncertain-
ties in estimating extreme values are unavoidable in this approach.
Furthermore, in this example, extreme values expected to occur in 50
years are estimated from data accumulated in only 3 years. This may be
another reason why such a large discrepancy is observed between extreme
values estimated by extending the data points and those estimated by the
probability distribution function representing the data.

In order to improve estimation of long-term extreme sea state,
Kerstens et al. (1988) analyze accumulated significant wave height data
by applying the Bayesian theorem. The basic concept of this approach is
as follows.

The parameters involved in the probability distribution are usually
considered as constants to be determined from data. In Bayesian statis-
tics, however, these parameters are random variables obeying some prob-
ability law. For convenience, let us consider the single parameter 6 which
is a continuous-type random variable having the probability density func-
tion h(0). This probability density function is called the prior probability
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density function. Then, following Bayes' formula (see Appendix A), we
may write

Here, f(0\x) is called the posterior probability density function of 6. There
exists the concept that the 0-value off(x\6) in Eq. (6.31) may be deter-
mined taking into consideration successive sets of data rather than a fixed
value. If so regarded, f{x\ 0) may be considered the likelihood function of 6
for a given %, and it is written as L(0\x). This subject is beyond the scope
of this text, but readers who are interested may refer to Fisher's treatise
(Fisher 1922). In any event, we may modify Bayes' theorem as

f(e\x)=Ch(6)L(0\x) (6.32)

where C is a normalization constant.
The above equation provides the foundation for processing new data

such that the parameter may be successively revised as more data become
available. To elaborate on this statement, if we initially have a set of
sample data, denoted by xv we may write

/(0|xI) = CI/?(0)L(0|xI) (6.33)

Upon obtaining a second set of sample data, %n, which is assumed to be
statistically independent of the first set, we have

) (6.34)

The above procedure can be repeated, and at the Jxh data sample, we
have the following relationship:

xn, (6.35)

This procedure shows how 0 can be continuously revised as new data
become available, Kerstens et al. apply this approach for estimating the
extreme significant wave height expected in 100 years by using data accu-
mulated over five years but revising the value of the parameter involved in
the probability distribution function by using data obtained every year.
They consider two probability distributions; the Weibull and the Type I
asymptotic distribution which will be discussed in Section 6.5.

Application of the Bayesian approach undoubtedly contributes signifi-
cantly in estimating extreme sea states for the design consideration of
marine systems. It should be noted, however, that this method provides
more accurate information only on the parameter (s) of the assigned prob-
ability distribution. Therefore, for the most desirable approach in esti-
mating extreme sea states, care must be taken first in selecting the
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probability distribution function which most accurately represents the
significant wave height data, and then the Bayesian approach can be
applied to the selected distribution.

6.4 EXTREME WAVE HEIGHT IN A NON-
STATIONARY SEA STATE

Estimation of extreme wave height presented in the previous sections
deals with waves in short-term steady-state (stationary) seas; i.e. the wave
spectrum as well as the significant wave height are constant in a given sea.
It is of interest, however, to estimate the largest wave height in the long
term when sea severity is changing. A typical example of this situation is
the estimation of extreme wave height during a hurricane including the
growing and decaying stages of the sea condition. Estimation of this can
be achieved through preparation of the probability density function of
long-term wave heights following the method presented in Section 3.8,
and then estimating the extreme value by applying the method discussed
in the previous section. Borgman (1973), on the other hand, develops a
concise approach for estimating extreme wave height during a hurricane
as outlined below.

Let [0,7] be the overall time interval of interest during a hurricane, and
divide this interval into n segments in which the sea state is steady-state.
We may write the time duration of the7th segment as 47;, and the sea state
as S(TJ), where T- is an index representing the 7th segment. Furthermore,
by letting T0(TJ) be the average zero-crossing period in the 7th segment,
the number of waves in the 7th segment is given by AIJ/T0(TJ). Next, fol-
lowing the definition of the cumulative distribution function of the
extreme value given in Eq.(6.2), we may write the probability of extreme
wave height in the 7th segment as

Fr{Hmax<hJ=G(he) = {F[he,S(rp]}A¥ fo(rp (6.36)

By applying this concept to all w-segment seas, the probability of
extreme wave height in the entire time interval becomes

Pr {Hmax<he\ [0,7]} =f[{F[he,Sfy]} * W (6.37)

Next, we consider the limit of this probability by letting the segment
time interval AZJ-be as small as possible, and thereby S(TJ), T0(TJ) becomes
a continuous function of T. Hence, we may write

=exp [jf^ lnF[/*e,S(T)]drj (6.38)
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The above equation is the cumulative distribution function of the
largest wave height he in time interval [0,7]. F[he,S(r)] is the cumulative
distribution function of the wave height in a given sea state. Borgman
assumes the initial distribution F[he,S(r)] to be the Rayleigh probability
distribution, and numerically evaluates G(he) for eighteen hurricanes.
The results of computations show that In ln{ l/G(he)} versus he is found to
be a straight line, i.e.

(6.39)
This being the case, we may write

G(/g = exp{-e-^e2-^)} for/*e>0 (6.40)

The form of this cumulative distribution function resembles that of the
Type I asymptotic extreme value distribution which will be discussed in
the next section, but the distribution function is a function of the square
of the random variable /ze, and the sample space is (0,o°) instead of (-oô oo)
for the Type I asymptotic distribution.

Krogstad (1985) presents Eq. (6.38) in terms of sea state (significant
wave height Hs) instead of time history. That is, let rr(Hs) be the probabil-
ity density function of the sea state during a hurricane. Then, the cumula-
tive distribution function applicable to the extreme wave in time interval
[0,7] is given by

Pr{//max</ze}=G(/ze)

^ } (6.41)j
where /is the time interval considered.

Krogstad extends the method by including the probability distribution
of wave period associated with the extreme wave height.

6.5 ASYMPTOTIC DISTRIBUTIONS OF LARGEST
WAVES AND SEA STATES

It is sometime necessary to estimate extreme waves and sea states from
data consisting of the largest values taken during a fixed time interval;
namely, the largest values in regularly sampled data such as hourly, daily,
monthly maxima. As an example, Table 6.1 shows statistical data of the
daily largest significant wave heights obtained by the Coastal Engineering
Research Center Field Station in North Carolina. The data are at a loca-
tion 450 m off the shoreline where the water depth is 8.5 m on average.
Observation of significant wave height was carried out four times a day
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Table 6.1. Daily maximum significant wave height data obtained by the
Coastal Engineering Research Center at Duck, North Carolina.

Significant wave height (m) Number of observations

0.2-0.4 11
0.4-0.6 151
0.6-0.8 158
0.8-1.0 175
1.0-1.2 109
1.2-1.4 116
1.4-1.6 91
1.6-1.8 63
1.8-2.0 47
2.0-2.2 40
2.2-2.4 27
2.4-2.6 19
2.6-2.8 21
2.8-3.0 12
3.0-3.2 6
3.2-3.4 7
3.4-3.6 6
3.6-3.8 2

Total 1061
(in 42 months)

over 42 months and the table shows the accumulation of the largest value
in a day.

It is stated in Section 5.1.1 that, in general, there is no theoretical basis
for selecting any particular probability distribution to characterize signifi-
cant wave height data. However, if the data consists of the largest values
every day (or week or month), and if the number of observations is
sufficiently large, then the extreme value may be estimated through the
asymptotic distribution developed for extreme values.

The asymptotic distribution of extreme values have been developed by
many statisticians, Frechet, Fisher, Tippett, van Mises, Gnedenko, etc.,
and their work is summarized by Gumbel (1958). The asymptotic
formula is developed as the limiting distribution of the largest (or the
smallest) value in a sample of size AT, where N is very large. By writing
N=kn, where k is a fixed constant, we may interpret this limiting distribu-
tion to be equivalent to the limiting distribution of the largest value in a
sample of size n (where n—•o°) with fixed k. Based on this interpretation,
the statistical properties of the largest value in a fixed period of time may
be estimated by applying the asymptotic distribution of the extreme value.
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The asymptotic distribution of extreme values was first developed by
Frechet (1927), and the same distribution and two other distributions
were derived by Fisher and Tippett (1928). Gnedenko (1943) showed
that these are the only three distributions which satisfy the condition
required for the asymptotic distribution. These distributions are called
Type I (Fisher-Tippett), Type II (Frechet) and Type III (Fisher-Tippett)
asymptotic extreme value distributions.

For predicting extreme values of waves and sea states. Type I and
Type III asymptotic distributions may be applicable, but application of
the Type II distribution is not appropriate for the analysis of waves and
sea states because of the condition imposed on the distribution func-
tion.

Although asymptotic extreme value distributions have been frequently
applied for analysis of wave data, it is noted that the probability distribu-
tion of the daily maxima wave height or significant wave height is rarely
accurately represented by asymptotic distributions. This may be partially
attributed to the fact that the data are not taken from a sample space
representing the statistical properties requisite for the asymptotic extreme
value distribution. The asymptotic distribution deals with maxima data
in a large number of observations (theoretically infinite) from a consistent
sample space. However, this is not the case in practice.

An extensive review of extreme significant wave height for the design
considerations of offshore structures is made by Muir and El-Shaarawl
(1986). They also state that data will seldom be accurate enough for very
complicated statistical methods to be utilized to the fullest extent.

6.5.1 Type I asymptotic extreme value distribution
The Type I asymptotic distribution is applicable to maxima data whose
initial probability distribution is of an exponential type, defined by von
Mises as a distribution which satisfies the following condition:

ix) Jx^°dx[ fix) J
Since almost all initial probability distributions considered for analysis of
waves and sea states belong to this category, the Type I asymptotic distri-
bution can be applied for analysis of wave and sea state data. Let us
assume that the initial cumulative distribution function is given in the
form of

F(x) = l-exp{-<7(x)} (6.43)

where q{x) is a positive real-valued function satisfying the condition
required for/(x) to be a cumulative distribution function.

By using the relationship given in Eq. (6.30), we can write the initial
cumulative distribution function as
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_ n }1_ 1
[n J n

Then, from the definition given in Eq. (6.1), the cumulative distribu-
tion function of the extreme value for large n becomes

/ i V
Q(v \=\\rr\\ 1 Q-k(yn)-9(yn)}°AJV nS^\ n J

=exp{-e-{q(yn)-«(yn)}} (6.45)

Since the probability distribution function of extreme values is much
more concentrated around its modal value, yn, than in the case with the
initial probability density function, the term q(yn)—q(yn) may be
expanded by the Taylor series. Then, by neglecting higher-order terms,
Eq. (6.45) becomes

G(yt})=exp{ — G~{q'(y~n)(yn~y~n)} (6.46)

Here, neither qf(yn) norj;w are known in reality; hence let us express Eq.
(6.46) in the following form,

G0Er)=exp{-e~*} (6.47)

where

-yn) (6-48)
The mean and variance of the random variable z can be obtained with

the aid of its characteristic function as

E[z] =y (Euler's constant, 0.577)
Var[z]=772/6 (6.49)

Then, by taking the mean and variance of z given in Eq. (6.48), we can
derive the following relationship:

77/V6

( 6 - 5 0 )

Since the mean and variance of yn can be evaluated from the data, the
cumulative distribution function of the extreme value G(yn) given in Eq.
(6.46) can be evaluated with the aid of Eqs. (6.50).

In summary, the cumulative distribution function of the Type I asymp-
totic extreme value distribution is given in the following form:

oo (6.51)

where
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7T/V6

(6.52)

The question arises as to the sample space (—oôoo) of G(yn) given in
Eq. (6.51). The sample space of waves and sea states are non-negative
and thereby the cumulative distribution function must be truncated at
yn—0. The truncated G(yn) applicable to the sample space (0,°°) is given
by

G ( 0

(6.53)

and the probability density function g(yn) for the sample space (0,o°)
becomes

0^yn«» (6.54)
Results of computations have shown, however, that as far as the signif-

icant wave height is concerned, the truncated negative portion is very
small. For example, for the significant wave height data shown in Table
6.1, the probability of the negative portion, G(j;n=0), is less than 1 per-
cent.

As seen in Eq. (6.51), the asymptotic Type I extreme value distribution
has two parameters, a and u3 which have a functional relationship with
the mean and variance of j ; n . If the sample size n is large, the parameters
may best be evaluated by using the sample mean and variance in Eq.
(6.52). For a small sample size, the following equations, derived through
the maximum likelihood method, may be used:

i=\

(6.55)

By using an iteration procedure, a solution which satisfies the second
equation yields the maximum likelihood estimator a, and therefrom the
estimator u can be obtained from the first equation. For estimating the
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Fig. 6.9. Comparison of daily maximum significant wave height data and
Type I asymptotic extreme value distribution plotted on extreme
value probability paper.

parameters involved in the Type I asymptotic extreme value distribution,
the results of several studies are available. These include Lettenmair and
Burges (1982), Isaacson and Mackensie (1981), Carter and Challenor
(1983), among others. In particular, estimation of extreme significant
wave heights is discussed in the latter two references.

Figure 6.9 shows a comparison between the cumulative distribution
function of the daily maximum significant wave height data given in Table
6.1 and the Type I distribution (straight line) whose parameters are
evaluated by Eq. (6.52) from a sample size of 1061. The distribution
functions are plotted on extreme value probability paper. As seen in the
figure, except for small and large values of significant wave height, the
major portion of the distribution function agrees reasonably well with the
Type I asymptotic distribution. However, because of the discrepancy
between the cumulative distribution functions at large significant wave
heights, the estimation of extreme values by extending the Type I distrib-
ution results in a substantial overestimation. The discrepancy of the
cumulative distribution functions observed in Figure 6.9 is not an excep-
tion; many examples of maxima data (not necessarily limited to wave
height data) exhibit a trend similar to that presented in Figure 6.9.

6.5.2Type III asymptotic extreme value distribution
The Type III asymptotic extreme value distribution is associated with
initial distributions which are bounded toward the extreme value. Thus,
the distribution is used for estimating the extreme maxima (or minima)
where there exists an upper (or lower) bound in the sample space. The
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direct derivation of the Type III distribution is extremely complicated;
however, it can be derived from the Type I distribution through the change
of random variable technique. For convenience, we may write the random
variables of the Type I distribution as Xn and that of the Type III distribu-
tion as Yn, and consider the following transformation from Xn to Yn:

(w~v \
xn-u=-\n[ ^ -oo<3,<oo (6.56)

\w—v)
where w is the upper limit of yn and v is a parameter to be determined
from the data.

We may write the parameter a in Eq. (6.51) as k in the Type III distrib-
ution to avoid possible confusion. The transformation yields

-oo<y<w

0<v<w 0<&<oo (6.57)

This is the cumulative distribution function of the Type III asymptotic
extreme value distribution having an upper limit w. Note that the sample
space of the distribution given in Eq. (6.57) is (-°°,w). For the sample
space (0,w), the probability distribution should be truncated at j;n=0, and
this results in the following modified Type III asymptotic distribution:

l-exp{(

0<yn<w (6.58)

Accordingly, the probability density function becomes,

1 k(wy^

\w—vj
0<y<w (6.59)

In the case where w is known, the parameters may be evaluated
through the Type I asymptotic distribution; i.e. k=a and v can be evalu-
ated by the following procedure. By writing

z=-ln(w-yn) (6.60)

the cumulative distribution given in Eq. (6.57) can be written as

G(*)=exp{-e~^+ln^-^} (6.61)

Then, from comparison between Eqs. (6.51) and (6.61),

u=-\n(w-v) (6.62)
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Since w is known, the parameters k and v can be evaluated following the
same procedure as shown for estimating the parameters of the Type I
asymptotic distribution.

In the case where the value of the upper bound w is unknown, the three
parameters in Eq. (6.57) may be determined through the maximum like-
lihood method, the skewness method or by the nonlinear regression
method. The maximum likelihood method, however, is too complicated
to apply to this distribution in practice. Estimation of the parametric
values through skewness may be considered only for a sample of large
size. Skewness of the Type III distribution can be expressed solely as a
function of the parameter k as follows:

skewness= > ' r , ' n, ' ) / ^ 3 / 2 ^ '- (6.63)

By equating Eq. (6.63) to the following sample skewness computed
from data, the parameter k can be evaluated.

i n

— / (y —y)
sample s k e w n e s s = - — ^ 73/2 (6.64)

where

The parameters w and v are then subsequently determined by equat-
ing the theoretical mean and variance of the distribution to the sample
mean and variance, respectively. That is,

VarLyJ = {w-vy\r(l +lj~^ +^j } (6-65)
This method of estimating the parameters may sometimes be difficult

in practice in that the sample skewness asymptotically increases very
slowly with increase in ^-values, and thereby the &-value cannot be deter-
mined precisely for a specified skewness (Isaacson and Mackenzie 1981).
The example data given in Table 6.1 is not an exception.

Another method to estimate the parameters is to apply nonlinear
multiple regression analysis through an iteration procedure (Ochi et al.
1986, Mesa 1985). Taking the logarithm of Eq. (6.57) twice results in
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w—v
(6.66)

The left side of Eq. (6.66) can be evaluated from data, and the right
side is linear in the parameter &, and monotonic in the parameters w and v
and is determined through regression analysis. Figure 6.10 shows a
comparison between the cumulative distribution function obtained from
data given in Table 6.1 and that computed by applying Eq. (6.66). The
computed cumulative distribution function displays a reasonable fit to
the majority of the data, but some discrepancy does exist at the lower
values.

In order to improve the agreement between the Type III distribution
and the observed data, Eq. (6.66) is modified as follows:

{-ln G(yn)} =k Inl
\w—v

(6.67)

Here A(yn) is the difference between the theoretical distribution and the
observed data, and is expressed in the form of polynomials given by

A(yn)=a+b(yn-y0)+c(yn-y0)2+d(yn-y0y (6.68)

The values of a, 6, c, d and y0 are determined again by employing the
nonlinear regression procedure. Thus, from Eq. (6.67), the modified
Type III asymptotic distribution can be written as

). At \ k

(6.69)
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Fig.6.10. Comparison between daily maximum significant wave height data
and Type III asymptotic extreme value distribution based on a non-
linear regression method.
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Note that G(yn) given in Eq. (6.69) satisfies the conditions required of
the cumulative distribution function. Hence, the addition of A(yn) does
not affect the basic characteristics of the original Type III asymptotic dis-
tribution. A comparison between the cumulative distribution function
given in Eq. (6.69) and that obtained from data is shown in Figure 6.11.
A comparison between the probability density function of the modified
Type III and the histogram is shown in Figure 6.12 in which good agree-
ment can be seen over the entire variate range.
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Fig. 6.11. Daily maximum significant wave height data and modified Type III
asymptotic cumulative distributions (Ochi et al. 1986).

0.8 1.2 1.6 2.0 2.4 2.8

SIGNIFICANT WAVE HEIGHT IN METERS
3.2 3.6 4.0

Fig. 6.12. Comparison between histogram of daily maximum significant wave
height and modified Type III asymptotic probability density func-
tion (Ochi et al. 1986).



DIRECTIONAL CHARACTERISTICS
OF RANDOM SEAS

7.1 INTRODUCTION
Wave spectra discussed in earlier chapters represent wave energy at a
certain location in the ocean where the wave energy is an accumulation of
the energy of all waves coming from various directions. The spectrum
may therefore be called the point spectrum. The spectral analyses and pre-
diction methods of wave heights and periods presented in the preceding
chapters assume that wave energy is traveling in a specific direction, com-
monly considered the same direction as the wind. In this respect, the
wave spectrum may be considered as a uni-directional spectrum.

In reality, however, wind-generated wave energy does not necessarily
propagate in the same direction as the wind; instead, the energy usually
spreads over various directions, though the major part of the energy may
propagate in the wind direction. Thus, for an accurate description of
random seas, it is necessary to clarify the spreading status of energy. The
wave spectrum representing energy in a specified direction is called the
directional spectrum, denoted by S(a), 9).

Information on wave directionality is extremely significant for the
design of marine systems such as ships and ocean structures. This is
because the responses of a system in a seaway computed using a uni-
directional wave spectrum are not only overestimated but the associated
coupled responses induced by waves from other directions are also disre-
garded.

In order to obtain information on wave directionality, extensive data
acquisition techniques have been developed through application of
different types of instruments, and numerous papers have been published
on analysis techniques. Each of these acquisition techniques has both
merits and limitations.

A comprehensive evaluation of reliability, performance and data
quality of various directional wave measurement systems was carried out
by Allender et al. (1989) by applying data obtained in severe sea condi-
tions in the North Sea under an international project called Wave
Directional Measurement Calibration (WADIC) Project. A comprehen-
sive evaluation was also carried out on three measurement systems and

175
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various techniques from data obtained in laboratory experiments (Benoit
and Teisson 1994).

For stochastic analysis of wave directionality, it is extremely important
to clarify the basis supporting the estimation technique from analysis of
data obtained by a particular type of instrument. This subject will be dis-
cussed in detail in Section 7.2 for the three most commonly employed
instruments for estimating wave directionality; namely, the wave probe
array, floating buoys and pressure and current meters.

A study of the angular energy spreading function of ocean waves was
carried out in detail by Longuet-Higgins et al. (1961) and Cartwright
(1961). From the analysis of measured data, they proposed an angular
spreading function which is, by and large, the basis of various formula-
tions developed later. The analysis of the spreading function developed
by Longuet-Higgins et al. will be discussed in Section 7.3.

Measurements of wave directionality are extremely laborious, time-
consuming and costly. Hence, it is highly desirable to estimate the direc-
tional spreading characteristics as accurately as possible from a limited
amount of data. To do this, several approaches have been developed, pri-
marily applying techniques developed in statistical inference theory.
Three approaches commonly considered in this area of estimation are
presented in Section 7.4.

In Section 7.5, several formulations of the energy spreading function
currently being considered for the design of marine systems are summar-
ized.

7.2 PRINCIPLE OF EVALUATION OF
DIRECTIONAL WAVE SPECTRA

7.2.1 Wave probe array
Directional wave spectra can be evaluated from analysis of records
obtained from several wave probes deployed over a given area of the sea.
A variety of probe arrangements has been proposed depending on wave
conditions at the measurement site. For example, fewer probes may be
acceptable at a geographical location where the principal wind direction
is known than at a location where the wind direction is variable.

As an example of probe arrangement, Figure 7.1 shows a typical five-
probe arrangement called the CERC five-gage array. Four probes are
arranged in a circle of radius 25.6 m with one probe at the center. The
background theory supporting the evaluation of directional wave spectra
by employing the wave probe array is given by Borgman and Panicker
(1970) and Panicker and Borgman (1970) as follows.

Let wave probes P, Q, R, . . . be deployed arbitrarily in the ocean as
shown in Figure 7.2. We first consider two wave probes P and Q with dis-
tance € between them. The wave profiles measured at P and Q may be
expressed in the following form given in Eq. (1.15):
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i7p(r,r)=Re f (

ijq(r,r)=Re f (

=Re f |V (7.1)
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Fig. 7.1. The CERC five-gage array for directional wave measurement
(Panicker and Borgman 1970).

Fig. 7.2. Sketch indicating the array of wave gages.
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where

k*rp =^(xpcos 0+j;psin 0)

k*rq =&(xqcos 0+j;qsin 0)

The cross-correlation function between P and Q can be evaluated
fromEq. (7.1) as

Rm(0,T) = j ~%(r>i)Vq(r,t+ r)dt

= (&k€co<P-VRpp(0,T)d0 (7.2)
—77

Then, the cross-spectral density function Spq(a>,0) becomes
77

Sm(a>,0)= fekt™V-VSpp(a>,e)d6 (7.3)
— 77

where Spp(a),6)=S(a),Q), the directional wave spectrum.
Let us express the directional spectrum S(coy6) in a Fourier series in

terms of 6:
N

S((o,0) =—+^d(an cos n6+bn sin nO) (7.4)

where a0, an and bn are unknown to be evaluated from the co-spectra and
quadrature spectra computed from wave records. By letting (3—6=^ and
integrating with respect to </>, the cross-spectrum Spq(cS) can be written
from Eqs. (7.3) and (7.4) as

O / \ I 0 i&/7rn<;

K cosn/3+bnsinnp)
w = i

7 r

f
J

n=\
~bn COS W)8) I Sin n
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Note that
77"

— IT

TT

(7.6)

where Jn(k£) is the Bessel function of order n.
Thus, the cross-spectrum Spq(co) can be expressed in a Fourier series

as follows:

Spq(co) = JaJ0(k() + 2^i"(an cos nQ+ bn sin nO)Jn(k€)\ (7.7)
L n J

We may write the above equation as

where Ao, An and Bn are known quantities given by
A0=J0(k€)
An=2 cos npjn(k€)
Bn=2 sin npjfn(k€) (7.9)

Thus, the real and imaginary parts of the cross-spectrum Spq(<o) can be
written as follows:

Cpq(co) = J ^A0-(a2A2+b2B2)+(aiA4+b4Bi) + ...

Qpq((o) = Tr[(alA1+blBl)-(a3A3+b3B3) + ...] (7.10)

where a0, av bv b2, etc., are unknown.
Equations (7.10) shows the result of cross-spectral analysis of records

obtained by two wave gages P and Q. We may carry out a similar analysis
by employing several wave probes. Then, we have two equations from
cross-spectral analysis for any pair of gages, and independently one equa-
tion from auto-spectral analysis. Hence, by arranging n (n^2) gages, we
have n(n—1) + 1 known quantities. On the other hand, we have (2m+l)
unknowns for m terms of the Fourier series. This implies that spectral
analysis of three wave gages yields seven known quantities, which agrees
with the number of unknowns for a Fourier series with m=3. However,
for four gages, we have 13 known quantities which is a greater number
than the 11 unknowns for a Fourier series expansion tom=5. One way to
evaluate the unknown coefficients in this case is to apply the least squares
analysis method.
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As an example of application of this approach, Panicker and Borgman
present contour curves of the directional spectrum (shown in Figure 7.3).
The figure shows a typical bimodal spectrum off the Paciffic coast with
directional angle between 50 and 90 degrees.

7.2.2 Floating buoys
The directional wave spectrum S(to,0) may be expressed as a product of
the point spectrum S(a)) and a function representing the spreading
characteristics, D(to,0), called the energy spreading function. Let us first
express the directional spectrum »S(GJ,0)  in a Fourier series in terms of 6 as

S((0,0)=— (an cos nd+bn sin nff) (7.11)

where

cos n9dO

77

— I S((o,0) sirK=~\ S((D,6) sin nOdO

Next, we write

360

300-

240 "

(7.12)

CD
180-

120-

FREQUENCY IN HZ X 1024
Fig. 7.3. Contour plot of directional spectra obtained from analysis of data

measured by the CERC five-gage array (Panicker and Borgman
1970).
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where

' D((o,0)dO=l

From Eqs. (7.11) and (7.12), the energy spreading function
may be expressed in the following Fourier series:

(7.13)
"*{.* ~ J

where
IT TT

A= I D(<o,0) cosn0d6=--— \ S(co,ff) cosnOdO
J S((o)J

—77 —77

77 77

Bn= [D(a),O) sinnOdO=--—(S(o),0) sinnOdO
—77 —77

The above equations are the basis for the assessment of wave direc-
tional characteristics employing a floating buoy; the coefficients An and Bn
are evaluated through auto- and cross-spectral analysis of wave displace-
ment (or acceleration), slopes and curvatures.

(a) Pitch-^roll buoy
One of the simplest but well-designed devices is the pitch-roll buoy devel-
oped by Longuet-Higgins et ah (19 61). The buoy is a circular disk 1.71m
in diameter inside which an accelerometer and gyroscopes are accommo-
dated for measurement of vertical acceleration (or converted to displace-
ment) and slopes of incident waves in two rectangular directions. The
theoretical background for obtaining the wave directionality through this
device is as follows.

Let us first consider that we have three components; wave vertical dis-
placement 7] which is converted from acceleration, and slopes diq/dx and
dTj/dy. For convenience, these three records are denoted 1, 2 and 3,
respectively. These components can be theoretically written as

7] =Re f (e(k'r-M+^

^ = R e f fi&cos {,)
dx J J
^ = R e f fik sin 0 ei<k'r-fttf+6>(L4(ft>,0) (7.14)
fy J J

As an example, let us evaluate the cross-correlation function between
7] and d r)l dx:
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T

Rl2(r)=\im ^ftv^ —

r
=Hm ^

-T -77 0
77 CO

e f f iX(Re i&cosi
- 7 7 0

= (i= (ik cos 0(R(T,0))d0 (7.15)

where R(r,0) is the directional auto-correlation function.
By taking the Fourier transform of i?12(T):> the cross-spectral density

S12((JS) becomes

12(o>) = C12(<o)+iQ12(ft>)= [i&cos e(S(w,6))d(9 (7.16)

Thus, we can write

Cl2(co)=0

12(<o)= fQ12(<o)= fifecose(S(ft),fl))de (7.17)

By carrying out auto- as well as cross-spectral analysis similar to that
given in Eq. (7.16) on all three components, we have

77

Cu(o))= ( S(a>,e)d9=S((o) Q,,(o>) = 0
— 77

77

C22(cS)=k2 ( cos20(S(<D,6))d6 Q 2 2(^) = 0

— 77

77

C33((o)=k2 ( sm2e(S(oj,9))d0 Q33(w)=0
— 77

C12(ft>) = 0 Q12(G>)

C13(o>) = 0 Ql3(cS)=k( sin O(S((o,0))dO



7-2 EVALUATION OF DIRECTIONAL WAVE SPECTRA 183

IT

C23((o)=k2 f sin0cos0(S(<u,0))d0 Q23(co)=0 (7.18)
—77

where

k = wave number =a)2/g
C^co) =Si(co) = auto-spectrum of the component i
C^aj) = co-spectrum of components isndj
Qij((o) = quadrature spectrum of components i andj.

From comparison of Eqs. (7.13) and (7.18), An and Bn can be
obtained as follows:

JQl2(a>)
1 kC(a>)

= 1 C22(<o)-C33(<o)
2 k2 Cn(a>)

Thus, it is clear that the coefficients of the Fourier series representing
the energy spreading function can be obtained by carrying out auto- and
cross-spectral analysis of the records of displacement and two slopes.
Since the number of measured components is limited to three, the
Fourier expansion can be made only up to n=2. This sometimes causes
the directional spreading function to become negative (a minor amount)
at the tail portion of the spreading function. In order to let the partial sum
of the Fourier series expansion be equivalent to the infinite sum,
Longuet-Higgins et al. (1961) write Eq. (7.12) as

1 fl N 1
D(co,0) = - | -+^wn(An cos ne+Bn sin nO) (7.20)

and they set w1 = 2/3 and w2=l/6 for N=2.
In the case that the vertical acceleration obtained by the accelerometer

is used in the analysis, the formula for evaluating An and Bn must be mod-
ified by writing the vertical acceleration (in ̂ -units) as

a=Re f (e^-^dA^O) (7.21)

where dAa(a)y0)=V2Sa((o,ff) dcodO

Sa((o,9)=directional spectrum of vertical acceleration.
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The vertical displacement can then be written as

r]= -Re f (^<*'r-M+t[>dAa(Q),0) (7.22)

and thereby the two slopes become

^=-Re f f (icos 0) e^-^^dA^O)

—= - R e f f (i sin 9) e<*r-<*+i>dAa(a>,e) (7.23)
dy J J

We may denote a, drj/dx and dr]/dy as 1, 2 and 3, respectively, and the
auto-spectra and cross-spectra carry the subindex a to indicate that the
analysis is associated with acceleration record. For instance, Sa(cS) repre-
sents the acceleration spectrum. The coefficients An and Bn in Eq. (7.13)
become, in this case,

B2=-2C23(co)/CUa(co) (7.24)
where

Clla((o) =Sa((x)) = acceleration auto-spectrum
77

C22(cS) =-(cos20(Sa((o,0))d0
— 77

77

r • 2
33 ay J sin

— 77

77

C23((o) = - J sin 0cos 0(Sa(a),0))d0
— 77

77

Qi2a(fi>) = - I cos0(Sa(a>,0))d0

77

Because of the definition given in Eqs. (7.21) and (7.23), the sign of
the coefficients in Eq. (7.24) differs from that given in Cartwright and
Smith (1964). However, the mathematical formulation of the co-spectra
and quadrature spectra carry the negative sign except for Clla(o)) as
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shown above. Therefore, in practice, the coefficients A13 Bl9 A2 and B2 are
the same as given in the reference.

Ocean directional wave data have been routinely obtained by the
National Data Buoy Center by employing pitch-roll buoys. Measure-
ments and analyses of these data are discussed in detail by Steele et al.
(1992).

(b) Cloverleafbuoy
As shown in the previous section, we can evaluate the energy spreading
function as a Fourier series with two terms by employing the pitch-roll
buoy. In order to improve accuracy in evaluating wave directionality, it is
essential to increase the number of terms in the Fourier series. The
cloverleafbuoy shown in Figure 7.4, developed by Cartwright and Smith
(1964), is unique and the best available for this purpose. In the buoy,
three rotatable circular floats are attached at each apex of an equilateral
triangular frame. The distance between floats is 2 m. The measurement
outputs of this buoy are vertical acceleration by a gyro-stabilized
accelerometer, slopes in two rectangular directions at each float, roll and
pitch angles at the center of the buoy, and compass direction of the entire
system.

Let i7x(A), ik(B), r)x(C), ij/A), ^(B), and r]y(C) be the time history of
the slopes in the X- and Y-directions at floats A, B and C, respectively.
Then, the time history of the curvature at the center of the buoy can be
obtained taking into consideration the distance between floats as follows:

= { 2 T , X ( A ) - % ( B ) - T , X ( C ) } / 2 V 3

GYRO/ACCELEROMETER
COMPARTMENT

COMPASS
COMPARTMENT

ROTATABLE CIRCULAR
FLOAT

Fig. 7.4. Cloverleaf wavebuoy.
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0 ={Vy(.C)-Vy(fi)}/2

(7.25)

On the other hand, we have the mathematical presentation of the verti-
cal acceleration of the buoy in Eq. (7.21) and two slopes dr\ldx and drj/dy
in Eq. (7.23). These are denoted 1, 2 and 3, respectively. The curvatures
can be obtained by differentiating the slopes with respect to x and/or y as
follows:

= R e f f (Jfe cos 0)2ei*-'-a"+e>cL4a(a>,0)

^~ =Re f f(/fe sin 0)2e(k-r-M+e)dA(w,O)
dy2 J J

dxdy
=Re f Uk2 sin 0cos Q e^-^dA^O) (7.26)

These equations are denoted 4, 5 and 6, respectively. Then, auto- and
cross-spectral analysis is carried out on six components (1 to 6) following
the same procedure as the example shown in Eqs. (7.15) through (7.17),
and the results are presented in the form

(7.27)

where Sa((o,6) is the directional acceleration spectrum, and h(k,0) is tabu-
lated in Table 7.1. For example, the cross-spectrum between acceleration
a (1) and curvature d2rj/dy2 (5) is denoted S15a((o) and its real and imagi-
nary parts are

77

C15o(o>)= fksm2eSa(w,0)d6

Q i 5 » = 0 (7.28)

Thus, the following equations can be derived using Table 7.1.

C44(o>)+2C45(co)+C55(6>)=*25a(a)) (7.29)

where C44(co) and C55((o) are the auto-spectra of the curvatures ofd2r]/dx2

and d2r)/dy2, respectively. We can now obtain the coefficients A3i B3, etc.



Table 7.1. Function h(k, 6) for evaluating auto and cross-spectra applicable to analysis of data obtained by cloverleaf buoy
measurements.
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of the Fourier series with the aid of Eqs. (7.28) and (7.29) along with
Table 7.1. For instance, from Eq. (7.13)

Sa(co,0)cos30d0

Sa(<o,0) (cos30-3 sin20cos 0)d0

5a((o)} (7.30)

Similarly, we obtain 2?3, A4 and B4 as follows:

a;)} (7.31)

Thus, we have the coefficients of the Fourier series given in Eq. (7.13)
up to n—4. As in the case of the pitch-roll buoy, the partial sum of the
Fourier series representing the energy spreading function obtained by
employing the cloverleaf buoy should be weighted. The weighting factors
for iV=4 are given by Longuet-Higgins et al. as ^ = 8/9, w2=28/45,
^3=56/165 and w4= 14/99.

7.2.3 Pressure and current meters
Another technique to evaluate the directional spreading function D(w,0)
is to measure the pressure and two rectangular components of the wave
particle velocities U and V. The instrument used for this is often called
the PUV-meter, and is suitable for measurement of wave directionality in
areas of finite water depth. The basic principle for evaluating the direc-
tionality by the PUV-meter is similar to that for the pitch-roll buoy. That
is, we may write the pressure and the two rectangular velocity compo-
nents as

77 °°

p=ReJJj
- 7 7 0

77 °°

- 7 7 0

77 °°

v=Rt f (KC(CO) smOe^'^^dA^O) (7.32)
- 7 7 0

where

- 7 7 0

77 °°

Kc((o) cos <

- 7 7 0
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coshk(z+h)
^(a))=pg coshkh

c o s h ^
sinh kh

and z=depth where measurement is made
(negative downward)

h=water depth
From Eq. (7.32) the auto- and cross-spectral density function of

these three components can be written as follows:

Spp(a>) = j
— IT

IT

Sm(cS) =K^((o) (S(o),0) cos20d0
— IT

77

Sw(o>) =lQ((o) [ S(co,0) sin20d0
— TT

TT

Cpu(w) =Kp((o)Kc(co)( S(<o,0) cos© dO
— TT

77

KXto) r S(<o,0) sisin0d0

Cuv(w) =-K?(o>) S(a),e) sin0cos0d0 (7.34)
—77

By using these spectral density functions, the coefficients of the
Fourier series given in Eq. (7.13) can be evaluated as

1 r
S(o)) J

—77

77

S(oi) J
—77

(o,9) cos 6d9

co,0)sin0d0

^pu

Kp(«)
Kc(a>)

]

Kp(a>)

Kc(<o)

(w) K\(<a)

Kc(<o) Spp(co)

Cpu(w)

1 Cpv(^)
Kc(o)) S(a))

Cpv(co)
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o,0) cos20d6 =
S(cS)

_ * | ( « 0 .

S2=—— S(<o,0) sin20d0 =•

K2
c{io)

l :

—77

)

(7.2
JKl(co)Cuv(a>)

K2
c(<o) Spp(<o)

Thus, the energy spreading function can be obtained from Eq. (7.20)
in the form of a Fourier series with terms up to n=2.

7.3 ANALYSIS OF DIRECTIONAL ENERGY
SPREADING FUNCTION

The directional energy spreading function presented in the form of a
Fourier series is shown in Eq. (7.13). Longuet-Higgins etal. (1961) carry
out an analysis of the energy spreading function and propose that the
spreading function is proportional to an even-numbered power of one-
half of the cosine of the directional angle. That is,

D(<D,0) = \cos^ (0-l))\2sG(s) (7.36)

where

0=average direction of energy spreading^tan"1^/^)

sin0d0

(7.37)

77

Q12O) r
S((o) cos0d0

— IT

The function G(s) is a normalizing factor determined from the condi-
tion that the integration of D(a>, 6) from - 77 to TT with respect to 6 is unity.
In integrating Eq. (7.36) with respect to 0, it is convenient to apply the
following formula:

(7.38)

Integration of the first term (the summation term) of the above equa-
tion from - TT to 77 with respect to x becomes zero, and integration of the
second term is a constant which yields
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77
(7.39)

Thus, Longuet-Higgins £r ah show that the directional spreading func-
tion can be presented as follows:

D(a>,6)=- 2 * " '
77

|cos \ {d- (7-40)

where the parameter s is a positive real number which controls the degree
of concentration of the spreading energy around the mean value 6. In
reality, however, s depends on frequency and wind speed as well as fetch
length, as will be shown later. Figure 7.5 shows D(a),0) multiplied by 77for
various s-values with ^=0.

It is of interest to examine how well the spreading function given in Eq.
(7.40) agrees with the formula in a Fourier series as shown in Eq. (7.13).
For this, Mitsuyasu et al. (1975) carry out the following analysis.

First, the spreading function given in Eq. (7.13) is rewritten by letting
An=Cn cos 6 and Bn=Cn sin e. That is,

1 fl
D(a>,0)=- \-

77 I 2 n=\
where

(7.41)

e =tan"1 (BJAn)

4.0

3.0

-180 0° 180°

DIRECTIONAL ANGLE 0

Fig. 7.5. TTD((X)3 6) for various s-values with 0= 0.
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Here, t2in~1(Bn/An) is approximated by 0, and furthermore for conve-
nience 0=0. Then, Eq. (7.41) maybe simply written as

+ j cncos«4 (7.42)

where Cn are known quantities, since An and Bn are evaluated from analy-
sis of the data.

Next, Eq. (7.40) is rewritten by letting 0=0. By applying Eq. (7.38),
D(w,0) becomes

1 Tl 5 5(5-1)
- - + cos 0+-— w cos 20
7r|2 5+1 ( + l ) ( + 2)

5(5~l)(5-2)
+ — —cos 30+.. .

( + l ) ( 5 + 2)(5 + 3)

[ ^ 2 J (7.43)
where

and (5-1), (5-2), etc. are all absolute values.
Thus, the theoretical spreading function given in Eq. (7.40) is reduced

to the same form as a Fourier series representation of the energy spread-
ing function developed for data analysis, although the value of 5 in Eq.
(7.43) is unknown. In order to compare Eq. (7.41) with Eq. (7.43), the
relationship between Cx and C2, Cx and C3, is obtained. That is, by letting
n= 1 and w=2, 5 is eliminated from the two equations and thus from the
theoretical relationship between Cx and C2 can be derived as

(7.44)1 2-Cl

Similarly, the relationship between C1 and C3 becomes

„ C 1 (2C 1 - l ) (3C 1 -2)
( 7 - 4 5 )

Since Cv C2 and C3 can be evaluated from data, the result computed
from data and theory can be compared. Figure 7.6 shows an example of
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the relationship between theory and data obtained by Mitsuyasu et al.
(1975) by using the cloverleaf buoy. As seen in the figure, agreement
between the theoretical and measured relationship between Cx and C2 is
excellent, but the measured, C3 value for a specified Cx is greater than the
theoretical value. It may be concluded, therefore, that the theoretically
derived energy spreading function given in Eq. (7.41) is a fairly good first
approximation for the wave energy distribution function.

Mitsuyasu et al. (1975) carry out further analysis for evaluating the
value of s in Eq. (7.40). Suppose the energy spreading function given in
Eq. (7.41) is a perfect fit to the measured data, then all s-values evaluated
from Cn in Eq. (7.43) must be the same. However, this is not the case in
practice. Let sn be the s-value evaluated from Cn. Mitsuyasu et al. find that
only sx and s2 are nearly equal, but s3 and s4 are different from sv perhaps
due to an inaccuracy involved in the measurement of wave curvatures.
Therefore, the averaged value of sx and s2, denoted s, is used for finding a
functional relationship with frequency.

Figure 7.7 shows the functional relationship between the parameter s
and the dimensionless frequency / obtained from five sets of measured
data. Here, the dimensionless frequency is defined as f=27rfU/g=U/c,
where U is the wind speed and c is the wave celerity. The arrows in the
figure indicate the dimensionless modal frequency fm of each point spec-
trum, where the parameter s shows the maximum value. From the results
shown in Figure 7.7, Mitsuyasu et al. give the following formula for s:

s=
11.5
11.5/ - 2 . 5 for f>fm

(7.46)
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Fig. 7.6. Comparison between theoretical and measured ratios of angular
harmonic amplitudes CXIC2 and Cl/C3 (Mitsuyasu etal. 1975).



100

50

30

20

10 ~

5 -

3

2

: s(=H31)

-fm-N0.550(o)

/fm-N0.2l3(o)

0.3 0.5 0.7 1.0 2.0 3.0 5.0

Fig. 7.7. Functional relationship between parameter s and dimensionless fre-
quency /(Mitsuyasuer al. 1975).

10-

1:

0.01.
0.01 1 10
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1:

0.1
0.1 1 10

Fig. 7.9. srvalue as a function of U/c (Hasselmann et al. 1980).

Hasselmann et al. (1980) carry out an extensive analysis of directional
wave data obtained in the North Sea (JONSWAP site); in particular, the
5-value associated with Cx in Eq. (7.43), denoted as sv They find that s1 is
not only a function of the frequency but also of U/cm. Here, cm is the wave
celerity for the modal frequency/m. Figure 7.8 shows the 5rvalue plotted
against//m, and Figure 7.9 shows the 5rvalue plotted against Ulc> where c
is the celerity in deep water. Included in these figures are regression lines
with 95 percent limits for the mean values and the standard deviation
around the regression. From the results of the analysis, Hasselmann et al.
propose the ^-value to be

(9.77±0A3)(f/f )-(2-33±0.06)-(1.45±0.45)(£7/cm-1.17)

forC7^mand/>/m

(6.97±0.83)(//m)406±0-22

for£7^cmand/</m (7.47)
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7.4 ESTIMATION OF DIRECTIONAL ENERGY
SPREADING FROM DATA

As discussed in the previous sections, the directional characteristics of
ocean waves can be evaluated through the spreading function developed
by applying the Fourier series. Although this approach has a theoretical
background, the accuracy of the estimated spreading function is not as
good as might be expected because of the limited amount of information
acquired in measurements. In order to obtain the maximum advantage
from data with limited information, several methods developed in statisti-
cal inference theory have been applied for estimating the directional
energy spreading function.

It is noted that the directional energy spreading function, D((o,0) is not
a probability density function of wave propagation; instead, it represents
the state of spreading of the wave energy. However, the directional
spreading function given in the form ofD(O) or the spreading function for
a specified frequency, D(0|co), are non-negative integrable functions, and
the integrated area with respect to 0 is unity; hence, they satisfy the condi-
tion required to be probability density functions. This enables us to make
use of the techniques developed in statistical inference theory for estimat-
ing the directional spreading function.

Although many methods for estimating the wave energy spreading
function have been developed based on different approaches, the com-
monly acknowledged appropriate methods for practical use are the
maximum likelihood method, the maximum entropy method and the
Bayesian approach method. These three methods will be discussed in
detail in the following sections.

7.4.1 Maximum likelihood method
Application of the maximum likelihood method (ML-method) devel-
oped in statistical inference theory for estimating stochastic wave proper-
ties from measured data is presented in Section 3.9.2. The same
approach may be applied for estimating the parameters of the Fourier
series representing the directional energy spreading function. Data
obtained through measurements using the pitch-roll buoy yield six
spectra from which the parameters A v Bv A2 and B2 can be evaluated as
shown in Eq. (7.19). It is inevitable that some errors may be involved in
estimating these parameters because of possible errors in acquiring data
during measurements as well as in evaluating spectra from a finite length
of data.

Long and Hasselmann (1979) and Long (1980) consider the problem
of estimating the directional spreading function D(o>,0) from a set of esti-
mates which are obtained by integrating the directional spectral density
function S(co,0) when the density function is subject to statistical variabil-
ity. In order to solve this problem, they develop a method to accept or
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reject a hypothesized true (expected) spreading function through the sta-
tistical test applicable for data obtained by a pitch-roll buoy. The basic
principle is as follows.

By suppressing the dependency of frequency, the sample spectral
density functions given in Eq. (7.18), denoted by C u , C22, C33, C12, Ql3
and Q23, a r e assumed to follow a joint normal probability distribution
with zero mean and a covariance matrix X evaluated from the sample.
Then, the estimates of the Fourier coefficient D(6) are defined as

A=(Al,Bl,A2,B2)T (7.48)

where elements of the vector A are given in Eq. (7.19). By letting

£={(C22+C33)/Cn}1/2 (7.49)

we may write the elements of the estimate as

A=Q12/{cn(C22+c33)}1/2

4=Q13/{cn(C22+c33)}1/2

A2=(C22-C33)/(C22+C33)
£2=2C23/(C22+C33) (7.50)

Here, the estimate A is also normally distributed with zero mean and a
covariance matrix, the latter can be evaluated from the data.

If we have a hypothesized directional spectrum which is considered to
be true, we can evaluate the error eA involved in estimating A by sub-
tracting the vector associated with the hypothesized directional spectrum.
By assuming the error vector eA to be normally distributed, the random
variable 6A^-1eA obeys the x2 distribution with four degrees of freedom
for the present case, and thereby we may accept or reject the hypothesized
directional spectrum with a specified level of confidence following the
routine procedure in the goodness-of-fit technique. Hasselmann et al.
(1980) apply the method to a large body of measured data for analysis of
directional wave spectra, and claim that unimodal and bimodal angular
distributions can be fairly well estimated from information obtained by
the pitch-roll buoy.

Another application of the statistical inference concept for reliable
estimation of directional wave spectra from data obtained by the
pitch-roll buoy is to develop the statistical estimator for the six spectra
given in Eq. (7.18). In estimating the value of each spectra C u , C22, Q\2>
etc. for a given frequency, the average value of sample data is most com-
monly considered. It is of interest, however, to determine if C u , C22, etc.
when estimated based on the ML-method yield a better estimation of the
spreading function.

Glad and Krogstad (1992) carry out an analytical study on this subject
and find that the commonly used average sample spectra are indeed the
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ML-estimators of the spectra if the mean wave number is considered as
an independent variable and is evaluated by Eq. (7.49).

Glad and Krogstad furthermore modify the ML-estimators for which
the wave number is evaluated by the linear wave theory dispersion rela-
tion. The results of application of those modified ML-estimators for esti-
mating the directional spreading function, however, show that the
improvement over the average sample spectra is marginal.

Skarsoulis and Athanassoulis (1993) also carry out a study on the ML-
estimators applicable to the analysis of pitch-roll buoy data similar to that
done by Glad and Krogstad. The results of their study also show that the
average sample spectra are ML-estimators if the mean wave number is
evaluated by Eq. (7.49). In their analysis, the ML-estimators are evalu-
ated numerically from the joint probability density function of the
average sample spectra which is the Wishart probability distribution
function. The likelihood function is then obtained based on the Wishart
distribution and from this the ML-estimators are obtained by the routine
procedure discussed in Section 3.9.2.

Besides the ML-method commonly considered in statistical inference
theory, several techniques have been developed for estimating the direc-
tional energy spreading function from measured data. These comprise
the data adaptive technique; however, they are still known as the ML-
method.

This category of the ML-method was first introduced by Capon et al.
(1967) and Capon (1969) for estimating the directional properties of a
propagating seismic wave. They consider a signal consisting of a single
plane wave in the presence of noise and assume that the noise compo-
nents have a multi-dimensional normal distribution and apply the ML-
method through the likelihood function of the multi-dimensional
normal distribution. This method yields a high-resolution estimation
using a wave-number window which is not fixed, but is variable at each
wave number considered. Furthermore, this method has the feature that
it does not make an a priori assumption about the shape of the directional
spectrum.

Davis and Regier (1977) apply Capon's concept for estimating direc-
tional wave spectra from measured data obtained by multi-element arrays.
The results of application of the ML-method developed indeed show a very
high resolution for estimating the directional spectrum. Unfortunately,
their method is applicable only for wave gage array measurements.

Isobe et al. (1984) extend Davis and Regier's approach for estimating
directional wave spectra by developing a method applicable for data
obtained by a combination of different instruments; namely, data that is a
combination of pressure, water particle velocity, wave profile, accelera-
tion, slope, etc. This method is referred to by the authors as the extended
maximum likelihood method (the EML-method). The method is applicable
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not only for analysis of data from an array but also for data obtained at
one point. The principle and practical application of the EML-method
are given below.

Throughout the following derivation of directional wave spectra,,
wave-number frequency spectra are employed. The wave profile at a loca-
tion x can be presented as

[ f (7.51)
<o k

where

fS(k,<o)dkdft> if k=k ' and <o=(of

E[cL4(k,fi>)cL4*(k>')]= n u .
[0 otherwise

On the other hand, the cross-spectral density function between wave
profiles measured at two locations separated by a distance r can be
written as

S(r,cS) = S(k,w)e-ik>rdk (7.52)

The wave number vector k can be expressed in terms of wave energy
propagation direction, 0, and frequency a>, through the dispersion equa-
tion; hence, S(k,a>) represents a directional wave spectrum. Equation
(7.52) implies that if cross-spectra are available for an infinite number of
r, the wave directional spectra *S(k,ct>) can be evaluated by the inverse
Fourier transform of S(r,co). In order to obtain the relationship similar to
that given in Eq. (7.52) but applicable for various wave kinematic quanti-
ties such as pressure, velocity, acceleration, etc., Isobe et al. (1984) define
the transfer function, denoted by //(k,co), and express it in the form

iJ(k,<o) = G(k,c»)(cos 0)a(sin 0)? (7.53)

Here, G(k,w) represents a function showing a linear relationship between
the kinematic quantity and surface wave profile. For example, the velocity
in the x-direction is given by letting G(k,a)) = (o cosh kz/sirihkh, a=\ and
/3=0, where h is the water depth.

By using the transfer function, the wave kinematic quantity £(x,r) may
be presented from Eq. (7.51) as

f(x,r)= f (H(k,(o)e^x-^dA(k,(o) (7.54)
<o k
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Table 7.2. Transfer function H(k, OJ) for several kinematic quantities (Isobe et
al 1984).

H(k3

Surface
Elevation 1 1
Vertical velocity -io) -io)
Vertical acceleration -co2 -co2

Particle velocity
x-direction

^direction

#-direction

Particle acceleration
x-direction

^direction

^-direction

co cos 0
sinh kh

. n cosh kz
cosinG . , , ,

sinh kh
. sinh kz

—lco
sinh kh

—ico 2cos0 cosh kz
sinh kh
cosh kz

-iorsin8 . , -smhkh
o sinh kz

—o)
sinh kh

cosh &#
sinh kh
cosh &#
sinh &/z

. sinh kz

2
cosh &#
sinh kh

2 cosh ^
sinh kh

sinh ̂ /?

0 0
0 0
0 0

1 0

0 1

0 0

1 0

0 1

0 0

A list of transfer functions for several interesting kinematic quantities are
taken from Isobe's publication and shown in Table 7.2.

By applying the expression in Eq. (7.54), a cross-spectra between two
quantities gm and fw, denoted by *Smn(o>), at different locations xm and xn,
respectively, can be obtained in a similar fashion as shown in Eq. (7.52).
That is,

Smn(w)= (7.55)

Next, an estimated directional wave spectrum will be derived based on
Eq. (7.55) by applying the maximum likelihood technique. For this, the
desired directional wave-number spectrum is presented as a linear
combination of cross-spectra Smn(co). We may write

(7.56)

Here, amn(Jk) and anm(k) are complex conjugates so that 5(k,w) is a real-
valued function. Further, it is assumed that ocmn(k) may be presented as

(7.57)
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and thereby Eq. (7.56) can be written as

>)y ; (k ) (7.58)

By applying Eq. (7.55) to the above equation, the estimated energy
spreading wave-number spectrum becomes

S(k,co)= fzu(k,k')S(k»dk' (7.59)

where

Furthermore, for convenience, a>(k,k') may be written as

w(k,V)=^^ym(K)Tmn(k')y:(k) (7.60)
m n

where

Tmn(k')=Hm(k',to) e*'-W/:(k>) e-ik'-n

In Eq. (7.59), *S(k',a>) is the unknown true energy spreading spectrum,
and w(k,k') is called the wave-number window function. The smaller the
window function, the higher the resolution of S(k,a)) that can be
obtained; the best estimation may be achieved when &;(k,k') is approxi-
mated by the delta-function centered at k=k'. Hence, let &;(k,k') have the
following constraint under k=k':

Further, let us minimize *S(k,eo) given in Eq. (7.59) under the condi-
tion given in Eq. (7.61). This is equivalent to maximizing the following
quantity:

(7.62)

This, in turn, may be likened to the problem of finding the maximum
eigenvalue A which satisfies the following relationship for the given matri-
ces:TmB(k)andSm»:

^XCoOy; (7.63)
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and hence, we have

^Z^S^(w)Tmn(k)y:=\y; (7.64)
m n

where Sj^cS) is the inverse matrix of S€m(o)).
Thus, from Eq. (7.62), the estimated spectra is inversely proportional

to the maximum eigenvalue Amax. That is,

) * l / A m a x (7.65)

where Amax can be obtained asAmax

^ ) e-^mSMH^w) e°™n (7.66)

By applying this relationship for all frequencies, the estimated energy
distribution as a function of wave number and frequency a) is

n(k,o>) e*<*n-*j] (7.67)

where C is a constant determined such that the integration of S(k,w) with
respect to k yields a point spectrum. That is

S(cS)= fs(k,6>)dk (7.68)

By applying the transfer function given in Eq. (7.53) and by using the
dispersion relationship for a specified frequency, the estimated wave-
number frequency spectrum iS(k,a/) can be converted to a spectrum pre-
sented as a function of angle 0 and frequency a) as follows:

X (cos Q)arn+«n(sin 0)^+^ e*'^-^) (7.69)

where the constant C is determined such that
277

S(co)= ( S(0,oj)dO (7.70)
o

The function G(k,a>) in Eq. (7.69) is based on linear wave theory as
given in Table 7.2. Isobe et al. (1984) however, recommend that it be
evaluated from measured data in practice. For example, for data obtained
by the pitch-roll buoy, by denoting 17= 1, dr]/dx=2 and dr}/dy=3, G(k>(o)
should be evaluated from the auto-spectra by

<o)]m (7.71)
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and for data obtained by the cloverleaf buoy, by denoting d2r]/dx2=4:)
d2rj/dy2=5 and d2r]/dx dy=6, we have

(7.72)

Furthermore, by denning a function </>mn(w) as

cl>mn(u)=SmSa>)/{GJk,a>)G;(k,<o)} (7.73)

the inverse of Smn((o) in Eq. (7.69) can be written as

(7.74)

Since <f>mn(o)) is a Hermitian matrix, </>~*(w) is also Hermitian and can
be expressed in the following form,

ct>m^(o)=amn(co)-ibmn((o) (7.75)

where amn and bmn are real-valued matrices, and

««,(«)=<«,«»(«) a n d bmn(.w) = -bmn(.w) (7.76)

From Eqs. (7.74) and (7.76), Eq. (7.69) can be written as

os ey^a«(siney™^n(amn(a>) cos{k-(xn-xj}

+ bmn(co) sin{k-(xn-xj})j (7.77)

Thus, the procedure for practical application of the EML-method is
summarized by Isobe et ah (1984) as follows:

(1) For a given set of data, compute cross-spectra Smn(a)) for all
available combinations of the measured elements.

(2) Determine Gw(&,eo) for a given a>; examples of which are
shown in Eqs. (7.71) and (7.72).

(3) Evaluate amn(a)) and bmn(aS) by applying Eqs. (7.73) through
(7.75).

(4) Compute $(6>a)) given in Eq. (7.77). The constant G can be
evaluated through the relationship given in Eq. (7.70).

Figures 7.10 and 7.11 show examples of comparisons between the pre-
liminary known (true) directional spreading and those computed by
applying the EML-method to data obtained through the numerical
simulations technique. Figure 7.10 shows examples when the directional
spreading is sharply concentrated. Case (a) is an example of the computa-
tion carried out for a pitch-roll buoy, while case (b) is that for a cloverleaf
buoy. The ordinate s is a dimensionless spectrum S/Smax, where Smax is the
magnitude of the maximum true directional spectrum. Note that for
comparison the frequency co may be omitted without loss in generality.
Included also in these comparisons are the energy spreading functions
computed by the Fourier series expansion method presented in Section
7.2.2 (a) and (b), respectively. It can be seen in these figures that the
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results computed by applying the EML-method show excellent agree-
ment with the true directional spreading.

Figure 7.11 shows comparisons similar to those in Figure 7.10 but the
directional spreading is of the moderately spreading category. In this
example, the EML-method yields excellent results, but the Fourier series
expansion method also shows good agreement between the computed
and target spreadings, particularly for the cloverleaf buoy data.

In regard to the reliability of the estimated directional spectrum S(a)>0)
by applying the ML-method, several interesting studies have been carried
out. This will be discussed next. If the cross-spectral matrix is inversely
reconstructed from S(G),0) and this matrix in turn is used as an input to
the ML-method for estimating the directional spectrum of the second
generation, the estimated spectrum is different from S(a),6) in most cases.
In order to improve this inconsistent trend, a method called the iterative
maximum likelihood method (IML-method) is developed by Pawka (1983)
for estimating directional wave spectra through a linear array, and by
Oltman-Shay and Guza (1984) for a pitch-roll buoy. Krogstad et al
(1988) use the following iterative scheme for estimating the directional
spreading function:

0.5
( n , n x , n y )

Fourier ser.
expansion

-°180 -90 0 90
DIRECTION IN DEGREES

(a)

0.5

0

-

-G , n x . n y

xx'ixy , n y y j

1 4\True

J.
«•  EMLM

Fourier ser.
expansion

180 -180 -90 0 90
DIRECTION IN DEGREES

(b)

180

Fig. 7.10. Comparison between directional wave spectra obtained by applying
EML method and simulation data (direction is sharply concentrated
case) (Lsobeetal. 1984).
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0.5
Fourier ser.
-expansion
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Fig. 7.11. Comparison between directional wave spectra obtained by applying
EML method and simulation data (direction is moderately spread-
ing case) (Isobe et al. 1984).
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D'n-0 C7'78)
where D = directional spreading function estimated by the

ML-method
Dn_l=directional spreading function obtained by using

cross-spectra computed based on Dn_v For the first
iteration (n= 1), D'Q is that computed based on JD

Dn_x=directional spreading function for the (w-l)th iteration.
For the first iteration (n= 1)3 D0=D

Dn = directional spreading function obtained through the
nxh iteration

y = relaxation parameter. 7= 1.0 to 1.2 is proposed by
Krogstad et al.

The IML-method certainly improves the estimated directional spec-
trum as shown in the example in Figure 7.12(a). Krogstad et al. (1988)
show that the rapidity with which the iteration converges to a stable spec-
trum depends strongly on the relaxation parameter y and the number of
required iterations as shown in Figure 7.12(b). As seen, divergence
occurs abruptly for y greater than 1.5.

Another interesting approach is the development of a modified version
of the ML-method in which the data are partitioned into signal and noise.
Marsden and Juszko (1987) present a methodology called the eigenvector
method (EV-method) for estimating the directional spectra from data
obtained by a pitch-roll buoy. This concept considers the partitioning
of the signal and noise components through the diagonalization of the
cross-spectral matrix. There exist three possible eigenvectors for the
pitch-roll buoy data. The eigenvectors corresponding to the two smallest

1.0

0.8

: o . 6

0.4

0.2

90 180 270
ANGLE
(a)

360 0.5 1.0 1.5
y - VALUE

(b)

2.0

Fig. 7.12. (a) Comparison between directional wave spectra obtained by
applying ML and EML methods^ and (b) relaxation parameter y
and number of necessary iterations (Krogstad et al. 1988).
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eigenvalues are assumed to span the noise of the measurement, while the
eigenvector corresponding to the largest eigenvalue is assumed to span
the signal. The directional spectrum is then estimated by minimizing the
noise component. This method is identical to the ML-method if the three
eigenvectors are considered to span the signal.

An iteration scheme is also applied to the EV-method. An example
application of the method to field data analysis is shown in Figure 7.13.
Figure 7.13(a) shows a point spectrum constructed from data obtained
off Newfoundland which indicates double peaks; the large wave energy at
the frequency 0.1 Hz may be attributed to that of swell. Figure 7.13(b)
shows the directional wave spectra for frequency 0.1 Hz obtained by
applying the ML, IML, EV and the iterative EV-methods. The figure
clearly shows propagation of wave energy in two directions; one toward
60 degrees, the other toward 170 degrees. Since analysis at the frequency

0.1 0.2 0.3 0.4
FREQUENCY IN HZ

( a )

7 79 151 223 295
DIRECTION IN DEGREES

(b)

Fig. 7.13. (a) Wave point spectrum, and (b) comparison of directional wave
spectra estimated by ML, IML, EV and IEV methods for frequency
0.1 Hz (Marsden and Juszko 1987).
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of 0.2 Hz shows energy is propagated toward 60 degrees only, this
appears to be the local wind-generated sea; hence, the energy toward 170
degrees is considered to be swell. It can be seen in the figure that the iter-
ative EV-method seems to be superior to the other methods in this
example.

7.4.2 Maximum entropy method
The maximum entropy method (the ME-method) was originally devel-
oped as a measure of uncertainty in statistical information theory, and the
method has been applied for determining the probability density function
of a random variable from data in which information about the distri-
bution is inadequate. The basic concept of this method is that the prob-
ability distribution which maximizes the entropy (defined below) has
the least bias on the density function under some constraints; the
moment constraints, for example (Jaynes 1957). Here, the entropy for a
continuous-type random variable Xwith the probability density function
f(x) is defined as follows:

H= - (f(x) \nf(x) dx=E[-\nf(x)] (7.79)

where the integration is made over the sample space of X. As an example
of moment constraints, it is commonly considered that the theoretical
moments of the distribution are equal to those evaluated from sample
data.

In order to maximize the entropy /f, it is common practice to apply the
Lagrangian multipliers method. For this, the entropy is written as

H= ~ [/(*) jln/Oc)+jjA,.*4 dx (7.80)
and H is maximized with respect to f(x) by letting dH/df=0. The
maximization yields an estimated probability density function as

/ ( x ) = e x p ( - 1 - ^ x 4 (7.81)

where A; is determined so that the theoretical moments evaluated based
on the estimated probability density function are equal to the sample
moments; i.e.

fx*exp - l - £=1,2,... (7.82)

where mo= 1, mk (k^O) are sample moments from data.
Kobune and Hashimoto (1986) apply the ME-method for estimating

wave directional energy spreading for a pitch-roll buoy. For the entropy
given in Eq. (7.79), they substitute the directional spreading function
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D(d\a)) for/Ox;), and derive the following estimated spreading function
through maximizing the entropy:

j (7.83)
The Lagrangian multipliers A; are determined from a Fourier series

expansion of the energy spreading function. We write the coefficients of
the Fourier series given in Eq. (7.13) in the following form:

j8,.=J JXo\(o)aj(0)d9 (7.84)
0

where D(0\(o)=spreading function for a given co
a-=cos 0, sin 0, cos 20, sin 20 for i— 1,2, 3 and 4, respectively
pl=AvBl,A2 andB2.

Then, from Eqs. (7.83) and (7.84), we have the following nonliear equa-
tions with respect to A;:

Y 4Y r 4 l
{j8,-a,(fl)}exp - ] g Aya/0) d0=O

J I ;=i J
i=l , 2,3 and 4 (7.85)

The unknown Lagrangian multiplier Ay in Eq. (7.83) can be obtained
as a solution of Eq. (7.85). For this, Kobune and Hashimoto (1986)
apply the Newton-Raphson method developed for multiple variables.
Upon evaluating \fi the multiplier Ao in Eq. (7.83) can be obtained from

fexpj-jA^Wdflj (7.86)

Note that if we consider only i= 1 and 2, the estimated spreading func-
tion becomes the formula proposed by Borgman (1969). That is5 for i= 1
and 2, we may write Eq. (7.83) as

i3(^|w)=exp{-A0-A1cos^-A2sin^)} (7.87)

By letting — \x=a cos 9 and X2
=a s m ^ ô c a n ^ e calculated from Eq.

(7.86) as
277

A0=ln f exp {acos(0-0o)}d0=ln{27r/o(a)} (7.88)
o

where /0(a) is a modified Bessel function.
Thus, Eq. (7.87) becomes
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D(0\o)) = 1
27rlo(a)

exp{acos(0-0o)} (7.89)

This formula is called the circular normal probability distribution and
is proposed by Borgman (1969) as a directional spreading function.

An example of a comparision of the directional energy spreading func-
tions in dimensionless form computed by using numerical simulation
models is shown in Figure 7.14. Computations are carried out by apply-
ing the maximum entropy (ME) method, the extended maximum likeli-
hood (EML) method and the Fourier series expansion (FS) method.

Hashimoto et al (1994) further extend the ME-method taking into
consideration errors involved in cross-spectral density functions.

The ME-method is applied by Nwogu (1989) for estimating the direc-
tional spectra from the results obtained by an array of wave probes. Using
his approach the cross-spectral density function of waves computed from
data obtained at two locations is given by

7T

Smn(co)=j exp{ik(xn-xJ}S(<o,0)de (7.90)

where S{(o, 0)=S(co)D(a)} ff).
Equation (7.90) maybe expressed as

y=i,2,...,

where M=N(N—  1); AT is the number of wave probes, and

(7.91)

ReSmn(co)/{Sm(co)Sn(<o)}^
ImSmn(a>)/{Sm(a))Sn(a))}^

- 6)}

for/=l,2,...,(Af/2)
for/=(Af/2) + l,...Af
for/=Af+l,...
for/=l,2,...,(Af/2)

for j=M+1

0
-180 -90 0 90

DIRECTION IN DEGREES

Fig. 7.14. Example of directional wave spectrum estimated by applying ME
method (Kobune and Hashimoto 1986).
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p-xarr1 {(yn-yj/(xn-xj}
The following is not given in Nwogu's paper, but is included here to

supplement Eq. (7.91).
(i) As stated in connection with Eq. (7.10), the number of cross-

spectra for AT gages is N(N— 1) +1 which is given as j=M+1
in Eq. (7.91). For example, for iV=4, we have 13 known
quantities in which the real parts arej= 1,2,..., 7, and the
imaginary parts arey=8,9,..., 13.

(ii) qj(O) can be expressed in the form of a Bessel function of the
first kind; i.e.

6)} =%(kr) + 2]T ( - l)%n(kr)cos 2«(j8y- 0)
n=\

n=0 (7.92)

Following the procedure of the maximum entropy method, the esti-
mated directional spreading function becomes

{ M+l

y=i J
The Lagrangian multipliers Ay are determined from the constraint,

which is given for the present problem as follows:

(̂fi>) = J expj-1 + 2 \jq0)\qk(O)de (7.94)
— 77

where k= 1,2,..., (M+l).
Figure 7.15 shows a comparison between measured and estimated

directional wave spreading functions. The directional waves are gener-
ated in the experimental tank in an attempt to simulate a JONSWAP wave
spectrum with the following angular spreading function for 5=5:

° ( 3 > = - JS1^cos2S(e) l^< 7 7 / 2 (7-95)
77 1 (5 + 2)

The wave spreading function evaluated from the measured data
obtained by five wave probes arranged in a layout similar to that of the
CERC probe array is then compared with the spreading functions esti-
mated by applying the ME-method and the ML-method. The figure
shows excellent agreement between the estimated and target directional
spreadings obtained for the peak frequency of the spectrum.

There is another maximum entropy method developed by Burg
(1967) in spectral analysis, and this method may also be applied for
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estimating directional wave spectra. Although this method is known as an
ME-method, the definition of maximum entropy and the basic principle
are different from those of the ME-method developed in statistical infer-
ence theory. The entropy in this case is defined based on a steady-state
Gaussian random process in the following form:

where

00 °° r °°
H=—  (\nS(a))do)=^- fin V 0(r) e~iMTAt Ida) (7.96)

0 0

S(o)) = spectral density function
<p(r) = auto-correlation function

<o* = constant
At=sampling rate.

The desired spectrum can be obtained by maximizing the entropy H
with respect to the unknown auto-correlation function <KT), with a con-
straint on the covariance matrix. Note that the maximizing procedure is
carried out through the auto-correlation function.

Lygre and Krogstad (1986) apply this approach for estimating the
directional spreading function of data obtained by a pitch-roll buoy. In
their approach, the spreading function is written in the form of a Fourier
series as

(7.97)

where Co= 1 and C_n=C*n (conjugate of Cw), and the maximum entropy is
defined in this case as

7T

H= f co)}d6 (7.98)
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Fig. 7.15. Comparison between directional wave spectra estimated by applying
ME and ML methods (Nwogu 1989).
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Although D(0\G)) is not a spectrum, the same concept as that devel-
oped by Burg is applied here with the following constraints:

77

D(6\cS)e-md0=ck (7.99)

For the analysis of pitch-roll buoy data, the Fourier series expansion
given in Eq. (7.97) is limited to Cx and C2. In this case, the estimated
directional spreading function is given by

> = j - . , 1~,<l)lCJ~t2CLio (7.100)
The parameters <j>x and <f>2 are evaluated from

_Cl—C lC2
1 ~ m I

<t>2=C2-C1cl)l (7.101)

where Cx and C2 are estimates of the Fourier coefficients, and Cx and C2
are the conjugates of Cx and C2, respectively. From the cross- and auto-
spectra shown in Eq. (7.18), the estimates Cx and C2 are given by Long
(1980) as follows:

)

d 2 (
°22~hO33

Figure 7.16 shows an example of the estimated directional spreading
function computed by Eq. (7.100) using wave data obtained in the
Norwegian Sea (Lygre and Krogstad 1986). Also included in the figure is
the estimate obtained by applying the ML-method. The vertical line in
the figure indicates the wind direction at the time of measurements.

7.4.3 Application of a Bayesian method
The Bayesian inference method in statistics, in particular the following
modified Bayes' theorem, is introduced in Section 6.3 for estimating the
long-term extreme sea state:

f(0\x)=Ch(6)L(O\x) (7.103)

where

f(d\x) = posterior probability density function
h(0) = prior probability density function

L(0\x) = likelihood function of 6 for a given x
C = normalization constant.
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The above equation states that the posterior distribution is propor-
tional to the product of the likelihood function and the prior probability
distribution h(0). The modified Bayesian method given in Eq. (7.103) is
applied by Hashimoto and Kobune (1988) for estimating the energy
spreading function, although in their approach the prior distribution h(0)
is not given as a function of 0perse, but is derived through analysis, as pre-
sented below.

It is assumed that the directional spreading function D(d\o)) consists of
K equally spaced piecewise constant functions over the directional range
from 0 to 2 77. By letting

]nD(0k\a))=xk(cS) k=l,2,...,K

the directional spreading function is presented as
K

(7.104)

(7.105)
k=i

where
(k-l)Ad<6<kA9

0 otherwise
Next, by using the dispersion relationship a)2=kgtanh.kh (h=water

depth), the cross-spectrum given in Eq. (7.55) is presented in the follow-
ing form as a function of frequency (o and angle 6.

(7.106)

Then, by applying Eq. (7.105), Smn(o)) may be written as

0.50-
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JI
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ML
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120 • 240 ' 360
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Fig. 7.16. Comparison of directional wave spectra estimated by applying ML
and ME methods (Lygre and Krogstad 1986).
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=S(cS)\yjaJ.k(co) e**<»>) (7.107)

where

Note that the term in the brackets is equivalent to the directional spread-
ing function for a specified frequency.

Assuming the cross-spectra obtained from measured data carry an
error e(a>), the directional spreading function is written as

K

) >=l,2,...,2iV (7.108)

In applying Eq. (7.108) to data analysis, the errors (j= 1,2,..., N) are
assumed to be independent and obey a normal distribution with zero
mean and unknown variance o2. Estimation of the directional spreading
function can be done through maximizing the following likelihood func-
tion with respect to xk and o2.

1
L(xvx2,...,xk, )- (2m72yv

Xexp[ i 2N r K

(7.109)

In maximizing the above likelihood function one additional condition
should be considered, since the likelihood function is developed assum-
ing that the directional spreading function D(0\w) is a piecewise constant
function. In order to have a continuous smooth spreading function, the
second derivative of In D(9\co)=xk should be close to zero. This results in
the maximization of Eq. (7.109) being equivalent to maximizing the fol-
lowing quantity:

^ k k l k 2 (7.110)

where u is a parameter which will be determined later along with the
unknown variance o2.

From a comparison of the above formula with the right-hand side of
Eq. (7.103), the above formula can be considered to be a posterior distri-
bution if the prior probabiity distribution of x= (xv x2,..., xk) is given by

(7.111)
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For the present case, the Bayes formula given in Eq. (7.103) may be
written in the following form:

/(x|M2
5a2) = C/2(x|w2

5o2)L(x,a2) (7.112)

The estimate of x can be achieved by maximizing the above equation,
which in turn is equivalent to evaluating the mode of / ( x ^ o 2 ) . If the
value of u is given, the value of x which maximizes Eq. (7.112) is deter-
mined by minimizing the following quantity, irrespective of a2.

2N r K

k=i J U=i J

where a^=Re 0Ljk(a)).
On the other hand, the values of u and o2 can be obtained by mini-

mizing the following quantity:

-2 In (Lix^hixlu^^dx (7.114)

The Bayesian approach for estimating the directional spectrum devel-
oped by Hashimoto and Kobune (1988) appears to yield a high resolu-
tion in the evaluation of the wave energy spreading function. The
approach, however, deals with many unknown xk(<o), and this necessi-
tates time-consuming iterative computation in practice.

Figure 7.17 shows an example of a comparison between the originally
specified (true) spreading function and that computed by following the
Bayesian approach using numerical simulation data. Included in the

-180 -90 0 90 180
DIRECTION IN DEGREES

Fig. 7.17. Example of directional wave spectrum estimated by applying the
Bayesian approach BDM (Hashimoto and Kobune 1988).
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figure is the directional distribution function computed by applying the
extended maximum likelihood (EML) method.

To date, various methods for estimating the directional wave energy
spreading function from data have been developed. Each method has its
own unique features and may have some shortcomings as well. Selection
of a suitable method for analysis of data depends on the instruments
employed for measurement and depends heavily on sea conditions at the
site. A simple estimation method may be adequate for moderate spread-
ing of wave energy due to normal wind speed without the presence of
swell, while a sophisticated estimation method is necessary when swell is
present or when estimating at a site where frequent change of wind direc-
tion may occur. Readers who are interested in the relative merits of the
various estimation methods for analysis of data, although they are not
conclusive, are referred to Benoit (1992, 1993), Benoit and Teisson
(1994), Brissette and Tsanis (1994), Briggs (1984), and Young (1994).

7.5 FORMULATION OF THE WAVE ENERGY
SPREADING FUNCTION

For the design and safe operation of marine systems, it is extremely
important to evaluate system responses in a seaway; in particular, the
evaluation of motions in six degrees of freedom is vital for floating
systems. For this, it is very convenient to evaluate directional wave spectra
by applying the energy spreading formulation to a point spectrum. For
this, several formulations have been proposed and are summarized below.

(a) Cosine-square formula
It is assumed that spreading is proportional to (cos 0)2. That is,

Z)(0) = (2/77) cos20 for -7r/2<0<7r/2 (7.115)
This formulation is extremely simple, hence it has often been used for the
design of marine system.

(b) Mitsuyasu formula
Mitsuyasu et al. (1975) propose the Longuet-Higgins formulation given
in Eq. (7.40) with the parameter s, which is evaluated from their measure-
ments by using a cloverleaf buoy:

where

= sm(///m)5

5 k(///mr2-5
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fm = modal frequency
U =mean wind speed at 10 m height

(c) Hasselmann formula
From analysis of measured data, Hasselmann et al. (1980) propose the
same formula as given in Eq. (7.116), but the sx-value given in Eq. (7.47)
is substituted for the s-value.

(d) Borgman's proposed formula

D(6)= exp{acos(0— 6)} (7.117)
27rlo(a)

where
a = positive constant
6 = angle of propagation of predominant wave energy

70( ) = modified Bessel function of order zero.
This formula is called the circular normal distribution (Gumbel et al.

1953). The formula agrees with the first approximation of the estimated
spreading function developed by Kobune and Hashimoto (1986) (see
Section 7.4.2) based on the maximum entropy method.



8 SPECIAL WAVE EVENTS

8.1 BREAKING WAVES

8.1.1 Wave breaking criteria
The wave breaking phenomenon observed in the deep open ocean occurs
whenever a momentarily high wave crest reaches an unstable condition.
Profiles of incident waves for which breaking is imminent are shown in
Figure 8.1 (a) and (b); (a) is an example recorded during hurricane

(a)

(b)
Fig. 8.1. Example of irregular waves with imminent breaking: (a) hurricane

CAMILLE; (b) laboratory test.

2 l 8
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CAMILLE, while (b) is that obtained during experiments on breaking of
irregular waves generated in a tank. Included in the figure are the local
wave height, H, and period, T, associated with breaking. As seen in
Figure 8.1, the period measured from peak-to-peak and that from crest-
to-crest are almost equal.

Wave breaking occurs intermittently; hence the frequency of occur-
rence of breaking in a specified sea state is of considerable interest. As will
be shown later, the severity of the sea is a major, but not the governing,
factor; instead, the shape of the wave spectrum controls the frequency of
occurrence to a great extent.

For estimating the frequency of occurrence of wave breaking in
random seas, criteria for the breaking phenomenon must be clarified.
Criteria for the breaking of ocean waves have been studied from different
viewpoints by many researchers. These include Michel (1893), Dean
(1968), Banner and Phillips (1974), Van Dorn and Pazan (1975), Nath
and Ramsey (1976), Longuet-Higgins (1963a, 1969, 1974, 1976, 1979,
1985), Longuet-Higgins and Cokelet (1978), Longuet-Higgins and Fox
(1977), Cokelet (1977), Kjeldsen and Myrhaug (1978), Ochi and Tsai
(1983), Snyder and Kennedy (1983), Weissman et al (1984),
Holthuijsen and Herbers (1986), Xu et al (1986), Ramberg and Griffin
(1987), among others.

The most widely known wave breaking criterion is the limiting steep-
ness for a Stokes wave, analytically derived by Michel (1893): breaking
takes place when the wave height exceeds 14.2 percent of the Stokes lim-
iting wave length, which is 20 percent greater than that of ordinary sinu-
soidal waves of the same frequency. This criterion can be written in terms
of wave height, //, and period, !T, as

H^O.027 gT2 (8.1)
Results of laboratory experiments on breaking of regular waves gener-

ated in the experimental tank indeed demonstrate that breaking takes
place when the condition given in Eq. (8.1) is satisfied. However, it is
found from the results of tests on breaking of irregular waves generated in
the tank that the observed number of breaking random waves is much
greater than that theoretically computed based on the criterion given in
Eq. (8.1), and that the following relationship provides the criterion for
breaking of irregular waves (Ochi and Tsai 1983):

H^O.020 gT2 (8.2)
The validity of the criterion has been confirmed by experimental studies
carried out by Xu et al (1986) in which irregular waves were generated by
a blower installed in an air-sea tank, and by Ramberg and Griffin (1987)
through tests in waves generated in a convergent channel. Figure 8.2
shows the breaking criteria obtained in the three different laboratory
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experiments. The lines given in the figure are the average of the scattered
data for each experiment, over the range of wave heights tested. Included
in the figure is the line indicating the breaking criterion of regular waves
given in Eq. (8.1). Although the experimental conditions are quite differ-
ent, the criteria obtained from these experiments are very close. As an
average of the three experimental lines, Eq. (8.2) appears to be the most
appropriate criterion for the breaking of irregular waves from the view-
point of the wave height and period relationship.

A wave breaking criterion based on acceleration at the wave crest was
first proposed by Phillips (1958), namely when the downward accelera-
tion exceeded that of gravity. This criterion is used in connection with the

200 400 600 800 1000 1200

gT2 IN CM

Fig. 8.2. Relationship between wave height and periods for breaking irregular
waves (Ochi 1990b).
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development of the equilibrium range considered for wave spectra.
Snyder and Kennedy (1983) show a threshold acceleration of -0.5^ for
white-capping waves, while Longuet-Higgins (1963a, 1969) shows (theo-
retically) that white caps appear in a progressive wave when it reaches the
limiting form at the crest in which the downward acceleration is equal to
0.5^ in all directions within the Stokes 120-degree angle at the crest (see
Figure 8.3).

Longuet-Higgins and Fox (1977) analytically evaluate the form of
waves approaching their limiting steepness, and find the downward
acceleration at the crest to be approximately 0.39g. Longuet-Higgins
(1985), however, points out some ambiguity in the definition of wave
acceleration used as a criterion of breaking waves. He shows that the wave
acceleration obtained from measurements by a fixed vertical probe is an
apparent acceleration (the Eulerian acceleration), while wave particle
acceleration, ideally measured by a small floating buoy, is the true
acceleration (the Lagrangian acceleration). He shows that these accelera-
tions are different for waves of finite amplitude.

Srokosz (1985), on the other hand, evaluates the probability of occur-
rence of wave breaking assuming that breaking occurs whenever the
downward acceleration at the crests exceeds OAg. He explains the rela-
tionship between this criterion and that given in Eq. (8.2); this will be dis-
cussed in detail in the next section.

Dawson et al. (1993) consider the nonlinear crest amplitudes for
breaking, and the computed probability of occurrence of breaking agrees
well with the experimental results if the downward crest acceleration is
assumed to be g/3.

There is no doubt that the wave breaking phenomenon is associated
with instability characteristics of waves. Studies of the stability of non-
linear gravity waves in deep water have been carried out by many
researchers. These include analytical studies by Longuet-Higgins
(1978a,b), Longuet-Higgins and Cokelet (1978), and experimental
studies carried out by Melville (1982) and Sue et al. (1982), among
others. One of the conclusions derived by Longuet-Higgins is that
instability in regular waves occurs when the wave slope ak (where
a=amplitude, &=wave number) approaches 0.436. this can be written in

Fig. 8.3. Limiting acceleration near the crest in a Stokes 120 degree angle
(Longuet-Higgins 1969).
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TYPE I
BREAKING

TYPE II
BREAKING

TIME

Fig. 8.4. Explanatory sketch of Type I and Type II breakings.

terms of wave height and period as H= 0.022 gT2 which is very close to
the relationship given in Eq. (8.2).

It is noted that wave breaking as discussed above takes place along the
excursion as it crosses the zero-line. This may be called Type I breaking as
illustrated in Figure 8.4. There is another type of breaking which occurs
along the excursion above the zero-line (Type II) shown in Figure 8.4.
This is the breaking of waves superimposed on long waves; hence, the sec-
ondary height where breaking occurs is small. Xu et at. (1986) observed
this type of breaking in their experiments on waves generated in the air-
sea tank. In their analysis for establishing the breaking criterion, the
period of the long carrier waves was used, resulting in the breaking wave
height being very low, H= (0.005-0.010) gT2. Breaking wave heights of
the same order are reported in field observations made in Lake
Washington (Weissman et al. 1984). It is believed, however, that Eq. (8.2)
would also hold for the Type II breaking shown in Figure 8.4 if the excur-
sion between local crests and time interval between crests are regarded as
//and r, respectively.

For a more precise description of steep wave profiles for which breaking
is imminent, Kjeldsen and Myrhaug (1978) propose three parameters;
crest front steepness, and vertical and horizontal asymmetry factors. On the
other hand, statistical wave-by-wave analysis of records obtained from buoy
observations and measurements of whitecaps in the North Sea by
Holthuijsen and Herbers (1986) indicate that a separation of breaking
waves (whitecaps) and non-breaking waves based on such seemingly
obvious parameters as wave steepness and wave asymmetry appears to be
difficult. They claim that breaking occurs at wave steepness values much
less than the theoretically expected values of limiting waves. They also claim
that waves in the open sea tend to break near the center of a wave group.

8.1.2 Probability of occurrence of wave breaking
The probability of occurrence of wave breaking in random seas can be
evaluated by applying the breaking criterion given in Eq. (8.2) to the joint
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probability density function of wave height and period. The joint prob-
ability density function analytically developed for waves with a narrow-
band spectrum by Longuet-Higgins (1983) is given in Section 4.2, and
for waves with a non-narrow-band spectrum by Cavanie et al. (1976) in
Section 4.3. Both of these joint distributions are given in closed form and
thereby the breaking criterion can be incorporated into the distribution
functions. In the following, the joint probability density function for a
non-narrow-band spectrum will be applied for evaluating the probability
of occurrence of breaking in random seas.

Let us first write the breaking criterion given in Eq. (8.2) in dimen-
sionless form as follows:

0)\2 (8.3)
where

v = dimensionless excursion=
A = dimensionless time interval between positive maxima

= 77Tm
f = excursion
T =time interval between positive maxima
Tm=average time interval between successive positive

maxima given in Eq. (4.33)
m0 =area under the wave spectrum
a = 0.196m/s2.

The joint probability density function of excursion and the associated
time interval applicable for Type I breaking is essentially the same as that
for the positive maxima and associated time interval, which is given in Eq.
(4.34). Here, the modification necessary for normalizing the probability
distribution of time interval as given in Eq. (4.37) is omitted for simplicity.

By considering twice the magnitude of the positive maxima, we may
write v=2& where £is defined in Eq. (4.34) as a dimensionless positive
maxima. A is the same as Tin Eq. (4.34), and the joint probability density
function may be written as a function of the bandwidth parameter e as
follows:

/O,A)=
32V2TT e(l-e2) A5

(8.4)

It should be noted that Eq. (8.4) includes the positive maxima belong-
ing to both Type I and Type II excursions. Hence, in evaluating the
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probability of occurrence of wave breaking associated with Type I excur-
sions, the maxima belonging to Type II excursions have to be deleted.
This can be done by taking into consideration the frequency of occur-
rence of each excursion.

The frequency of occurrence of Type I and Type II excursions,
denoted by pI andpn, respectively, are derived in Section 3.7 with regard
to the probability distribution of half-cycle excursions. These are,

2V1-6 2

( 8 - 5 )

Thus, the conditional probability of wave breaking given that Type I
excursion has occurred can be evaluated from Eqs. (8.4) and (8.5) taking
into consideration the breaking condition given in Eq. (8.3). That is,

Pr {breaking wave | Type I excursion}

f(v,\)dvd\ (8.6)
J J I J2 \

\VmJ

Then, the probability of wave breaking associated with Type I excur-
sions can be obtained by multiplying Eq. (8.6) by the probability of
occurrence of the Type I excursion. By taking account of the fact that the
sum of the probabilities of Type I and Type II breaking waves is equal to
unity when all waves have broken, the probability of Type I breaking is
given as follows:

Pr {breaking wave, Type 1}

Mv>x)dvdx ( 8 - 7 )

The joint probability density function applicable for Type II excur-
sions and the frequency of their occurrences are not given here, but are
presented in Ochi and Tsai (1983).

It is of interest to examine the effect of shape of the wave spectrum on
the frequency of occurrence of wave breaking. As an example, computa-
tions are made for the two wave spectra shown in Figure 8.5. These are
obtained from measurements in the North Atlantic. Spectrum (a) repre-
sents a sea of significant wave height 4.6 m, while Spectrum (b) is that for
a significant wave height of 10.8 m. The joint probability density function
of the Type I excursion and its associated time interval and the lines



8.1 BREAKING WAVES 225

indicating breaking conditions are shown in Figure 8.6. As can be seen,
the location of lines indicating the breaking condition differs substantially
because of the difference in the magnitude of moments of the spectrum,
and this in turn yields a difference in the probabilities of breaking; the
probability being zero for Spectrum (a) and 0.13 for Spectrum (b).

In order to elaborate on the effect of moments on breaking presented
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in the above paragraph, let us rewrite the breaking criterion given in Eq.
(8.3) as follows:

A2

(8.8)
"( l+Vl-e 2 ) 2Vm 4

where a=0.02g=0.196 m/s2.
It is noted that (l-e2)1/2/{l + (l-e2)1/2}2 in the above equation is

almost constant for the practical range of the e-value of ocean waves, say
0.4-0.8. Therefore, the rvalue reduces in proportion to the square-root
of the increase in the fourth moment m4 of the wave spectrum. This
implies that a significant increase of the probability of breaking is
expected with increase in the fourth moment.

In order to further substantiate the discussion given above, Figure 8.7
shows the probabilities of occurrence of wave breaking in six different sea
states using the six-parameter wave spectral family (see Section 2.3A)
plotted against the dimensionless fourth moment of each spectrum. As
can be seen in the figure, the frequency of breaking increases significantly
with increase in the fourth moment of the wave spectrum.

Srokosz (1985) evaluates the probability of occurrence of breaking

NW 154 (b) JHC 75,

" 0 0.5 1.0 1.5 2.0

DIMENSIONLESS TIME INTERVAL X = T / T m

0 0.5 1.0 1.5 2.0

DIMENSIONLESS TIME INTERVAL X = T / T m .

Fig. 8.6. Joint probability density function of wave height and associated time
interval^ and the line indicating breaking condition (Ochi and Tsai
1983).
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waves taking into consideration the criterion that breaking takes place if
the downward acceleration at the wave crest exceeds the limit ag where a
is unknown at this stage. For evaluating the probability of occurrence of
breaking, Srokosz modifies the probability density function of maxima
developed by Cartright and Longuet-Higgins given in Eq. (3.28) such
that the integration limit of acceleration is from —  oo to -ag instead of —o°
to 0. This results in a density function for the crest to be broken, denoted
by 17 in dimensionless form, of

where

fexp{-x2/2}dx (8.9)

r] = (crest to be broken)/V^o
y = ag/'Vm4:

e ^bandwidth parameter (see Eq. 3.32).

By integrating 77 over all crest heights, Srokosz derives the probability
of occurrence of wave breaking as

Pr {breaking} =exp{-a2£2/(2m4)} (8.10)
28
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which indicates that the probability of breaking depends on the fourth
moment of the wave spectrum, which agrees with the trend observed in
Figure 8.7.

In choosing the a-value for wave breaking, Srokosz rewrites the break-
ing criterion given in Eq. (8.2) by letting H=2a (a=amplitude), and
T=2TT/(O as follows:

ao)2^0Ag (8.11)
Here, aw2 is the magnitude of the downward acceleration at the crest of a
wave in linear wave theory; hence, by choosing the unknown a constant
as 0.4, the Srokosz's criterion used for evaluating the probability of occur-
rence of breaking waves coincides with that given in Eq. (8.2). By letting
a=0.4, the probability of wave breaking given in Eq. (8.10) becomes

Pr {breaking} =exp{-0.08£2/m4} (8.12)
The results of computations of the probability of occurrence of Type I

breaking given in Eq. (8.12) agrees well with those shown in Figure 8.7.
Inasmuch as the fourth moment of the spectrum plays a significant

role in evaluation of the probability of occurrence of wave breaking, care
has to be taken in computing the fourth moment. Although the high fre-
quency tail of the spectrum is generally crucial for evaluating the fourth
moment, the magnitude of spectral densities considered in naval and
ocean engineering for frequencies greater than eo=2.0rps is impercept-
ibly small in comparison with those at lower frequencies (see examples of
spectra shown in Figure 2.15); hence, for spectral formulations that are
used for evaluating wave properties or responses of marine systems in a
seaway, the cut-off frequency co=2.2 rps for deep water and a>=3.5 rps for
shallow water appears to be sufficient.

Referring to Figure 8.7, it can be seen that the probability of wave
breaking increases with increase in the fourth moment. This suggests that
a considerable amount of wave breaking can be expected in seas repre-
sented by the Pierson-Moskowitz spectrum, since its fourth moment is
theoretically infinite. However, this is not the case if the frequency range
up to o>=2.2 is considered in computing the frequency of occurrence of
wave breaking. As an example, Figure 8.8 shows the shapes of the
Pierson-Moskowitz spectrum and the two-parameter wave spectrum
with modal frequency at a>=0.52 for the same significant wave height of
12.2 m. The results of computations on the probability of occurrence of
breaking waves show a probability of 0.001 for the Pierson-Moskowitz
spectrum in contrast with a probability of 0.14 for the two-parameter
spectrum. Furthermore, the probabilities of wave breaking in seas with
the Pierson-Moskowitz spectrum are nearly zero irrespective of the mag-
nitude of significant wave height if spectral densities up to co=2.2 only are
considered. This result satisfies the condition required for wave spectra of
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Fig. 8.8. Pierson-Moskowitz and two-parameter wave spectra used for com-
puting the probability of wave breaking.

fully developed seas, and it may serve to substantiate the validity of the
computation method for evaluating the probability of occurrence of
breaking waves.

8.1.3 Energy loss resulting from wave breaking
Wind-generated waves during a storm may be completely broken so that
the sea state is close to a fully developed sea, although this situation is not
frequently encountered. The majority of sea conditions observed during
a storm are partially developed such that waves may still have the poten-
tial to be broken.

When breaking takes place, wave energy is lost in the form of turbu-
lence and this results in a reduction of the magnitude of spectral density
at certain frequencies. Studies on the evaluation of energy loss associated
with wave breaking have been carried out by Longuet-Higgins (1969)
and Tung and Huang (1987) by employing different breaking criteria. In
the following, estimation of energy loss and modification of the wave
spectrum associated with Type I wave breaking are presented based on
the criterion given in Eq. (8.2).

The average loss of energy in one wave cycle may be evaluated assum-
ing that a breaking wave reduces its height to the limiting breaking height,
H*. The resulting energy loss is given by (Longuet-Higgins 1969)

u . . 1 \(HV
energy loss due to breaking=- pg j I —  I - (8.13)
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Then, the loss of spectral energy density for a given wave period, denoted
AS(co), can be written, ignoring the factor pg> as,

where f(H\ T)=conditional probability density function of wave height
for a given period.

The rate of loss of spectral energy density from the original spectral
density for a given wave frequency becomes

We may write the above equation in dimensionless form by letting
HI\fniQ=v and T/Tm=\ and applying the joint probability density func-
tion given in Eq. (8.4). For this, let us rewrite Eq. (8.4) as follows:

(8.16)
4 : V Z 7 r £T AT |_ Oe"A' J

where

By integrating Eq. (8.16) with respect to ,̂ the marginal probability
density function of A becomes

J w (8.17)

Hence, the conditional probability density function f(i\ A) is obtained as

1 {(a2-A2)2+a4
i62}3/2 v2 \ v2

e x p ^ { ( A 2 - a 2 ) 2 W }

(8.18)
By using the formulation given in Eq. (8.18), the ratio of loss of spec-

tral energy due to wave breaking may be written in dimensionless form
as
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-v:)Av\\)

v2f(v\\)dv
(8.19)

where v* is the limiting breaking wave height (the minimum v) which is
given in Eq. (8.8) in dimensionless form.

Thus, the modified spectral density function, S*(a/), taking wave
breaking into account can be written, for a given frequency, as

S^co)=S(o))(l-fji) (8.20)

Note that modification of a spectrum due to wave breaking is an
interation procedure. Modification of the original spectrum by Eq. (8.20)
does not necessarily mean there will be no more breaking. This is because
the limiting breaking wave height is a function of the bandwidth parame-
ter 6 as well as the fourth moment of the spectrum, m4. Therefore, e, m4
and the probability of breaking must be re-computed for the modified
spectrum. The procedure is repeated until the probability of wave break-
ing becomes sufficiently small.

An example of modification of a wave spectrum is shown in Figure 8.9.
The original spectrum, with a significant wave height of 12.0 m, is

ORIGINAL SPECTRUM
Pr(Breakinq)=O.O8

Pr( Breaking) = 0.05

Pr(Breaking) =0.005

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
FREQUENCY IN RPS

Fig. 8.9. Modification of wave spectrum resulting from wave breaking.
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obtained from data taken in the North Atlantic. The computed probabil-
ity of Type I wave breaking for this spectrum is 0.08. The result of the first
modification yields the reduction of energy for frequencies higher than
OJ=O.S as shown in the figure, and the computed probability of breaking
waves for the modified spectrum is 0.05. The computations for spectrum
modification is repeated, and eventually a spectrum is obtained for which
the probability of breaking is 0.005. For this situation, the energies at
higher frequencies of the spectrum are reduced by a substantial amount,
and as a result, the significant wave height is reduced to 10.9 m after all
breaking takes place.

8.2 GROUP WAVES

8.2.1 Introduction
An interesting phenomenon often observed in wind-generated seas is a
sequence of high waves having nearly equal periods, commonly known as
group waves. Two examples of group waves observed in the open ocean
are shown in Figure 8.10. Figure 8.10(a) is taken from Rye (1974) in
which he states that the group waves were recorded in the North Sea
during a storm of significant wave height 10 m, while Figure 8.10(b)
shows wave groups recorded in severe seas by a weather ship at Station K
in the North Atlantic.

It has been known that group waves often cause serious problems for
the safety of marine systems when the period of the individual waves in the
group are close to the marine system's natural motion period. This is not
because the wave heights are exceptionally large, but because of motion

(a) (b)
Fig. 8.10. Examples of wave groups observed at sea (example (a) from Rye

1974).
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augmentation due to resonance with the wave, which may induce capsiz-
ing of the marine system. As another example, a moored marine system
tends to respond to successive high waves which induce a slow drift
oscillation of the system resulting in large forces on the mooring lines.

The physical explanation of the group wave phenomenon has yet to be
clarified; however, Mollo-Christensen and Ramamonjiarisoa (1978) and
Ramamonjiarisoa (1974) explain that the wave field does not consist of
independently propagating Fourier components but instead consists
wholly or in part of wave groups of a permanent type. As evidence, they
present results of field and laboratory observations indicating that har-
monic components of waves propagate at higher phase velocities than
those predicted by linear theory, and that velocities are nearly constant
for frequencies greater than the modal frequency of the spectrum (see
Figure 8.11).

Many studies on stochastic analysis of group waves in random seas
have been carried out, primarily concerning the frequency of occurrence
of the phenomenon. These studies may be categorized into two
approaches: one considers the phenomenon as a level-crossing problem
associated with the envelope of a random process; the other treats a
sequence of large wave heights as a Markov chain problem.

- 0.40

"1 3 5 7 9 -
FREQUENCY IN HZ

Fig. 8.11. Phase speed of wind waves measured in the laboratory. Phase speed
(circles)3 linear theory prediction (solid line) and spectral density
function (broken line): (a) wind speed 5 m/s; (b) wind speed 8 m/s
(Mollo-Christensen and Ramamonjiarisoa 1978).
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As stated earlier, group waves occur in a sequence of high waves having
nearly equal periods; hence, we may consider the envelope of wave trains
as shown in Figure 8.12, and define the exceedance of the envelope above
a certain specified level as a wave group phenomenon. The principle of
this approach is credited to Rice (1945, 1958) and Longuet-Higgins
(1957, 1962a) although they did not apply it to wave groups per se;
instead, they clarified the basic properties of a group phenomenon associ-
ated with a Gaussian random process.

Following this approach, Nolte and Hsu (1972), Ewing (1973),
Chakrabarti etal. (1974), Rye (1974, 1979) and Goda (1970, 1976) have
developed methods to evaluate mean values of the length of time a wave
group persists as well as the mean number of wave crests in the group, etc.
Longuet-Higgins (1984) gives a thorough discussion on various subjects
of group waves following this approach.

In these studies, the up-crossings of the envelope above a certain level
define the wave group phenomenon. It is pointed out, however, that if the
time duration ra+ shown in Figure 8.12 is short, there may be only one
wave crest or no wave crest in time ra+, which obviously does not consti-
tute a wave group even though the wave envelope exceeds the specified
level.

Dawson et al. (1991) carried out a series of excellent experiments on
wave groups in random seas generated in the laboratory, and found that
only 25 percent of the wave crests crossing the threshold level (taken as
one-half of the significant wave height) constituted a wave group and all
other wave crests were above the level but single crossings.

It is thus clear that consideration of (a) exceedance of a specified level
and (b) at least two wave crests during the exceedance are required for
evaluating the statistical properties of group waves. This subject will be
discussed in Section 8.2.2.

Another approach for evaluating the probability of occurrence of
group waves considers a sequence of high waves taking into consideration

Fig. 8.12. Level crossing of the envelope of a random process.
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the correlation between them based on the Markov chain concept. In
general, if the magnitude of wave height depends only on the magnitude
of the immediate previous waves, the waves are considered to be a
Markov chain process (see Appendix B). A study to examine whether or
not ocean waves follow the Markov chain characteristics was carried out
by Sawhney (1962). His analysis shows that the Markov chain character-
istics of waves become weak after three half cycles and are lost completely
after 8 cycles.

Arhan and Ezraty (1978) show, based on the analysis of wave data
obtained from a storm in the North Sea, that the correlation between suc-
cessive wave heights is pronounced in waves whose heights are greater
than 75 percent of significant wave height.

Rye (1974) evaluates the correlation coefficients between successive
wave heights obtained off the Norwegian Coast where the water depth is
about 100 m. His analysis shows that the average of the correlation
coefficient is +0.24, where the positive sign implies that large waves tend
to be succeeded by large waves. He also finds that formation of wave
groups tends to be more pronounced for the growing stage of a storm
than the decaying stage. These results indicate that application of the
Markov chain concept is an expedient approach for evaluating the prob-
ability of occurrence of group waves.

Kimura^^SO) develops a method to evaluate the probability of occur-
rence of group waves in a given sea based on the Markov chain concept.
In order to deal with two consecutive wave heights, Kimura considers the
two-dimensional Rayleigh probability distribution with the parameter k
(see Eq. (3.58)) which is evaluated from the correlation coefficient
obtained from the time history of wave height data. This shortcoming is
improved by Longuet-Higgins (1984) and Battjes and van Vledder
(1984) so his method can be incorporated with the wave spectrum. This
will be discussed in Section 8.2.3.

8.2.2 Statistical properties through the envelope process
approach

As stated in the preceding section, many studies address the average value
of the statistical properties of group waves, such as the average number of
waves in a group, the average time interval between groups, etc. Let us
first evaluate the expected (average) number of crossings of a specified
level a, denoted Nai per unit time by the envelope (see Figure 8.12). This
is the level up-crossing problem, and the same basic concept as consid-
ered in Eq. (4.40) can be applied except for the domain of integration.
That is, by letting/(p,p') be the joint probability density function of the
displacement and velocity of the envelope. The average number of cross-
ings Na can be evaluated by letting p=a.
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*= I f (8.21)
0

where p and p are statistically independent, and each obeys the Rayleigh
and normal probability density function, respectively. The density func-
tions are given by

/(p) = (p/mo)exp{-p2/2mo}

/(p) =(1/V2TT/X2) exp{-p2/2^2} (8.22)

where

m0 = I S(co)dco

o

JJL2
 = I (co—7o)2S(co)dco

co =mean frequency of spectrum.

Note that Eq. (8.22) can be derived from the joint probability density
function given in Eq. (4.9) by integrating with respect to </> and <£, and by
letting fio=mo.

From Eqs. (8.21) and (8.22), the average number of up-crossing of the
level a per unit time, Na, can be obtained as

Na=Vfji2/27r (a/m0) e-^2/2™o) (8.23)

The inverse of Na is the average time interval between two up-
crossings, denoted Ta; i.e.

Ta=\/27T/fji2 (mo/a)exp{a2/2mo} (8.24)

Note that all these formulae are for a spectrum given in terms of co.
Next, let us evaluate the average number of waves in a group per unit

time, denoted NG. For this, we evaluate the proportion of time during
which the envelope exceeds the level a. This can be evaluated from the
first formula given in Eq. (8.22) as

00

Pr{p>a} = f/(p)dp=exp(-a2/2m0} (8.25)
a

Then, the average time for a wave group to occur, denoted by ra+, becomes

ra+ = TaPr{p>a} =V2TT//X2 (mo/a) (8.26)

On the other hand, the average zero-crossing time (average wave
period) for a narrow-band spectrum is given in Eq. (4.43) as
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(8.27)

Hence, from Eqs. (8.26) and (8.27), we have the average number of
waves in a group as

iVG= fa+/T0= (llas/lrr) Vra0ra2//x2 (8.28)

For the probability distribution of the frequency of occurrence of wave
groups, Nolte and Hsu (1972) and Loriguet-Higgins (1984) consider the
Poisson probability distribution with a parameter representing the
average number Na derived in Eq. (8.23) assuming that the time interval
between the occurrence of two successive wave groups is sufficiently long.
That is,

Pr{w wave groups} =iVaexp{-n/ArJ (8.29)

Thus far, the average values of various properties associated with
group waves have been evaluated through the level crossings of the enve-
lope assuming that the envelope up-crossing of a specified level implies a
wave group. Next, let us consider wave groups to consist of at least two
successive high waves above a specified level, and evaluate various proper-
ties based on probability distribution functions representing these prop-
erties rather than evaluating the average values.

First, we consider the probability density function of time duration
associated with wave groups. For this, we derive the probability density
function of time duration ra+ shown in Figure 8.12, and then truncate the
probability density function taking into account the condition that two or
more waves exist during ra+. Since the derivation of the probability
density function is extremely complicated, only the procedure for the
analytical derivation will be outlined in the following. For details of the
derivation, see Ochi and Sahinoglou (1989a).

(i) Assuming that the waves are a Gaussian random process x(t) with a
narrow-band spectrum, the probability that the envelope of x(t) exceeds a
specified level a at time tx with velocity p13 and then crosses that same
level downward at time t2 with velocity p2 is given approximately by the
following fdrrriuldi

I up-crossing of a level a at time tx 1 T ;
Pr \ with velocity p x followed by a

I TV
^ crossing at time t2 with velocity p2 J a+

0 00

r r

J /^/(a,/^) dpt

- (8.30)
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Here, the numerator, Na+(ra+), represents the expected number (per
unit time) of envelope up-crossings with velocity pi followed by down
crossings with velocity p2; while the denominator, Na+y represents the
expected number (per unit time) of envelope up-crossings of the level a
with velocity pl. f(aipvaip2) is the joint probability density function of
displacement p and velocity p at time tx and t2 with px=p2=a in this case.
By letting £2~fi = Ta+> Eq. (8.30) is equivalent to the probability density
function of ra+ for a specified level a.

(ii) In order to evaluate Eq. (8.30), it is necessary to first obtain the
joint probability density function of the wave profile x(t) and velocity x(t)
at time tx and £2, and then to transform this joint probability density func-
tion to that of the wave envelope and its velocity. By considering the sine
and cosine components for both x and x at time tx and r2, we have a set of
eight random variables (#cl,#ci>#sptfslpcc2*#c2**s2>*s2) which comprise a
joint probability density function. Here, each element can be evaluated
for a given wave spectrum.

(iii) The inverse operation of the 8X8 covariance matrix involved in
the joint normal distribution is extremely difficult to obtain in closed
form. However, this is feasible by approximating a given wave spectrum
as the sum of two parts, each part being symmetric about its mean fre-
quency as illustrated in Figure 8.13.

(iv) Next, by applying the polar coordinates given by

xcl=plcos6l

*si=Pisin0i
xc2=p2cosd2
xc2=p2sin02 (8.31)

ft\
I \

WAVE SPECTRUM

S^ SUM OF TWO SYMMETRIC-SHAPE
/^ SPECTRA

i ^ SYMMETRIC-SHAPE SPECTRUM

FREQUENCY

Fig. 8.13. Decomposition of wave spectrum into two symmetric-shape spectra.
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the joint probability density function can be transformed to the joint
density function of p p p2 , 0P 0P 92i and 62r> and in turn, this joint density
function can be reduced to/(p15 p2, 015 62).

(v) By integrating the joint probability density function/(pp p2, 9V 62)
with respect to 0x and 02, the joint density function /(p15 p2) can be
obtained as a function of the specified level a, and from this the following
probability density function of T=t2—tv which is written f(ra+)> can be
derived:

M22

TT/2

X1 f 7 f
0

3 (8.32)
L V 77 J

where

A =

q

oo

/x0 = I S(co)dfi>

o

00

/x,2 = I (co—7o)2S(cS)do)

0

0̂ = I
0

00

o

2̂ = I ((O~

)) cos((o—

0

)—~oS)rdo)
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00 00

= ((oS(<o) do/(iTo = o)S(co) dcof S((o) do)

0 0

2 r
=—r exp{-r2}dr

V77 J
<K*y-

C = normalization factor to make the area under the
00

density function unity = 1/1 f(Ta+)dTa+

o
(vi) By letting To be the average zero-crossing period, the probability of

two or more waves of time duration ra+ can be evaluated as follows:
(a) ra+^T0: there is either no wave crest or only one crest in ra+. The
probability of occurrence in this situation is given by

To

(8.33)Po=JAra+)dra+

(b) T0^Ta+^2T0: there is either one or two wave crests in Ta+. The prob-
ability of occurrence of only one crest can be evaluated by

2f"r ir. u
(8.34)

Thus, the probability of a wave group when the envelope exceeds a speci-
fied level a is given by l-(po~hPi)- Hence, the probability density func-
tion applicable for the time duration of the wave group, denoted by/(rG),
can be obtained as

/ (TG)=-

0

(8.35)

The expected (average) time duration associated with wave groups
denoted by TG, can be evaluated from

00

= I (8.36)



8 .2 GROUP WAVES 241

As an example, computations are carried out using the wave spectrum
obtained from data taken by the Norwegian Technology Research
Institute in the North Sea off the Norwegian coast. The water depth at
the measured site is 230 m. Figure 8.14 shows the wave spectrum for a
significant wave height of 8.13 m along with the sum of two symmetric-
shaped spectra used in the computation.

Figure 8.15 shows the probability density functions of time duration
associated with wave groups exceeding levels of 5, 6, 7 and 8 m above the
mean water level. As seen in the figure, all probability density functions
originates at 10.6 s, which is the average zero-crossing period.

SUM OF TWO SYMMETRIC SPECTRA

ORIGINAL SPECTRUM

0.4 0.8 1.2
FREQUENCY IN RPS

1.6 2.0

Fig. 8.14. Wave spectrum obtained from measured data and sum of two sym-
metric-shape spectra (significant wave height 8.13m).

0 2U

1 C
VJ

10

05

1
Id f

,8.0 m
/ 7 0 mX/6.0m

yy/ 5 O m

Fig.

12 16 20 24 28 32 34

DURATION TIME TG IN SEC.
T = 10.6 sec.

o

8.15. Probability density function of time duration associated with wave
groups at various levels.
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Table 8.1. Comparison between observed and computed average time duration
associated with level crossing and wave group (Ochi and Sahinoglou 1989a).

Level
(m)

4.0
5.0

Sample
size

9
6

Level crossing

Observed

Average
time
duration
(s)

15.9
10.8

Computed

Average
time
duration
(s)

3.9
3.1

Level crossing with at least
two successive waves

Observed

Average
time

Sample duration
size (s)

5
1

19.0
13.7

Computed

Average
time
duration
(s)

17.9
17.0

Table 8.1 shows a comparison between observed and computed
average time duration when the envelope crosses the 4 and 5 m levels.
The comparison is made for two categories of envelope crossings: one is
irrespective of number of waves during the crossing, while the other con-
tains at least two crests (wave group). A considerable difference can be
seen between observed and computed average time difference in the
former case.

In order to evaluate the frequency of occurrence of wave groups in a
given sea, it is necessary to derive the probability distribution of the time
interval between successive envelope crossings of a specified level taking
into consideration crossings with at least two waves. Figure 8.16 shows a
sketch of the time interval between successive up-crossings of the enve-
lope. Let the first crossing of the level a be at time A where the wave
group begins, and let the second crossing be at time B where no wave
group is formed. In this case, the time interval AC (instead of AB and
BC) is regarded as the time interval between two wave groups, and is
denoted raG.

For developing the probability density function of TaG, it is necessary
first to derive the density function of the time interval between successive
level crossings, Ta, shown in Figure 8.16. It is assumed that the probabil-
ity density function of ra is approximately equal to that of the time inter-
val between successive maxima of the envelope, denoted rm in the figure.
In the following, only the procedure for derivation of the conditional
probability density function of raG for a specified level, denoted f(raG\a),
is outlined. For details of the derivation, see Ochi and Sahinoglou
(1989b).

(i) Consider a random vector x which is composed of a set of six
random variables (XC,%C,JCC,XS,%S,JCS) representing the cosine and sine
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components of wave displacement, velocity and acceleration. Here, the
vector x obeys the joint normal probability distribution with zero mean
and a covariance matrix whose elements can be evaluated for a given wave
spectrum. The inversion of the covariance matrix can be easily obtained
in this case.

(ii) By applying the polar coordinates written by x=pcos6 and
x=psin#, the joint probability density function/(p,p,p, 0,0,0) can be
derived. Then, this joint probability density function is reduced to
f(p,p>p,6) by integrating with respect to 0 and 0.

(iii) The probability density function of the local positive maxima of
the envelope, £, and phase velocity, 0, can be derived from

M>0)=-

Jp/(£O,p,0)dp

(8.37)
,p,^) dpdpd0

— 00 0 —a

Then, from Eq. (8.37), the conditional probability density function of
0 given £,/(0|£) can be obtained.

(iv) Assume that 0 is a slowly varying function of time. Further,
assume that the time interval between successive envelope peaks rm in
Figure 8.16 is approximately equal to the time interval between two posi-
tive envelope crossings ra at the level a. Then, the conditional probability
density function f(Q\g) is converted to the conditional density function

Fig. 8.16. Definition of time interval between successive wave groups, TaG.
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f(ra\a) by letting g=a and d=27rk/ra where the parameter k is determined
by the iteration technique. Here, the probability of the envelope crossing
the level a is equal to the ratio of the average time intervals, ~fa+l1rai where
ra+ can be evaluated from/(ra+) derived earlier.

(v) The desired probability density function of the time interval
between successive wave groups for a specified level a, denoted f(raG\a),
can be obtained by modifying/(rja). First consider the case that the first
and third up-crossings are associated with wave groups, the situation
shown in Figure 8.16. We may assume the time intervals AB and BC are
statistically independent. Then, the time interval AC can be obtained as
the sum of the two independent random variables each having the density
function f(ra\a). Therefore, in this case, the conditional probability
density function of the time interval, denoted by/(r2a|a), becomes

a-ra)\a)dra (8.38)

The same concept is applied to four up-crossings of the envelope in
which the first and the fourth crossings are associated with wave groups.
In this case, the conditional density function /(T3J a) can be written as

3a-T2a)|a)dT2a (8.39)

By considering the time interval up to T5Q;, the probability density func-
tion of the time interval between successive wave groups for a specified
level a, denoted f(raG\a), can be written as

>)} (8.40)

where p is the probability of occurrence of wave groups when the enve-
lope exceeds a specified level a= 1 — (po+Pi). p0 and px are given in Eqs.
(8.33) and (8.34), respectively.

To evaluate the frequency of occurrence of group waves in a given sea
state, the probability density function f(raG\a) is approximated by the fol-
lowing gamma probability density function

/(raG)=-r^-A-r-G-1-e-A^G 0<raG<oo (8.41)

where the parameters m and A are determined by letting the mean and
variance of the distribution be identical to those of Eq. (8.40).

Based on the probability density function given in Eq. (8.41), the
probability of n occurrences of wave groups in a specified time period can
be evaluated as follows:
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Let Tn be the waiting time up to the nth wave group. This is equal to
the sum of (raG)p (TaG)2,..., (raG)n, where all raG are statistically inde-
pendent and obey the probability density function given in Eq. (8.41).
Therefore, the probability density function of Tn becomes

( 8*4 2 )

and from this the probability of ^-occurrences of wave groups in time t
can be obtained as

[n occurrences of wavel
Pr . . H

[groups in time t J

r(mn)
y(m(n+ l),

(8.43)

where y( ) is the incomplete gamma function.
As an example of practical application, Figure 8.17 shows the proba-

bility density function of the time interval of successive wave groups,
f(raG)y for a level a=4m using data taken in the North sea off Norway.
The recording time of the data is 17 minutes. Included also in the figure is
the approximated gamma probability density function. The probability of
occurrence of wave groups in 17 minutes for the level a=4 m is computed
for the various occurrences shown in Table 8.2. As can be seen, the prob-
abilities of occurrence of four, five and six groups are high; the highest
probability is 0.204 for five occurrences, and this result agrees with the
observed number of occurrences in the record. On the other hand, if we

0.006

0.004

CO

s
> 0.002

GAMMA DISTRIBUTION

200 400 600
TIME INTERVAL IN SEC

800 1000

Fig. 8.17. Probability density function of time interval between two successive
occurrences of wave groups (Ochi and Sahinoglou 1989b).
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Table 8.2. Comparison of predicted frequency
of occurrence of wave groups and observed
number of wave groups (Hs=8.13 m,
a=4.0m) (OchiandSahinoglou 1989a).

Prediction

Number of
wave groups

0
1
2
3
4
5
6
7
8
9
10

Probability of
occurrence

0.001
0.012
0.050
0.116
0.180
0.204
0.178
0.126
0.073
0.036
0.024

Data

Number of
wave groups

5

define a wave group as the time interval between two successive envelope
crossings of a specified level, then this results in the average number of
occurrences of wave groups being extremely large; 37 occurrences in 17
minutes for the example shown in Table 8.2.

8.2.3 Statistical properties through the Markov chain
approach

For evaluating the statistical properties of group waves, Kimura (1980)
considers a two-state Markov chain process dealing with the wave height
exceeding or not exceeding a specified height H*. There are four situa-
tions for two successive waves. These are

pu=Fr{H0>H*
p2l=Pr{H0<H*

H_<H*}
H_>H*}

p22=Fi{H0>H*\H_>H*} (8.44)

where
Ho=present wave height
H_ = previous wave height
H*=specified wave height.

Then, the transition matrix can be written as
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P=(Pn Pl2) (8.45)
VP21 P22/

For the wave group problem, we consider successive large wave
heights; hence, we are interested only inp22. In addition, to evaluate the
mean length of the total run (defined later) we may need£n . Use of the
transition matrix may not be required. This is pointed out by Longuet-
Higgins (1984), who developed formulae for evaluating various statistical
properties associated with wave groups in a concise form, although the
results are essentially the same as those developed by Kimura. In the fol-
lowing, Longuet-Higgins' derivation is outlined using his notation; p+
and p_ for the conditional probabilities p22 andp n , respectively, defined
in Eq. (8.44).

Let us first evaluate the probability of n successive waves exceeding a
specified wave height H*. The first wave exceeds H* followed by (n— 1)
waves higher than //*, and then the next one must be smaller than //*.
Hence, the probability of n successive waves exceeding //* is evaluated as

p(Hn)=pn
+~l(l-p+) (8.46)

The average number of n successive waves exceeding H* as a group,
which is called the mean length of high runs and denoted by H, can be
obtained as

~ P+) (8.47)

The variance of the length of high runs is given by

Var[/JJ =E[H*] - (E[Hn])2=p+/(l -p+) (8.48)

Next, let us consider a total run of length n in which the first y waves
exceed H* (high run of lengthy), and the remaining (n—j) waves are lower
than H* (low run of length n—j) as illustrated in Figure 8.18. This situa-
tion is the same as ra+ and ra_ in Figure 8.12. The probability of occur-
rence of this situation is evaluated as

^ j =p{~\\ -p+)pT*-l(l -p.) (8.49)

By accumulating the probabilities fromy= 1 toj=n—l> the probability
of a total of n waves during two wave groups can be obtained as

p-) (8.50)

Then, the average number of high waves exceeding H* during the time
interval of two wave groups which is called the mean length of total runs,
denoted by G, is given by
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(8.51)
j=2

It is noted that Eq. (8.51) pertains to the time interval between two
crossings of the specified level H* which is equivalent to ra (not raG)
shown in Figure 8.16.

As shown in Eq. (8.51), the average number of exceedances can be
evaluated from a knowledge of the probabilities p+ andp_, and these can
be evaluated from the joint probability distribution of two wave heights.
By assuming that the wave height is twice the wave amplitude, the joint
probability density of wave amplitudes f(AlyA2) may be used for evalu-
ating p+ and/?_. By letting A*=HJ2, we have

p + = | jf(AlyA2)dAx dA2

A, A*

A, A,

P-
0 0

0 A*

o° A

(

0 0

(8.52)

As the joint probability density function f(Al:>A2) of two wave ampli-
tudes, Kimura (1980) considers the two-dimensional Rayleigh probabil-
ity distribution given in Eq. (3.58) in Section 3.4. The joint probability
density function has a parameter k which has a functional relationship
with the correlation coefficient of two random variables, wave amplitudes
in the present case. Kimura's approach is to obtain the correlation
coefficient between consecutive wave amplitudes from data, and then

Level H

( n - j ) WAVES

Fig. 8.18. Diagram showing a total run of length n in which the first j waves
exceed H (Longuet-Higgins 1984).
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evaluate the parameter k necessary to compute the joint Rayleigh prob-
ability distribution. In this procedure, the functional relationship
between y and k is given in terms of complete elliptic integrals.

On the other hand, Battjes and van Vledder (1984) and Longuet-
Higgins (1984) point out that the parameter k can be evaluated for a
given spectrum by the formula developed by Rice (1944). This enhances
application of the Markov chain approach for evaluating group wave
characteristics to a great extent. In support of this statement, let us
rewrite the joint Rayleigh probability distribution applicable for wave
amplitudes^ and^42 developed in Section 3.4:

A2+A2
2 I h A A \

M ^ (8.53)A2) =7f^ e2(I=*K J 0 M -
(\-k2)m2 \l-k2 m

where

0

-I
0

A = I S(cS) sm(a)—lx))Tdo)

" • /

m0 = S((o) dc

o
Ixj =mean frequency
Io = modified Bessel function of zero order.

Let two amplitudes be separated by a time interval r. We assume that
the separation equals 2TT/O), then Al and A2 represent, to a good
approximation, the amplitudes of two successive waves. Thus, the &-value
associated with two successive wave amplitudes can be evaluated for a
given wave spectrum from Eq. (8.53).

Functional relationships between various parameters associated with
the Markov chain approach and a narrow-band wave spectrum have been
analytically studied in depth by Longuet-Higgins, whose results are
summarized below.

(a) The parameter k involved in Eq. (8.53) can be approximated using
moments of the spectrum by

k2=l-47i2v2 (8.54)

where p2=(m2m0/m?) — 1 and m- is the/th moment of the spectrum.
(b) A functional relationship between the correlation coefficient y and

k2 can be obtained as shown in Figure 8.19. From the figure we have
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\k2 for&2<0.6
y~ll-(l-^2)/(4-7r) for* dose to 1 (8.55)

(c) The conditional probabilities px and p2 can be evaluated as a func-
tion of k as follows:

(8.56)

where £is the dimensionless specified levels*/Vm0.
By applying the &2-value given in Eq. (8.54), we have

(8.57)

Thus, the mean length of high runs, / / , given in Eq. (8.47) and the mean
length of total runs, G, given in Eq. (8.51) become

(8.58)

0.8 10

Fig. 8.19. Correlation coefficient y as a function of the parameter k2 (Longuet-
Higgins 1984).
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Although the above equations provide approximate values, only three
moments (m0, mx and m2) of the spectrum are sufficient to evaluate the
mean lengths.

The probabilities of n successive waves exceeding a specified level are
computed by Kimura from data generated by numerical simulation tech-
niques, and the results are compared with data shown in Figure 8.20. In
these computations, the mean wave height is taken as the specified level
for wave groups. The solid line in the figure shows the results computed
by Kimura, while the broken line shows those computed by Longuet-
Higgins' method through spectral analysis. In the latter computations,
high and low frequency portions of the spectrum are filtered. As can be
seen, there is almost no difference in the results computed by Kimura and
Longuet-Higgins, and the computed results show good agreement with
observations.

Figure 8.21 shows the probability of a total of n waves during two wave
groups (total runs). The solid circles are the values obtained from
Kimura's simulation data. Again, the results computed by Kimura and
Longuet-Higgins (the solid line and broken line, respectively) are almost
identical, and they agree very well with the observed data.

With respect to the effect of the shape of the wave spectrum on wave
group properties, Medina and Hudspeth (1990) showed a functional

0.6

o.i

0.01

0.001

\

\
\

\
V

\
1

\

\

\

\

4 6
N

10

Fig. 8.20. Probability of n successive waves exceeding the mean wave height
(Kimura 1980 and Longuet-Higgins 1984).
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Fig. 8.21. Probability of a total of n waves during two wave groups (Kimura
1980 and Longuest-Higgins 1984).

relationship between the correlation coefficient of the joint Rayleigh dis-
tribution, y, and the spectral peakedness parameter, Qp given in Eq.
(3.40). On the other hand, van Vledder (1992) studied the statistical
properties of various shape parameters and the correlation coefficient
between successive wave heights from analysis of field data and numer-
ically simulated data. He concluded that the parameter k in Eq. (8.53) is
the most significant parameter contributing to the effect of spectral shape
on wave grouping.

8.3 FREAK WAVES
An unusually high single wave event observed offshore is commonly
called a freak wave. This definition is somewhat obscure since neither the
cause of the occurrence nor criteria to define freak waves have been clar-
ified. Freak waves have been observed only rarely and these observations
occurred under unexpected condition: hence, only few measured data are
available.

Several studies addressing freak wave have been carried out to date.
These include Klinting and Sand (1987), Sand et al (1990), Yasuda et al
(1992), Thieke etal. (1993), Kimura and Ohta (1994). Perhaps, the most
reliable existing data are those obtained at Gorm field in the North Sea
where water depth is 40 m. Figure 8.22 shows an example of a recorded
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Table 8.3. Maximum wave height, significant wave height, and water depth
obtained from available freak wave records (Sandet al. 1989).

Location

Water Significant
depth wave height
(m) H8(m)

Recorded
max. height

HmJHs Registration

Hanstholm
Gorm field

Gulf of Mexico

20
40

100

3.5
6.8
7.8
5.0
5.0
5.0
4.8

10.4
10.0

7.6
17.8
16.5
12.0
11.3
11.0
13.1
19.4
23.0

2.2
2.6
2.1
2.4
2.3
2.2
2.7
1.9
2.3

Wave-rider
Radar

Wave staff

15.0

-5, 9000.0

Fig. 8.22. Example of recorded freak wave (Sand et al. 1990).
9100.0

freak wave at the Gorm field (Sand et al. 1990). As seen, a single isolated
high wave with a sharp peak is the characteristic feature of a freak wave.

Table 8.3 is taken from Sand et al. (1990) which gives the water depth,
significant wave height, and recorded maximum wave height obtained
from available freak wave records. Visually obtained data listed in the
original table are not included in Table 8.3. As seen in the table, some
records show a very high ratio of maximum wave height, //max, to signifi-
cant wave height, Hs.

Freak waves have been defined by some as waves having a ratio of wave
height to significant wave height, HIH^ greater than 2.0. This criterion,
however, may not be valid, in general. This is because the extreme wave
amplitude expected to occur in a one hour observation of a storm with a
risk parameter a=0.01 is on the order of 4.3-4.7 times the rms value as
shown in Figure 6.5. This value converts to 2.15-2.35 for HmaJHs.
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(a) (b)
Fig. 8.23. Example of transient waves generated in the experimental tank: (a)

Davis and Zarnick (1964); (b) Kjeldsen (1982).

Examples listed in Table 8.3 have very large values o£HmJH^ but many
of them are not unusually large from the viewpoint of extreme value sta-
tistics. The freak wave, however, is unique in that it occurs as a single
large wave in a group of waves of much less severity.

In considering the mechanism of the occurrence of a single isolated
large wave, it may be of interest to note that an isolated wave of large
height, called a transient wave, can be generated in the experimental tank.
The transient wave can be produced by generating a wave train, the fre-
quency of which decreases linearly with time from high to low frequencies
in such a way that the fast moving (low frequency) waves catch up to the
slower ones (higher frequency waves) to coalesce at some point in space
and time producing a very large wave which may be thought of as a unit
impulse.

The wave profile to be generated by the wave maker which would
produce coalescence of the wave at a specified location was analytically
obtained by Davis and Zarnick (1964). The authors' purpose in gener-
ating a transient wave in the experimental tank was to obtain the fre-
quency response function of a marine system to waves.

The transient wave test technique is applied for generating a single
freak wave by Kjeldsen (1982). The prime purpose of his experiments,
however, is not to clarify the mechanism of freak waves, but to generate a
freak wave for wave breaking studies.

Examples of transient waves generated in experimental tanks are
shown in Figure 8.23. The transient wave (a) is generated by Davis and
Zarnick, while the transient wave (b) is generated by Kjeldsen. If we con-
sider some analogy exists between the transient wave and freak wave, then
wave period, in particular a sequence of periods, appears to play a signifi-
cant role in the mechanism of the occurrence of freak waves observed at
sea.



NON-GAUSSIAN WAVES (WAVES IN
FINITE WATER DEPTH)

9.1 INTRODUCTION
The statistical analysis of ocean waves discussed in previous chapters
assumes that waves are a Gaussian random process; namely, waves are a
steady-state, ergodic random process and displacement from the mean
obeys the normal probability law. Verification that deep ocean waves are a
Gaussian process was given in Section 1.1 through the central limit
theorem. It has also been verified through observations at sea as well as in
laboratory tests that waves can be considered a Gaussian random process
even in very severe seas if the water depth is sufficiently deep.

The above statement, however, is no longer true for waves in finite
water depth. Time histories of waves in shallow water show a definite
excess of high crests and shallow troughs as demonstrated in the example
shown in Figure 1.1 (b), and thereby the histogram of wave displacement
is not symmetric with respect to its mean value, as shown in Figure
1.2(b). Thus, waves in shallow water are considered to be a non-Gaussian
random process. This implies that ocean waves transform from Gaussian
to non-Gaussian as they propagate from deep to shallow water.

Figure 9.1 shows a portion of wave records measured simultaneously
at various water depths during the ARSLOE Project carried out by the
Coastal Engineering Research Center at Duck, North Carolina. In the
figure, examples of records are shown at five locations where the water
depth ranges from 2.23 to 24.7 m at the time of measurement. The signif-
icant wave height at the water depth 24.7 m was 4.28 m in this example.
As can be seen in the figure, wave profiles transform from Gaussian to
non-Gaussian with decreasing water depth.

It is noted, however, that transformation of wave characteristics from a
Gaussian to a non-Gaussian random process as shown in Figure 9.1 may
not always occur. If the sea severity is very mild, waves in shallow water
are also a Gaussian random process. In other words, the non-Gaussian
characteristics of waves depend on the water depth and sea severity. This
subject will be discussed in detail in Section 9.4. In any event, the concept
of a non-Gaussian random process is mandatory for statistical prediction
of random waves in finite water depths.

255
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Although considerable attention has been given to stochastic predic-
tion of Gaussian waves, comparatively little is known of non-Gaussian
waves and their associated probabilistic prediction. Probability density
functions applicable to wave displacement from the mean observed in
finite water depth have been developed using three different approaches.
These non-Gaussian probability density functions are presented in
Section 9.2, while the probability density functions applicable to peaks
and troughs of non-Gaussian waves are discussed in Section 9.3.

uu

20

Fig. 9.1. Transformation of wave profiles from deep to shallow water.
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9.2 PROBABILITY DISTRIBUTION OF NON-
GAUSSIAN WAVES

The probability distribution applicable to non-Gaussian waves has been
developed using three different approaches: (a) application of the
Hermite polynomial which is orthogonal to the normal distribution; (b)
assumption that wave profiles can be represented by Stokes second and
third-order expansion; and (c) application of the stochastic solution of a
nonlinear system to a random input.

9.2.1 Gram-Charlier series distribution
For analysis of non-Gaussian waves, Longuet-Higgins (1963b) derives
the probability density function by applying the cumulant generating
function. The density function is essentially the same as that developed
by Gram and Charlier (Cramer 1966, Kendall and Stuart 1961) by
applying the concept of orthogonal polynomials, and that developed by
Edgeworth (1904) in connection with the probability law of error.
Consequently, the probability distribution is commonly called the
Gram-Charlier series probability distribution. In the following, the
derivation of the Gram-Charlier series distribution will be introduced
first, and then derivation of the distribution pursuing Longuet-Higgins'
approach will be presented. The latter approach is concise and explicit,
and thus lends itself to the derivation of the joint non-Gaussian probabil-
ity density function for two random variables.

The Gram-Charlier probability density function is developed by
applying the concept of polynomials orthogonal with respect to the prob-
ability density function (hereafter called the orthogonal polynomials). In
particular, the Hermite polynomials are orthogonal with respect to the
normal probability distribution.

Let us first give the definition of Hermite polynomials. The Hermite
polynomial of degree w, denoted Hn(z)> is denned as a function which sat-
isfies the relationship given by

^-^={-\YHn{zyt-z2'2 w=<U,2,... (9.1)

From the above equation, we have the following Hermite polynomials:

HQ(z) = l
H1(z)=z
H2(z)=z2-l
H3(z)=z3-3z
H4(z)=z*-6z2+3
H5(z)=z5-10z3+15z
H6(z)=z6-15z4+45z2-15,etc. (9.2)
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Let a(z) be the standardized normal (Gaussian) probability density
function given by

{ ) ^ 2 n ( 9 3 )

It can be shown that the polynomials (1/Vn!) Hn(z) are orthogonal
with respect to the standardized normal probability density function
a(z). In order to elaborate on this statement, let us consider integration of
the product of two Hermite polynomials and the standardized normal
probability density function. That is,

00

Hm(z)Hn(z)a(z)dz=(- DJHJz) £^ a(z)dz

(9.4)

The first term becomes zero. For integration of the second term, we use
the following property of Hermite polynomials:

£/*„(*) = „•#„_,(*) (9.5)
By repeating the integration by parts and by repeatedly applying the

property given in Eq. (9.5), we have

The above equation may be written as

The relationship given in Eq. (9.7) implies that (1/V«!) Hn(js) is a
sequence of orthogonal polynomials with respect to the standardized
normal distribution a(z). With this in mind, let us express an arbitrarily
given standardized probability density function/^) in the following form:
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a0a(z) + a1aV(z)+a2a(2)(z)+a3a^(z) + ... (9.8)

where

an = constant (unknown)

a(z) = standardized normal probability density function.

From the definition of the Hermite polynomial given in Eq. (9.1), we
have

f(z) = a(z) {a^izi-a^(z)+a2H2(z)-aiH3(z) + ...

, J H0(z) #,(*) H2(z) H
=aiz) lc° T"c TT+^ S T - ^

n=0
where cn=Vwl an (unknown).

In order to determine the unknown constant, Cn, we multiply f(z) by
Hn(z)l\fn\> and integrate over the domain (-00,00). Since Hn(z)/\/n\ is
orthogonal with respect to a(z)> we have

z=(-iycn (9.10)n\J

Thus, the constant cn in Eq. (9.10) can be determined from

Here, the probability density function/^) is a standardized probability
density function. Hence, we have

co= \ H0(z)f(z)dz=l
— 00

c, = - f Hl(z)f(z)dz=-m1 = 0

c,=
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C\=~Tm HJz)f(z)dz=-V3!

c4=^Tf^^)/(^)d^^TK-3)

C5=T7̂ T I H5(z)f(z)dz=^(m5-10m3), etc. (9.12)

where m.=jxh moment of the standardized random variable.
From Eqs. (9.10) and (9.12), the probability density function of a

standardized random variable can be expressed as

This is called the Gram-Charlier series of Type A probability density func-
tion.

It may be of interest to express Eq. (9.13) in terms of cumulants rather
than moments so that the density function can be directly compared with
that derived by Longuet-Higgins which will be presented later. The para-
meters m3y m4, m5, etc. are the moments of the standardized random vari-
able X. For a non-standardized random variable X which has the mean
value /JL and variance a2, the moment m. in Eq. (9.13) can be written in
the form of central moments,

E [ ( * M V ] = E[(*MV]
> <J> (E[(xM)2])y/2 K

Furthermore, the central moments can be expressed in terms of the
cumulants of a random variable. That is,

E [ (x - /JL) 2] = k2=variance

4 2
E[(x-n)5]=k5+10k3k2
E[(x-fji)6]=k6+15&4&2+ \0kl+\5k\, etc. (9.15)

where k.=cumulants.
Thus, the probability density function of a non-standardized random

variable X can be obtained from Eqs. (9.13), (9.14) and (9.15) in terms
of cumulants. In particular, for a random variable with zero mean and
variance a2, the probability density function becomes
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/(*)=- \ 1 + H ( ) + H ( ) +

<TV2TT 3! V 4! i 5!

where

Note that A3 and A4 are called the skewness and kurtosis, respectively
(see Appendix A). Equation (9.16) is also called the Gram-Charlier series
of Type A probability density function.

Next, the non-Gaussian probability density function developed by
Longuet-Higgins based on the cumulant generating function will be pre-
sented.

In probability theory, the logarithm of the characteristic function,
denoted by «K0* is defined as the cumulant generating function. It can be
expressed in the form of a series where the coefficient of each term is the
cumulant k.. That is,

.7=1 J'

Let X be an arbitrary random variable; for the present problem X is the
displacement of non-Gaussian waves. In general, the probability density
function of X can be written as a function of the characteristic function
cf)(t) as

(9.18)

Hence, from Eqs. (9.17) and (9.18), we can express/(x) as

Ax) =— I exp{<K0-ice}dt

| | | U (9.19)

Next, let us standardize the random variable Xby letting

and define
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t=s/Vk~2

Ay=*/(V^y (9.21)
Then, the probability density function of the standardized random vari-
able Z can be obtained from Eq. (9.19) as

\ ^2+2i05)}*expf % T
— oo

We may expand the second exponential term of the integrand as
follows:

exp

. (9.23)

Hence, the standardized probability density function given in Eq.
(9.22) becomes

(9.24)

The integration involved in the above equation can be written as
follows:

— (s2+2ks) (is)wds

(9.25)
J

where Hn(z) is the Hermite polynomial of degree n.
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Thus, the standardized non-Gaussian random process may be
expressed in the following series form:

2!(3!) ( 9 - 2 6 )

This is the same probability density function given in Eq. (9.16) but
derived using a different approach.

If all cumulants k. and thereby A are zero, Eq. (9.26) is reduced to the
standardized Gaussian probability density function.

Bitner (1980) and Ochi and Wang (1984) have demonstrated that Eqs.
(9.16) and (9.26) reasonably accurately represent the probability distrib-
ution of displacement of waves obtained in shallow water areas.
Unfortunately, however, the density function becomes negative for large
negative displacement. As an example, Figure 9.2 shows a comparison
between Eq. (9.16) and a histogram of wave displacement obtained at a
water depth of 2.18 m. The variance obtained from the data is 0.26 m2

which indicates a very severe sea state for this water depth. Five variations
of the probability density function with various combinations of the para-
meters A3, A4 and A5 in Eq. (9.16) are compared with the histogram. As
can be seen, (1) the histogram deviates substantially from the normal dis-
tribution, (2) the density function becomes negative for large negative
displacements, and (3) the addition of higher-order terms of the density

0.0
-2.0 -0.8 -0.4 0.0 0.4 o

WAVE DISPLACEMENT IN METERS
1.2 1.6 2.0

Fig. 9.2. Comparison between observed histogram^ normal distribution
(heavy line) and Gram-Charlier series distribution (water depth
2.18 m) (Ochi and Wang 1984).
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function does not necessarily yield better agreement with the histogram.
For example, the A5-term does not provide any improvement in the shape
of the distribution.

Another drawback of applying the Gram-Charlier series density func-
tion for statistical analysis of shallow water waves is that the wave height
probability density function cannot be derived from the Gram-Charlier
distribution. Note that for Gaussian waves, the Rayleigh probability dis-
tribution applicable to wave height is developed based on the normal
probability distribution representing the statistical properties of wave dis-
placements.

It is of interest to note the functional relationship between the two
parameters A3 and A4 shown in Figure 9.3, obtained from analysis of
waves in finite water depth. As can be seen in the figure, there is a general
trend that A4 increases with increase in A3, as illustrated by the average
line drawn in the figure. There is considerable scatter in the value of A4 for
A3 less than 0.2. These are values obtained from records taken at locations
where the water depth is relatively deep; on the order of 15 to 25 m.
Although the values of A4 vary considerably for A3 less than 0.2, the results
of plotting the probability density functions for each combination of A.

1.35 m
1.97 m

3.70 m
6.97 m
8.77 m
15.20 m

24.40 m

0.4 0.8 1.2 1.6

PARAMETER X,

Fig. 9.3. Parameter A4 as a function of A3 (Ochi and Wang 1984).
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and A4 show that the shape of the probability distribution is very close to
that of the normal distribution.

9.2.2 Distribution based on Stokes waves
Another approach to deriving the probability distribution of non-
Gaussian waves is to assume that they may be expressed as a Stokes
expansion to the second and third components and consider an ampli-
tude-modulated wave profile. This imposes a preliminary form on the
wave profile for derivation of its probability distribution, in contrast to
other approaches. Furthermore, the Stokes expansion is valid for waves
kh>l, where &=wave number, /z=water depth. Hence, there is some
reservation in applying Stokes theory for shallow water waves unless
the expansion includes higher-order terms. Irrespective of the short-
comings in this approach, the probability density function does not
have any negative portion as is the case for the Gram-Charlier series
distribution.

Following Stokes (1847), the wave profile may be expressed by

7]=- a2k+a cos x^— a2k cos 2̂ H— a3k2 cos 3^+...2 2 8
3

=a cos x+ a2k cos2^+- a3k2cos ?>x+... (9.27)
8

where
a=a(x>t) = amplitude
X=kx— a>t+€
k=(o2/g=wave number.

The amplitude, a, and phase, x> a r e both assumed to be slowly varying
random variables following the Rayleigh and uniform distributions,
respectively. Huang et al. (1983) derive the probability density function of
the wave displacement taking terms up to the third order of Eq. (9.27).
The derivation of the density function is outlined below.

The first and second moments of the displacement 17 can be obtained
as

_ 1 _ 3 -
:os*k=2 a+8

=- a2+- (a2)2k2=- a\l +~ a2k2) (9.28)
Z ~r Z Z

where a2=E[a2] =mean square value of the amplitude.
Then, the variance becomes
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l=-a2{\+a2k2) (9.29)

It is assumed from Eq. (9.29) that the mean square value a2 may be
written as 2a2 to a first-order approximation. Next, the wave displace-
ment 7] is standardized by

f=- — (9.30)

and define the random variables Zx and Z2 as follows:

^2 (a2/2) 1/2 (9.31)

Then, the joint probability density function of Zx and Z2 can be obtained
as

i r i I
(9.32)

Next, the wave displacement given in Eq. (9.27) may be standardized
and presented in terms of Zx and Z2. That is,

ak (9.33)
IX IX ~ O IV

where

By introducing an auxiliary random variable OJ=Z and by assuming
cr&<<C 1, Zj and Z2 are expressed as functions of £ and o> using the succes-
sive approximation method, and thereby the joint probability density
function /(£,a>) can be obtained from the joint density function f(ziyz2).
Then, by integrating f(£3(o) with respect to o) from — oo to o°, the probabil-
ity density function of the wave displacement /(£) can be derived as
follows:

—^= e~H£/2 J±?=+- ^^ 1=- (9 34)
V2TT [VR 8 N VF?\ { j

where

r=N{l-2ak£+(c

> 9

4
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Huang et al. write ak in the above equation as 2 77(0/A), where A is the
wavelength corresponding to the peak of the spectrum. Figure 9.4 shows
the density function given in Eq. (9.34) for various values of al\ ranging
from 0 to 0.05 in steps of 0.01.

Tayfun (1980) develops the probability density function of the
amplitude-modulated Stokes wave profile based on expansion to second
order not including the constant term. For this, Tayfun writes the wave
displacement in the following form:

77 = cos

(9.35)

where

X =kx—a)t

~aj = mean frequency=ml/mQ
wo=area under the spectrum
ml = first moment of the spectrum.

The root-mean-square (rms) value of the wave displacement is given
by

= y\m{
(9.36)

0.6r

GAUSSIAN
DISTRIBUTION

-3 - 2 - 1 0 I 2 3
DIMENSIONLESS DISPLACEMENT C

Fig. 9.4. Probability density functions of wave displacement developed based
on the third-order Stokes wave model as a function of cr/A3 ranging
from 0 to 0.05 in steps of 0.01 (Huang etal. 1983).
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By letting

the wave displacement can be non-dimensionalized as follows:

(9.38)
">7rms 71 2

The cumulative distribution function of z then becomes

(9.39)

Since w and v are statistically independent normal variates and have
zero mean, their joint probability density function is given by

f(u,v)= t-2(u2~v2) -oo<W<oo -oo<i;<oo (9.40)

and the cumulative distribution function F(£) becomes

^ | - i 8 } ] d T (9.41)

where
for £>
for £<

r = error function variable.

The evaluation of F(£) and its derivative /(£) requires numerical
integration. As an example, Figure 9.5 shows the probability density
function/(£) for k\rm0=0.3 compared with results obtained from simula-
tion. Included in the figure are the normal probability density function
and Gram-Charlier series distribution with parameters A3 and A4. These
parameters are given in terms of k, mQ and y as follows:

(9-42)

_

r3
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0.5

' SIMULATION

— TAYFUN

— GRAM-CHARLIER

GAUSSIAN

- 2 0 2 4
DIMENSIONLESS DISPLACEMENT C

Fig. 9.5. Comparison between probability density function developed based
on the second-order Stokes wave model and that obtained from
simulation data (Tayfun 1980).

As can be seen in the figure, the distribution of simulation data differs
significantly from the Gaussian distribution, but agrees well with the
density function evaluated from Eq. (9.41) as well as that evaluated by the
Gram-Charlier series distribution; the latter shows a small negative part
for large negative ^-values.

9.2.3 Distribution based on the concept of nonlinear system
As shown in Figure 9.1, wind-generated waves in deep water are consid-
ered to be a Gaussian random process, which transforms to a non-
Gaussian random process as waves propagate into shallow water. This
situation is likened to the response of a nonlinear system such as the
heaving motion of a tension-leg platform in a seaway. The magnitude of
heaving motion depends on the system's response characteristics as well
as on the severity of the input.

Now, for a nonlinear system whose response can be presented in the
form of two-term Volterra's stochastic series expansion, Kac and Siegert
(1947) analytically show that the output of the system can be presented in
terms of the standardized normal random variable as follows:

where y(t) is the output of a nonlinear system and z. is a standardized
normal variate.
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The parameters /3. and Â. are evaluated by rinding the eigenfunction
and eigenvalues of the integral equation given by

l) (9-44)

where
jK(a>pG>2) =H(a)li<o2)VS(<ol)S((o2)

if/(a)) = orthogonal eigenfunction
//(a>pCt>2) = second-order frequency response function

S(a)) = output spectral density function.

As can be seen, knowledge of the second-order frequency response
function //(wpW2) is necessary in order to solve the integral equation Eq.
(9.44). The frequency response function H((x)iy(o2) has been evaluated
analytically or experimentally for a given marine system, and from this
the nonlinear stochastic characteristics have been estimated (Naess
1985b, for example). There is no way, however, to evaluate H{o)vo)2) for
random waves in finite water depths.

In order to obtain the parameters /3. and A. in Eq. (9.43) from the wave
record, Langley (1987) evaluates the parameters based on .the concept of
wave-wave interaction by applying second-order wave potential theory,
and presents the functional relationship between the interaction
coefficients and the parameters /3 and A. in a concise matrix form.

The probability distribution of wave profiles in shallow water,
however, demonstrate an extremely skewed distribution associated with a
strong nonlinearity. In order to address this strong nonlinearity in waves,
Ochi and Ahn (1994) evaluate the nonlinear wave-wave interaction by
decomposing the wave spectrum into linear and nonlinear components
with the aid of bispectral analysis. Figure 9.6 shows an example of the
separation of linear and nonlinear components of a spectrum. Upon clar-
ifying the linear and nonlinear components in this manner, the parame-
ters /3 and A. are evaluated by applying Langley's matrix presentation, and
then the probability density function of wave displacement is numerically
evaluated based on the Kac-Siegert solution given in Eq. (9.43).

Figure 9.7 shows a comparison between the probability density func-
tion thusly computed by applying the Kac-Siegert solution and the histo-
gram constructed from data obtained in shallow water which indicates
strong nonlinear characteristics. As seen, the agreement between them is
excellent. Hence, it may be concluded that Eq. (9.43) can be applied for
evaluating the stochastic properties of waves with strong nonlinear
characteristics. Since the probability density function cannot be given in
closed form, the probabilistic prediction of other wave properties, such as
wave height, cannot be derived from it.



9-2 DISTRIBUTION OF NON-GAUSSIAN WAVES 271

One way to derive the probability density function given in Eq. (9.43)
in closed form is to present it as a function of a single random variable
instead of the summation of the standardized normal distribution and its
squared quantity. For this, let us present Eq. (9.43) as

Y=U+aU1 (9.45)

o
LU
CO

z

Io

Fig. 9,
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6. Separation of linear and nonlinear components of wave spectrum
evaluated from data obtained in shallow water (Ochi and Ahn
1994).
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Fig. 9.7. Comparison between probability density function computed based
on the Kac-Siegert solution and histogram constructed from wave
data obtained in shallow water (Ochi and Ahn 1994).
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where a is an unknown constant, and £7 is a normal variate with mean /x,*
and variance a2, both of which are also unknown. The value of these
unknowns will be determined by applying the cumulant generating func-
tion of Eq. (9.45) with that of the Kac-Siegert solution given in Eq.
(9.43). By writing Eq. (9.45) as

( 9-4 6 )

( 9-4 7 )

By taking the logarithm of the characteristic function and by expand-
ing it in a series of (ir), we have

the characteristic function of Yean be obtained as follows:

) (if)2

J

(9.48)

On the other hand, by taking the logarithm of the characteristic func-
tion of the Kac-Siegert solution, and by expanding it in a series of (ir), we
have

1 2N 2N R i2 i
1 ^ ^ . ^1 Pf 1
2i=l ;=1

2N

y = l

^T 6

2AT

2N 2N

y=i
A/ (i (9.49)

Here, the first term £A.= 0, since the mean value of Vis zero. From a
comparison of Eqs. (9.48) and (9.49), the following relationships can be
derived:

acr2+afjbi+JJL*=0
2N

+2
2N

y=i

y=i

+ 4 ( 9 - 5 0 )
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It should be noted, however, that the cumulant generating function
can generally be written in terms of cumulants as follows:

where ks are cumulants.
Hence, the three equations given in Eq. (9.50) represents the cumu-

lants &p k2 and k3y respectively. Therefore, if we have a wave record
obtained for a sufficiently long time (on the order of 20 minutes) and if we
let the mean value be the zero line, we have ^ = 0, and thereby k2 and k3
are equal to the sample moment E[y2] and E[y3], respectively. Thus, we
can determine the unknown parameters a, 0* and a2 simply by evaluating
the sample moments from the wave record y(t) and by applying the fol-
lowing relationships:

o*-2a2oi=E[y*]
2aai(3Sa2a2)=E[y3] (9.52)

Since the random variable U in Eq. (9.45) is a normal variate with
known mean /JL* and variance of, the probability density function of Yean
be derived by applying the technique of change of random variables from
U to Y. Unfortunately, the density function thusly derived vanishes at
y= — (l/4a) due to a singularity involved in the density function.

In order to overcome this difficulty, the functional relationship between
Yand U given in Eq. (9.45) is inversely presented such that the random
variable £7is expressed approximately as a function of Yas follows:

1
U=—(1— c~yaY) (9 53)

ya
where y is a constant: 1.28 for j ; ^ 0 , and 3.00 for j;<0. These values are
determined from an analysis of the functional relationship between non-
dimensionalized Y and £7, and are valid for a process with very strong
nonlinear characteristics.

By using the functional relationship given in Eq. (9.53), the following
probability density function of Yean be derived from the probability dis-
tribution of U which is a normal probability distribution:

1

fl.28 for y^0
y=\ (9.54)
7 [3.00 for y<0 V J

It is noted that the sample space of the normal variate U defined in Eq.
(9.53) is (-°°, IIya) instead of (—«v»). However, the truncation does not
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Fig. 9.8. Comparison of non-Gaussian probability density function and
histogram constructed from data obtained in shallow water (Ochi
and Ahn 1994).
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Fig. 9.9. Comparison of non-Gaussian probability density function and
histogram constructed from data obtained in deep water (Ochi and
Ahn 1994).
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affect the probability distribution since II ya is much greater than //,*
of the normal distribution with mean //,* and variance of. It is also noted
that Eq. (9.54) reduces to a normal distribution if a=0.

Figure 9.8 shows a comparison of the probability density function
given in Eq. (9.54) with the histogram constructed from wave data
obtained during a severe storm (variance=0.23 m2) at a water depth of
2.33 m. Included also in the figure is the normal probability density func-
tion for comparison.

Figure 9.9 shows a similar comparison for wave data obtained at a
water depth of 24.7 m with the variance of 1.07 m2. In this case, the water
depth is sufficiently great for the sea severity; hence Eq. (9.54) reduces to
a normal distribution and agrees well with the histogram.

9.3 PROBABILITY DISTRIBUTION OF PEAKS
AND TROUGHS

For non-Gaussian waves in finite water depth, the statistical properties of
positive wave displacement are different from those of negative displace-
ment. Thus, in principle, it is highly desirable to derive the probability
function applicable to peaks and troughs separately. Then, the probabil-
ity function of wave height may be obtained as the sum of two inde-
pendent random variables (peaks and troughs).

The probability distribution of wave peaks of non-Gaussian waves is
derived by Tayfun (1980) assuming that individual waves can be
expressed as a Stokes expansion to the second-order components given in
Eq. (9.27). The peaks of non-Gaussian waves are expressed in dimen-
sionless form as

2 (9.55)
v z

where
a = al\/2m0=dimensionless amplitude of Gaussian

waves
mQ = area under the wave spectrum
k =wave number.

Since the amplitude a obeys the Rayleigh probability distribution, the
probability density function of £ can be derived from Eq. (9.55) as a func-
tion of k\ZmQ. Figure 9.10 shows a comparison between the probability
density function of £ for k\/rnQ=0.14 and 0.28 with the Rayleigh distribu-
tion. As can be seen, the density spreads toward the higher values with
increase in the magnitude of h\frn{). It is noted, however, that the distrib-
ution of peaks and troughs are the same in this approach.

Arhan and Plaisted (1981), on the other hand, also developed the
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probability density function of peaks and troughs based on Stokes
expansion to the second-order components, but expressed the peaks and
troughs of non-Gaussian waves as follows:

where

(9.56)

e = +1 for peaks, and - 1 for troughs

2 \ 2 smh2kd)
d= water depth

The amplitude a in Eq. (9.56) follows the Rayleigh probability distrib-
ution with the parameter mQ1; i.e.

/(«)=- m01

mt

(9.57)
01

Note that the parameter m0l represents the portion of wave energy attrib-
uted to the first-order component, and Arhan and Plaisted theoretically
derived the following relationship with the total energy mQ:

*01 (9.58)

LINEAR (RAYLEIGH)

=0.14

k/m 0 =0.28

2 3

DIMENSIONLESS AMPLITUDE

Fig. 9.10. Probability density functions of peaks developed based on the
second-order Stokes wave model (Tayfun 1980).
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Thus, for a given wave spectrum having an area under the density
function of m0, the probabiity density function/(a) can be evaluated from
Eqs. (9.57) and (9.58), and therefrom the probability density function of
£ can be derived from the relationship given in Eq. (9.56). The density
function in dimensionless form becomes

where

coxhkd

Figure 9.11 shows a comparison between the cumulative distribution
function computed from Eq. (9.59) with that obtained from measured
data for a group of a-values ranging from 0.18 to 0.19. The data were
obtained in intermediate water depth.

For representing the probability density function of wave heights
observed in finite water depth, several probability distributions have been
applied or developed empirically. These include the generalized gamma
distribution (Ochi 1982), the truncated Rayleigh distribution (Kuo and
Kuo 1975, Goda 1975), Gluhovski distribution (Shahul Hameed and
Baba 1985), the Beta-Rayleigh distribution (Hughes and Borgman
1987), etc. Some of these distributions represent the histogram con-
structed from data very well.

For example, Figure 9.12 shows a comparison between the generalized

Rayleigh

0.5 0.9 0.99 0.999
CUMULATIVE DISTRIBUTION

Fig. 9.11. Comparison of non-Gaussian probability distribution (solid line)
with observed data (dotted line) (Arhan and Plaisted 1981).
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0.64

0.48

0.32

0.16

1 2 3
WAVE HEIGHT IN METERS

Fig. 9.12. Comparison between histogram of wave height3 Rayleigh distribu-
tion (broken line) and generalized gamma distribution (solid line).

0 0.2 0.4 0 6 0.8 1.0 1.2 l'.4
WAVE HEIGHT IN METERS

Fig. 9.13. Comparison between Beta-Rayleigh distribution (solid line),
Rayleigh distribution (broken line) and histogram of wave
height (i/=0.5m3 water depth= 1.26m) (Hughes andBorgman
1987).

gamma distribution given in Eq. (5.4) in Chapter 5 and a histogram of
wave height constructed from data obtained in shallow water. The para-
meters involved in the distribution are determined for each set of data fol-
lowing the procedure given in Eqs. (5.6) and (5.7).

The following Beta-Rayleigh distribution is developed such that the
parameters of the distribution are given in terms of water depth, d> signif-
icant wave height, H^ and modal period of the spectrum, T . The func-
tional relationships between them are obtained from analysis of measured
data:
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where

J
k2-

P k2~k
kx =E[H*\/Hl
k2=E[H*]/H*

Hh = breaking wave height approximated by water
depths d

E[H2] =(1/2)

=(1/2)

Tp = modal period of wave spectrum
Hs = significant wave height.

The distribution has an upper value determined by the breaking
wave height which is taken by Hughes and Borgman (1987) to be
approximately equal to the water depth at a specific location. A com-
parison between the Beta-Rayleigh distribution, Rayleigh distribution
and the histogram of wave height obtained from data is shown in Figure
9.13.

In regard to extreme values of non-Gaussian waves, it is a general
trend that the extreme value estimated based on the Rayleigh distrib-
ution is greater than the measured extreme value. The results of sta-
tistical analysis of waves observed during the ARSLOE Project show
that the Rayleigh distribution overpredicts the magnitude of large
wave heights (Ochi 1982). The same trend is also observed in data
obtained elsewhere. Forristall (1978), for example, compares the
probability of exceeding a given wave height for the Rayleigh distrib-
ution and measured data as shown in Figure 9.14. In the figure, the
triangles are data obtained during storms in the Gulf of Mexico, the
solid line is the Rayleigh distribution, while the dashed line is the
empirically fitted Weibull distribution. It is mentioned in Forristall's
paper that the data show a definite excess of high crest points and a
lack of low trough points. This indicates that the waves are a non-
Gaussian random process for the associated water depth, and
thereby the wave height distribution deviates from the Rayleigh dis-
tribution.
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2 4 6
DIMENSIONLESS WAVE HEIGHT X

Fig. 9.14. Comparison of probabilities exceeding a specified wave height
(Forristall 1978).

9.4 TRANSFORMATION FROM GAUSSIAN TO
NON-GAUSSIAN WAVES

As demonstrated in Figure 9.1, waves which are considered to be a Gaussian
random process in deep water transform to a non-Gaussian random process
as they propagate from deep to shallow water. The question then arises as to
the location where the transition takes place in the nearshore zone. The
transition must depend on water depth as well as sea severity.

From analysis of wave data obtained during the ARSLOE Project, it is
found that o/D=0.06 (cr=rms-value of waves at a specific location,
D=water depth at that location) is the limiting condition below which
waves are considered to be a Gaussian random process (Robillard and
Ochi 1996). Based on this limiting condition for a Gaussian random
process, Figure 9.15 shows the borderline between Gaussian and non-
Gaussian waves as a function of significant wave height, / / , and water
depth, D. The solid line in the figure indicates o/D=0.06 (or, assuming a
narrow-band wave, DIH=4.17), and the dotted line indicates the skew-
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ness A3=0.20 which is the criterion established from analysis using the
Gram-Charlier series probability distribution as mentioned in reference
to Figure 9.3. The open circles in the figure are independently obtained
from data at various water depths for which the computed parameter a of
the density function given in Eq. (9.54) is zero or very close to zero, the
criterion for a Gaussian wave. The results obtained from three different
analyses for evaluating a non-Gaussian random process as a function of
significant wave height and water depth show good agreement; therefore,
it may be concluded that D=4.11Hs is the limiting water depth below
which waves are considered to be a non-Gaussian random process.

By using the relationship given in Figure 9.15, the transition of sea sever-
ity associated with depth variation in the nearshore zone may be estimated. It
should be noted, however, that this estimation is valid only for water depths
not exceeding 25 m where the data are acquired and analyzed. The basic
concept of the estimation is shown in Figure 9.16. It is assumed that the sea
severity is constant in the area where the water depth is greater than 4.17//§.
This water depth is denoted by DQ in the figure. By letting the variance of
random waves at an arbitrary location in the nearshore zone be o2 where the
water depth is D, we may obtain the value of cr/D as a function of DQ.

Figure 9.17 shows the functional relationship between cr/D and the
dimensionless depth D/DQ obtained from analysis of data. The relation-
ship is given by

O<D/DO<1 (9.61)

£ 2

cr/ D = 0.06

. ( D / H = 4.17) .

I" Non-Gaussian 1
|_random processj

N^Ochi&Wang
(1984)

= 0.20

Gaussian
random process

10 15 20

WATER DEPTH IN METERS

25 30

Fig. 9.15. Limiting water depth below which non-Gaussian characteristics are
expected as a function of significant wave height (Robillard and
Ochi 1996).
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The two lines in the figure are ±5 percent deviations from the mathemat-
ical formulation which covers all data.

Thus, from knowledge of the significant wave height in deep water in the
nearshore zone (but not exceeding 25 m), the limiting water depth DQ where
the transition to non-Gaussian waves takes place is estimated from Figure
9.15, and thereby the variance representing the sea severity at a specified
depth, D, in the nearshore zone can be estimated based on Eq. (9.61).

GAUSSIAN RANDOM PROCESS

H

Fig. 9.16. Sketch indicating the estimated transition of sea severity due to
water depth variation in the nearshore zone.

0.30

<r/D

0.14

0.10

0.06

Fig. 9.17. Relationship between sea severity and water depth ratio as a function
of dimensionless water depth (Robillard and Ochi 1996).



APPENDIX A FUNDAMENTALS OF
PROBABILITY THEORY

1 Probability distribution and density function

DEFINITION. The real-valued function F(x) defined as

F(x)=Pr{X^x} (A.I)

is called the probability distribution function or cumulative distribution func-
tion of the random variable X.

PROPERTIES.
(i) F( - oo) = 0, F(oo) = 1, where the sample space is ( - oo,oo)
(ii) F(x+h)^F(x) for h>0
(iii) F(x) is continuous at least from the left for a discrete-type

random variable.

DEFINITION. For a continuous type random variable X, if there exists
a non-negative function/(*;) such that F(x) can be expressed by

X

F(x)=ff(x)dx (A.2)

then/(x) is called the probability density function of X.

PROPERTIES.

(i) f(x)^0 and is integrable over every real value in sample space

(ii) (f(x)dx=l. (A3)
(ii) (f(x)dx=l.

NOTES. For a discrete-type random variable X, the probability mass func-
tion p(x) is defined as

283
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where p(x•)=Pr {X= xt] and

(*.)=1

2. Joint probability distribution and density function of two
random variables

DEFINITION. The real-valued function F(x3y) defined as

F(xsy)=Fr{X^xiY^y} (A.4)

is called the joint probability distribution function of X and Y. A real-valued
function f(x>y) is called the joint probability density function of X and Fif it
satisfies the condition

y x

F(x,y)= f ff(x,y)dxdy (A.5)

PROPERTIES.

(i)
(ii) Integrable over all real values in the sample space

00 00

(iii) f (f(xy)dxdy=l. (A.6)

DEFINITION. For a joint distribution function f(x>y) of two random
variables X and Ys the marginal distribution function of X and Fis defined
as

Fy(y) =F(^y) =Pr{X<oo,y^} (A.7)

For continuous-type random variables, the marginal density function of
Xand Fcan be obtained as

)=ff(y)=ff(x#)dx (A.8)

DEFINITION. Two random variables X and F are said to be statistically
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independent if the joint probability distribution is equal to the product of
the individual distribution functions. That is5

F(x#)=F{x)F(y) (A.9)
Hence, for continuous-type random variables, we have

f(x#)=f(x)f(y) (A. 10)

3. Conditional probability distribution and density function

DEFINITION. The conditional probability distribution function of a random
variable Y given that a random variable Xhas the value x is defined by

F(y\X)^{Y^y\X=x} ̂ ^ i ^ (A.I 1)

The conditional probability density function of a random variable Y given
that Xhas the value x can be written as

f(x,y)dy

The conditional probability density function of three random variables
, Y and Z may be defined as

(A. 13
jf(x,y,.z)dz

f(x,y,z)dydz

DEFINITION. Let S* be a subset of the sample space of a continuous
random variable Xwith a probability density function/(x). The following
conditional distribution of X in sample space S* is called the truncated
probability distribution:

f(x)dx
F*(x)=Pr {X^xpsTeS*} =-^ (A. 15)

jf(x)dx
s*
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The truncated probability density function, denoted by/*(:*;) is defined
as

Mx)= JK ' where xE.S* (A. 16)
jf(x)dx

NOTES. For a discrete-type random variable X with the probability
mass function p(xt), the truncated probability mass function is defined as
follows

p*(x) = P ^ where x-G^ (A. 17)

4. Expected value

DEFINITION. The expected value (or expectation) of a function w(x) of a
random variable Xis defined as follows:

u(x)p(x?) for a discrete-type random variable

f
u(x)f(x)dx for a continuous-type random variable

(A.18)

where «S stands for the sample space.

DEFINITION. The expected value of u(x)=xk is called the kth moment of
the random variable X. In particular, for k=l, E[x] is called the mean
value.

DEFINITION. The expected value of u(x) = (x—/jL)k> where /x=mean
value is called the kth central moment of the random variable X. In particu-
lar, for k=2, E[(x-/x)2] is called the variance, denoted by o2. The square-
root of the variance, ar, is called the standard deviation.

PROPERTIES.
(i) VarM=E[x2]-(E[x])2

(ii) Var [ax] = a2Va.r [x] where a=constant
(iii) Var[x+a]=Var[x]. (A. 19)
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DEFINITION. A random variable X that has a zero mean, E[x] =0, and
unit variance, Var[x] = 1, is called the standardized random variable. For a
random variable X with a mean /JL and variance a2,

Z = ^ (A.20)
a

is called the standardized random variable of X. The random variable Z has
zero mean and unit variance.

DEFINITION. Let Xbe a random variable with mean /x and variance a2.
The following parameters are often considered for representing the shape
of a probability density function:

Coefficient ofvariation=a/fi
Skewness=E[(x-ix)3]/o3

Kurtosis=E[(x-/jiy]/oA-3 (A.21)

NOTES. Some define the kurtosis as E[(x—ix)*\l ofi (Johnson and Leone
1964, for example). See also the definition in terms of cumulants.

DEFINITION. The covariance of two random variables X and Y, denoted
Cov[x,j>] or (Txy) is defined by

CovIXy] =E[(x—/ubx)(y—fiy)] =E[xy] —E[x]E[y] (A.22)

If Cov[x,j>] =0, then the two random variables are called uncorrelated.

DEFINITION. The correlation coefficient of two random variables X and Y,
denoted pxy> is defined by

(A.23)
War[x] ax(Ty

PROPERTIES.

(i) - l ^ v ^ l
(ii) If two random variables are statistically independent, then

they are uncorrelated. However, the reverse is not always
true.

5. Characteristic function and moment generating function

DEFINITION. The function </>(r)=E[eiDC], where t is a real number is
called the characteristic function of the random variable X. That is,
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/ •

p(xj) for a discrete-type random variable

etxf(x) dx for a continuous-type random variable
(A.24)

where »S stands for the sample space.

PROPERTIES.
(i) <f)(t) always exists

(ii) 0(0) = 1
(iii) |<Kr)|^l +

(iv) cf)(—t) = <£*(£), the complex conjugate of cf>(t)
(v) EM = (l/i0k/dOU
(iv) Let (j>x(t) be the characteristic function of a random variable

X. Then, the characteristic function of Y=aX+b> where a
and b are constants is given by exp{ifo} <f>x(at).

(vii) Let the characteristic functions of two statistically inde-
pendent random variables X and Ybe 4>x(t) and 4>y(t), respec-
tively. Then, the characteristic function of the sum of two
random variables Z=X+ Yis given by <f>z(i) = <j>x(i)<f>y(i).

DEFINITION. The function M(r)=E[erx], where t is a real number is
called the moment generating function of the random variable X. That is,

p(Xj) for a discrete-type random variable

etxf(x) dx for a continuous-type random variable
(A.25)

/

where *S stands for the sample space.

PROPERTIES.

(i) m(t) does not always exist

(ii) E M = ^m(t)dtr
t=0

DEFINITION. The logarithm of the characteristic function of the
random variable X is defined as the cumulant generating function, denoted
by (/<r). That is,
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(A.26)
5=1

The coefficients ks are called cumulants or semi-invariants of the random
variable X.

PROPERTIES.
(i) *!=EM
(ii)

6. Transformation of random variables

THEOREM. Let Xbe a continuous random variable with the probability
density function fx(x). Let Y be a new random variable having a single-
valued functional relationship with X given by y=g(x). The probability
density function of Y is then given by

f(y)=fMy)] dy

where h(y) is the inverse function ofy=g(x).
For a discrete random variable X, we have

(A.27)

(A.28)

NOTES. If Y=aX2 where 0<X<&>3 and a is a positive constant, we have
V I V ^ l 0<y<oo.

THEOREM. Let fxy(x^y) be the joint probability density function of the
random variables X and Y. Consider new random variables U=g1(X,Y)
and V=g2(X>Y)> where the functions gx and g2 have continuous partial
derivatives with respect to x and y. Then, the joint probability density
function of LTand Vis given by

f(u,v) =fxy[hl (u,v)yh X

dhx

du
dh2

du

dhx

dv
dh2

dv
(A.29)

where x=h1(u:>v) andy=h2(x,y) are the inverse functions of u=gl(xyy) and
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THEOREM. Let the random variable Z be the sum of two continuous-
type random variables X and Y with the joint probability density function
fxy(x,y). The probability density function of Z becomes

f(z)=jfxy(x,z-x)dx= (fxy(z-y,y) dy (A.30)
SX Sy

where sx and sy are the sample spaces of the random variables X and Y,
respectively. If X and Y are statistically independent, then we have

M=jfx(x)fy(z-x)dx=jfx(z-y)fy(y) dy (A.31)
SX Sy

Care must be taken in the integration domain of sx and sy3 since it is often
necessary to divide the sample space into two domains for integration.

THEOREM. Let the random variable Z be the difference of two random
variables X and Y (Z=X— Y), with the joint probability density function
fxy(x>y). Then, the probability density function of Zis given by

/(*)= (fxy(*>x-z)dx=jfxy(z+y>y) dy (A.32)
SX Sy

If X and Yare statistically independent,

f(z)={fx(x)fy(x-z) dx=jfx(z+y)fy(y) dy (A.33)
SX Sy

THEOREM. Let the random variable Z be the product of two random
variables X and Y with the joint probability density function fxy(x,y).
Then, the probability density function of Zis given by

/(*)=jj^fxy(x,z/x) dx=j-^fxy(z/y#) dy (A.34)
Sx Sy

If X and Y are statistically independent,

^ (A.35)

THEOREM. Let the random variable Z be the ratio of two random vari-
ables X and Y (Z=XIY) with the joint probability density function
fxy(x>y). Then, the probability density function of Zis given by
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y (A.36)

If X and Y are statistically independent,

f(z)=j\y\Uzy)fy(y) dy (A.37)
Sy

7. Some discrete-type probability distributions

DEFINITION. Binomial distribution

where
p+q=l andrc=0, 1,2, ...,n (A.38)

(i) E[x]=w
(ii) Binomial distribution with small £ and with large n can be

approximated by the Poisson distribution with \x=np.

DEFINITION. Poisson distribution

where
x= 0,1,2,..., 00 (A.39)

(i) E[*]=/i,Var[*]=/i,
(ii) The parameter fi is often not constant; instead, it is a random

variable having a gamma probability distribution. In this case,
the probability distribution becomes the negative binomial
distribution.

8. Some continuous-type distributions

DEFINITION. Normal distribution

^ ) } (A-40)
(i) E[x]=ia,Var[x]=a2
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(ii)

where

THEOREM. Central limit theorem. Let XVX2> ...>Xnbzn independent
random variables having unspecified but identical distributions with
mean /JL and variance o2. Then, the average value (l/w)2?=i x-has a normal
distribution with mean \x and variance cfi/n if n is large.

DEFINITION. Log-normal distribution

) = exp - -

[x] =exp{iu,+c72/2}

exp - - ^ ^ = 0<x<oo

expfcj2} - 1 )
(A.41)

DEFINITION. Chi-square (x2) distribution with r degrees of freedom

E[x]=r Var[x]=2r (A.42)

DEFINITION. Gamma distribution

f(x)= Amxm~1exp{-A%} 0<x<oo (A.43)
r(rn)

(i) E [x] = mlk, Var [x] = m/A2

(ii) The gamma distribution with m= 1 is called the exponential
distribution

(iii) Generalized-gamma distribution

exp {- (Ax)c} 0<x<°o

DEFINITION. Weibull distribution

f(x)=cXcxc~1 exp{-(Ax)c}
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(A.44)

DEFINITION. Rayleigh distribution

fix) = (2x/R) exp {- x2/R}

=VTTR/2 Var[x] = 1 — LR (A.45)

THEOREM. Let AVA2> ...,An be mutually exclusive events and let B be
any other event. We have then

™ (A.46,

The above formula is called Bay es* theorem. Pr{A{\B} may be interpreted
as the probability of event A{ after B has occurred; hence it is called poste-
rior probability. On the other hand, Pr{^4 •} is the probability of the event A{
before the information about B is available, therefore it is called a priori
probability.



APPENDIX B FUNDAMENTALS OF
STOCHASTIC PROCESS
THEORY

In general, there are four different types of stochastic processes depend-
ing on whether the state and time of a process are continuous or discrete.
The following presentation is limited to continuous stochastic processes
both in time and space except for the Markov chain process.

1. Stochastic process

DEFINITION. A set (family) of random variables consisting of n ele-
ments of records taken simultaneously at a specified time r,
{lx(t),2x(i)...,nx(t)}, is called an ensemble of a stochastic process (or
random process).

DEFINITION. A stochastic process x(t) is said to be an ergodicprocess if
all statistical properties of the ensemble are equal to those for a single
record x(t) taken for a sufficiently long period of time. If this restricted
condition is limited to the mean and covariance, then the stochastic
process is called a weakly ergodic random process. In this case, we have

1 n

X{t) — fl} {*X{t+ T) — /Jb}

T

=Km-({x(t)-iL}{x(t+T)-iL}dt (B.I)
0

DEFINITION. A stochastic process x(t) is said to be a weakly stationary
process if its mean value is constant and its covariance function depends
on a time shift T for all t. That is,

lim - fit) dt= constant

294
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lim - {x(t) - //,} {*(r+ T) - /n} dt

(B.2)

where R(T) is called the auto-correlation function.
Ocean waves are considered to be a weakly steady state (stationary)

ergodic random process.

DEFINITION. A steady-state random process x(t) is called a narrow-
band random process if the spectral density function (defined later) is
sharply concentrated in the neighbourhood of a specified frequency (o0.
The narrow-band random process x(t) is generally presented as

x(t)=A(t) cos{ayH-e(r)} (B.3)
Note that the amplitude A[t) and phase e{t) are random variables, but the
frequency w0 is a constant.

DEFINITION. A steady state ergodic random process x{t) is said to be
a Gaussian (or normal) random process if a set of randomly sampled dis-
placements from the mean value is normally distributed.

NOTES. The profile of ocean waves in deep water is known to be normally
distributed with zero mean and a certain variance depending on sea severity.

DEFINITION. A stochastic process x{t) is said to be a Markov process if
it satisfies the following conditional probability:

Fr{x(tn)<xn\x(tl)=xvx(t2)=x2,...,x(tn_l)=xn_l}
=PrWO<x>(fB . 1 )=Vi} where h<t2<...<tn (B.4)

The Markov process implies that the conditional probability of a
random process x(t) =xn at time tn> given that its value at some earlier time
is known, depends only on the immediate past value at tn_x and is inde-
pendent of its history prior to tn_v The state and time of a Markov
process can be discrete as well as continuous. In particular, the Markov
process with a discrete state is called a Markov chain, while that with a
continuous state is called a diffusion process.

2. Spectral density function

DEFINITION. The spectral density function (spectrum) of a random
process x(t) is defined as
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(B.5a)

where X(co) = Fourier transform of x(t).
In terms of frequency / , we have

Sxx(f)=\im^\X(f)\2 (B.5b)

THEOREM. The time average of energy of a random process x(t)>
denoted as Px> can be presented with the aid of Parseval's theorem as
follows:

Px=jsxx(co)da>=jsxx(f)df (B-6)x=jsxx(co)da>=j

THEOREM. For a steady state ergodic random process x(t), its auto-
correlation function Rx(r) and spectral density function Sx((o) or Sx(f)
are related by the Fourier transform. This is called the Wiener-Khintchine
theorem. That is,

00 00

l r 2 r
Sxx(M) =~ Rxx(T) e - i c o T d r = - RXX(T) COS cordr

7TJ 7TJ
—oo 0

00 00

RXX(T) =- [ Sxx(co) eiwTdo>= (sxx(a)) COS wrdco (B.7a)

- o o 0
00 CO

Sxx(f) =2JRXX(T) e- i 2^dr=4 (RXX(T) cos277frdr

x(f) cos 277/Vd/ (B.7b)

NOTES. The auto-correlation function and spectral density function of
derived random processes are as follows:

(i) Velocity process x(t)

a>) Sxx(f) = (27if)2Sxx(f) (B.8)

(ii) Acceleration process x(t)



APPENDIX B 297

Sxx(a» = <o*Sxx(a>) Sxx(f) = (2nfYSxx(f) (B.9)

DEFINITION. The cross-spectral density function (cross-spectrum) of
two random processes x(t) and y(t) is defined as

where X*(a/), X*(f) are the conjugate functions of X(oS) and X(f),
respectively.

PROPERTIES.
(i) The Wiener-Khintchine theorem is also applicable to the

cross-spectrum.
(ii) The cross-spectrum is a complex function in contrast to the

auto-spectrum. The real and imaginary parts of the cross-
spectrum are referred to as the co-spectrum, Cxy(a)), and the
quadrature spectrum, Qxy((o), respectively. That is,

) (B.ll)

(iii) The co-spectrum is an even function, and we have

Cxy(-<o) = Cxy(a>)=Cyx(<o)=Cyx(-a)) (B.

(iv) The quadrature spectrum is an odd function, and we have

QyX(-o>) = -Qyx(«>) = Qxy(co) (B.I 3)

(v) By using the properties given in the above equations, we can
derive the following relationship:

Sxy(-co)=Sly(w)=Syx(co) (B.14)

where S*xy(a)) is the complex conjugate of Sxy(o)).

DEFINITION. The two-dimensional auto-correlation function of a
random variable x(r), denoted by M^r^r^, is defined by

Mx(Tl,T2)=E[x(i)x(t+Tl)x(t+T2)]
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x(i)x(t+ T^)x(t+ r2) dt (B. 15)

-T

PROPERTIES.

=Mx(T1-T2,-T2)=Mx(-T1,T2-T1)=Afx(T2-T1,-T1) (B.16)

DEFINITION. The two-dimensional spectral density function of a
random variable x(t) is called the bispectrum^ and is defined as

1
Ty / \ 1 •,__ "Vf \ "VY \ "V* / j^ \IJ[Q)I+(JL)O)—lim ^ \ ( Ct>i )J\. { (Or, )A (W1T"Ct>o)

=Hm ^X(Wl)X(co2)X(co3) (B. 17)

where o>1H-6>2"'"a>3=0 andX*(<y) is the conjugate ofX((o).

PROPERTIES.
(i) The Wiener-Khintchine theorem can also be applied to

M{TVT2) and B{o)vo)2). That is,
00 00

B(iovw£=— f f M(T13T2) e-^i^i+^^dT! dr2

00 00

Mr^r2)=~( JB(a>l9a>J e^n^^dto, da>2 (B.18)

(ii) Since there are six two-dimensional auto-correlation function
for a given TX and T2) there exist six bispectra for a given a>l
and w2 having the same value. These are
B{a)v o)2) =B(a)2,a>]) =B(a>ly — col — o)2)
=B(—(ol — (O2i(jt)x) =B(o)2, -u)x- (x)2) =B(-o)l- (o23 (o2) (B. 19)

(iii) Bispectrum is a complex function; hence, there exists a con-
jugate function for each bispectrum. That is,

Following this property, there are six conjugate bispectra.
The absolute value of each of the twelve bispectra is the same.
Hence, it is sufficient to evaluate the bispectrum only in the
positive octant domain given by 0^
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(iv) From Eqs. (B. 15) and (B. 18), we have
00 00

M(0fi)=E[x3(t)] = f (BiovoJda)! &a>2 (B.20)
0 0

The above equation implies that the volume of the bispec-
trum B(a)l9(o2) yields the third moment of the random process
x(t). Hence, six times the integrated volume of B((ov(o2) in
the positive octant domain yields the third moment.



APPENDIX C FOURIER TRANSFORM AND
HILBERT TRANSFORM

1. Fourier transform

DEFINITION. The following transformation between the time and fre-
quency domain is called the Fourier transform pair> and denoted by

X(a>)= (x(t) e~iMdt
— oo

00X ( r ) = i / X ( w ) e " d w (al)
— 00

For the frequency/in Hz, the Fourier transform pair is given by

X(f)= {x(i) e-i2^dt
— oo

00

x(t) = [X(f) e2^df (C.2)
— 00

NOTES.

(i) If x(i) is a real-valued even function, then the Fourier trans-
form pair is given by

X(oS)=2 I x(t) cos cjtdt
o

00

x(t) =-(x((x))coso)td(x) (C.3)
TT J

0

(ii) If x(t) is a real-valued odd function, we have

300



APPENDIX C 301

X(o)) = -2 I x(i) sin cotdt= - 2 I

x(t) =—(x((o)smo)tda) (C.4)

PROPERTIES. Let x(t)++X(a)). Then3 we have the following properties,
(i) Linearity

(ii) Change of sign

x(-t)^X(-o))=Xk((o) (C.6)

(iii) Time shifting

x(t-t0)++X(<o) e-iwro (C.7)

(iv) Frequency shifting

x(r)eiwo^X(w-wo) (C.8)

(v) Time scaling

() (C.9)

(vi) Symmetry

X(t)++2ijx(-a>) (CIO)

(vii) Frequency convolution

where X1(ai)*X2(<o)= (X^OJ- A)X2(A)dA (C.ll)

(viii) Time convolution

(C.12)where x1(r)*x2(t)= ( " ^ ( I - T ^
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(ix) Time differentiation

(x) Frequency differentiation

2. Hilbert transform

DEFINITION. Let x(t) be a real-valued function in the interval
-oo<x<oo. The Hilbert transform o£x(t), denoted x(t)> is defined as

77 J t—

NOTES. The right side of Eq. (C.I 5) is a convolution integral of x(t) and
1/77*.

PROPERTIES.

(i) Linearity

Hilbert T.

(ii) Successive Hilbert transform

Hilbert T. {x(t)} = -x(t) (C. 17)

(iii) Orthogonality
00

( x(t)x(t) dt=0
— 00

(iv) Convolution

Hilbert T . ^ r )

(C.18)

(v) Fourier transform ofx(t)

( -iX(cS) forw<0
0 w=0

LY(o>) co>0 (C.20)
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(vi) Inverse Hilbert transform
00

x(t) = -[ X
(_.du (C.21)

—00

APPLICATION. Let z(t) be a random process defined by
z(t)=x(t)+ix(t)

z(t) may be written as

z(t)=p(i)exp{i<l>(t)}

Then, the envelope process p(t) is given by
l(t)}m (C.22)
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asymptotic extreme value statistics, 165
Type I distribution, 167
Type III distribution, 170

auto-correlation function, 15, 295
two-dimensional, 53

auto-spectral density function, 17, 295
average wave height, 38
average zero-crossing frequency, 39
average zero-crossing period, 39, 115

bandwidth parameter, 69
Bayes' (Bayesian) theorem, 293

application to directional spectra, 212
application to long-term sea state, 163

binomial distribution, 291
bispectral analysis, 52
bispectrum, 53, 298
breaking wave, 218

breaking criteria, 218
energy loss, 229
probability of occurrence, 222
Type I and II breaking, 222

central limit theorem, 292
central moment, 286
characteristic function, 287
characteristic value, 151
chi-square distribution, 292
circular normal probability distribution,

209,217
cloverleafbuoy, 185
co-spectrum, 21,297
coefficient of contingency, 133
coefficient of variation, 287
conditional probability distribution, 285
confidence coefficient, 95
confidence interval, 95
contingency table, 130
correlation coefficient, 287
covariance, 287
cross-correlation function, 19
cross-spectral density function, 20, 297
cumulants, 260, 289
cumulant generating function, 261, 273,

288
cumulative distribution function, 283

directional waves, 175
energy spreading formulations, 216
energy spreading function, 181, 190

directional wave spectra, estimation of,
195

Bayesian method, 212
eigenvector method, 205
extended maximum likelihood method,

199
iterative eigenvector method, 206
iterative maximum likelihood method,

204
maximum entropy method, 207, 210
maximum likelihood method, 196

directional wave spectra, measurements,
176

floating buoys, 180
pressure and current meters, 188
wave probe array, 176

energy spreading function, 180
ensemble, 294
entropy, 207, 211
envelope process, 65

probability distribution of time duration
exceeding a certain level, 239

equilibrium range, 27
ergodic random process, 14, 294

weakly ergodic, 294
estimator, 91

maximum likelihood, 92
minimum variance, 92
unbiased, 92

expected value, 286
exponential distribution, 292
extreme value

basic concept, 149
design extreme value, 155, 156
probable extreme value, 152

extreme wave height
estimation from data, 154
non-stationary sea state, 164
stationary sea state, 151

Fourier transform, 300
freak waves, 252
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frequency,
average zero-crossing, 39
mean, 39
modal, 38

fully developed sea, 27

gamma distribution, 292
generalized gamma distribution, 127,

292
Gaussian random process, 295
^Gaussian waves, 2

goodness-of-fit test, 99
chi-square test, 99
Kolmogorov-Smirnov test, 101

Gram-Charlier series distribution, 260,
263

group waves, 232
envelope process approach, 235
Markov chain approach, 246
number of occurrences, 245
probability distribution of time

duration, 245
time interval between groups, 244

half-cycle excursion, 84
Hermite polynomials, 258
Hilbert transform, 65, 302
hurricane-generated sea, 137

extreme wave height, 147
relationship with wind speed, 140
wave height, 147
wave spectra, 141

initial probability density function, 150
interquartile range (IQR), 117

joint probability density function, 284
joint probability distribution of

positive maxima and time interval, 110
significant wave height and period,

130
successive wave amplitudes, 76
two wave amplitudes, 73, 77, 249
wave amplitude and period, 108
wave height and direction of

energy travel, 118
wave height and period, 109

kurtosis, 261,287

level of significance, 95, 100
L'Hopital's rule, 160
likelihood function, 92
log-normal distribution, 292
long-term distribution of

sea severity, 123
significant wave height, 123
wave height, 88

marginal distribution, 284
Markov process, 295

diffusion process, 295
Markov chain, 295

maximum likelihood estimation, 92
Rayleigh distribution parameter, 95

mean frequency, 39
mean length of high runs, 247, 250
mean length of total runs, 248, 250
mean period, 39
modal frequency, 39
modal period, 39
moment generating function, 288

narrow-band random process, 60, 295
negative maxima, 67
negative minima, 67
non-Gaussian distribution

distribution based on a nonlinear
mechanical system, 269

distribution based on Stokes wave
theory, 265

Gram-Charlier distribution, 257, 260,
263

non-Gaussian waves, 255
non-narrow-band random process, 66

probability density function, 69, 70
normal distribution, 291

estimation of variance, 94, 98
truncated distribution, 70

normal random process (see Gaussian
random process), 295

number of waves
short-term, 69, 88, 115
long-term, 89

order statistics, 149
ordered sample, 149

Parseval theorem, 16
peak enhancement factor, 45
peak shape parameter, 44
peak-to-trough excursion (wave height), 78
period

average zero-crossing, 39, 115
mean, 39, 115
probability distribution, 114

pitch-roll buoy, 181
point spectrum, 175
Poisson distribution, 291
positive maxima, 67

probability density function, 69, 70
probability distribution function, 70,

71
positive minima, 67
posterior probability, 163, 293
priori probability, 162, 293
probability density function, 283
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probability distribution
definition, 283
binomial, 291
chi-square, 292
exponential, 292
gamma, 292
generalized gamma, 292
log-normal, 292
normal (Gaussian), 291
Poisson, 291
Rayleigh, 62, 293
Weibull (three-parameter), 125
Weibull (two-parameter), 125, 292

probability distribution of
daily largest significant wave height,

170
half-cycle excursions, 84
long-term wave height, 88
maxima, 66
non-Gaussian waves, 257
peak-to-trough excursions, 78
positive maxima, 70, 71
significant wave height, 123
wave amplitude, 62
wave period, 115

probability mass function, 283
probable extreme value, 151
PUV-meter, 188

quadrature spectrum, 21, 297

random process, 13
ergodic, 294
mathematical presentation, 8
steady-state (stationary), 14
time derivative of, 25
weakly ergodic, 294
weakly (covariance) steady-state, 14

Rayleigh distribution, 62, 293
confidence bands of the parameter, 97
estimation of parameter, 93
two-dimensional, 77

return period, 160
risk parameter, 154
root-mean-square (rms) value, 93, 94

scatter diagram, 130
semi-invariant, 289
significant wave height, 5, 35, 81

probability distribution, 123
seasonal fluctuation, 136
time series analysis, 135

skewness, 261,289
spectral analysis, 13

higher-order, 52

spectral density function (spectrum)
definition, 17,295
directional, 175
modification for moving system, 50
moments, 38
point, 175
uni-directional, 175
velocity and acceleration, 25

spectral formulation
as a function of a)~5, 36
JONSWAP, 42
Pierson-Moskowitz, 33
six-parameter, 39
TMA,48
two-parameter, 35

spectral bandwidth parameter, 69
spectral peakedness parameter, 72
spectral width parameter, 73, 106
spectrum for moving system, 50
standard deviation, 286
standardized random variable, 287
stationary random process, 14

weakly stationary, 294
statistical independence, 285
stochastic analysis, 13
stochastic processes, 13
sup (supremum), 101
swell, 6

time domain analysis, 9
total phase, 65
transfer function, 199
transformation of Gaussian to non-

Gaussian waves, 279
transformation of random variable, 289
transient wave, 253
truncated probability distribution, 286
Type I and II excursions, 84, 223

uncorrelated random variables, 287
uni-directional spectrum, 175

variance, 286

wave breaking (see breaking wave), 218
wave group (see group waves), 232
wave-number frequency spectrum, 23
wave-number spectrum, 23
wave-number window function, 201
wave-probe array, 176
wave spectrum (see spectral density

function), 17,295
weakly steady-state random process, 14
Weibull distribution, 125, 296
Wiener-Khintchine theorem, 18, 296

two-dimensional, 53


