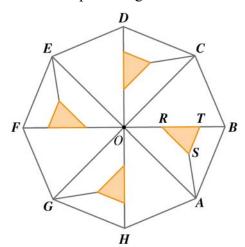
Proposta de teste de avaliação [março – 2019]					
Nome:			100		
Ano / Turma:	N.º:	Data:			
			PE Date.		
		(0.1 1 0.1 2)			
O teste è constituid	lo por dois caderno	os (Caderno 1 e Caderno 2).			
Utiliza apenas cane	eta ou esferográfica	a, de tinta azul ou preta.			
É permitido o uso o	de calculadora no C	Caderno 1.			
Não é permitido o	uso de corretor. De	eves riscar aquilo que pretendes q	ue não seja		
classificado.					
Para cada resposta,	identifica o item.				
Apresenta as tuas r	espostas de forma	legível.			
Apresenta apenas u	ıma resposta para c	cada item.			

As cotações dos itens de cada caderno encontram-se no final do respetivo caderno.

Caderno 1


(É permitido o uso de calculadora.)

Caderno 1 Página 2 de 11

Proposta de teste de avaliação [março - 2019]

1. As velas do moinho de vento apresentado na fotografia estão representadas no esquema seguinte.

Sabe-se que:

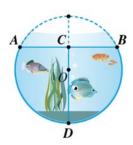
- [ABCDEFGH] é um octógono regular;
- os triângulos [*OAB*] e [*RST*] são semelhantes;
- [*OA*] // [*RS*].
- **1.1.** Indica a imagem do ponto *C* pela rotação de centro *O* e amplitude 135°.
- **1.2.** Para além da informação dada no enunicado, sabe-se que $\overline{OB} = 4$ m e $\overline{RT} = 1,5$ m. Seja P_1 o perímetro do triângulo [OAB] e P_2 o perímetro do triângulo [RST]. Assinala o número que representa $\frac{P_2}{P_1}$.

0,375	2,667	1,125		0,889
-------	-------	-------	--	-------

- **2.** Considera a expressão $(n-1)^2 + (n+1)^2$, sendo n um número natural.
- **2.1.** Completa a tabela ao lado.
- **2.2.** É possível obter na 2.ª coluna da tabela um número ímpar? Explica a tua resposta.
- **2.3.** Resolve a equação $(n-1)^2 + (n+1)^2 = 2180$.

n	$(n-1)^2 + (n+1)^2$
1	4
2	10
12	
13	
•••	•••

Caderno 1 Página 3 de 11


3. No dia 14 de março, de cada ano, comemora-se o Dia do π, número irracional que tem muitas aplicações. Como exemplo de uma dessas aplicações temos a resolução do seguinte problema.

Um aquário tem a forma de parte de uma esfera com 50 cm de diâmetro. A altura da água no aquário é 32 cm.

Determina, em cm², a área da superfície superior da água no aquário. Apresenta o resultado arredondado às centésimas.

Sugestão: Considera a superfície da água um círculo e atende ao esquema apresentado a seguir.

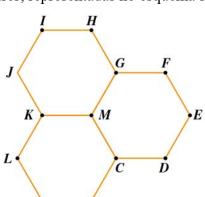
FIM (Caderno 1)

	Item						
	Cotações (em pontos)						
1.1	1.1 1.2. 2.1. 2.2. 2.3. 3. Total						
5	6	5	6	8	8	38	

Caderno 1 Página 4 de 11

Caderno 2

(Não é permitido o uso de calculadora.)


Caderno 2 Página 5 de 11

Na resposta aos itens de escolha múltipla, seleciona a opção correta.

Escreve na folha de respostas o número do item e a letra que identifica a opção escolhida.

4. Na decoração de uma parede são utilizadas três prateleiras iguais com a forma de hexágonos regulares, representadas no esquema seguinte.

4.1. Qual dos seguintes vetores é igual a $\overrightarrow{CM} + \overrightarrow{BC}$?

·
A D
AB

$$\overrightarrow{MB}$$

$$\overrightarrow{LC}$$

$$\overrightarrow{CG}$$

4.2. Qual das seguintes isometrias transforma o segmento de reta [JK] no segmento de reta

[DE]?

|--|

Reflexão deslizante de eixo ME e vetor \overrightarrow{LD}

Translação de vetor \overrightarrow{JF}

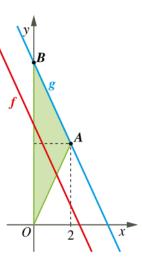
Rotação de centro *M* e amplitude 150°

5. Qual dos seguintes números representa 4^{-2} ?

_16

_ _

 $\frac{1}{8}$


6. Representa, na forma de notação científica, o número $\frac{10^{-13}}{2^7 \times 5^8}$.

7. Na figura, em referencial cartesiano Oxy, estão representadas duas funções afins $f \in g$.

Sabe-se que:

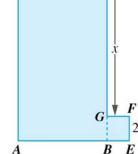
- os gráficos de f e de g são representados por retas paralelas;
- f(x) = -2x + 5
- o ponto A(2,4) pertence ao gráfico de g;
- o ponto B é a interseção do gráfico de g com o eixo Oy.
- **7.1.** Determina a medida da área do triângulo [*OAB*].
- **7.2.** Resolve a equação $(f(x))^2 16 = 0$.

8. Para um dado número real k, sabe-se que a expressão $4x^2 + kx + 4$ é equivalente a $(2x-1)^2 + 3(x+1)$.

Determina o valor de k. Apresenta o processo que te permite obter a resposta.

 No esquema abaixo está uma representação da piscina apresentada na fotografia.

Em relação ao esquema, para um certo valor de x, maior que 3, sabe-se que:


■ [*BEFG*] é um quadrado.

•
$$\overline{CG} = x$$
 e $\overline{DC} = x - 3$

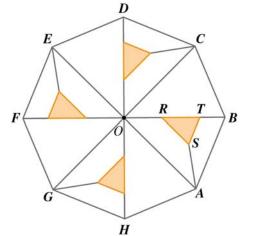
- **9.1.** Determina, na forma de polinómio reduzido, a expressão que prepresenta, no esquema, a área da superfície da piscina.
- **9.2.** Para um dado valor de *x*, em metros, sabe-se que o perímetro do esquema é 46.

Determina, neste caso, o valor de \overline{AC} . Apresenta o resultado, em metros, arredondado às centésimas.

FIM (Caderno 2)

	Item								
				Cotações (em ponto	s)			
4.1.	4.1. 4.2. 5. 6. 7.1. 7.2. 8. 9.1. 9.2. Total								
6	6	6	7	8	8	5	8	8	62

Caderno 2 Página 7 de 11


PROPOSTA DE RESOLUÇÃO

1.

1.1. A amplitude de cada um dos 8 arcos em que a circunferência fica dividida é dada por $\frac{360}{8}$, ou seja, 45°.

Assim, a amplitude do arco CF é 135°.

Resposta: O ponto *F*.

1.2. A razão entre os perímetros é igual à razão da semelhança dado que os triângulos são semelhantes.

$$\frac{P_2}{P_1} = \frac{1.5}{4} = 0.375$$

Resposta: 0,375

2.

2.1.

n	$\left(n-1\right)^2 + \left(n+1\right)^2$
1	4
2	10
•••	
12	$11^2 + 13^2 = 290$
13	$12^2 + 14^2 = 340$
•••	

2.2. Repara que:

$$(n-1)^2 + (n+1)^2 = n^2 - 2n + 1 + n^2 + 2n + 1 = 2n^2 + 2 = 2(n^2 + 1)$$

A expressão representa sempre o dobro de um número natural.

Assim, conclui-se que qualquer número da 2.ª coluna é par, não podendo ser ímpar.

2.3. $(n-1)^2 + (n+1)^2 = 2180$ $(n-1)^2 + (n+1)^2 = 2180 \Leftrightarrow 2n^2 + 2 = 2180 \Leftrightarrow 2n^2 = 2178 \Leftrightarrow n^2 = 1089$ Então, $n = \sqrt{1089} = 33$.

Proposta de teste de avaliação [março - 2019]

Resposta: Conjunto-solução: $S = \{33\}$

3. [*COB*] é um triângulo retângulo.

$$\overline{OD} = \frac{50}{2} = 25$$

$$\overline{OC} = 32 - 25 = 7$$

$$\overline{OB} = \overline{OD} = 25$$

 $\overline{CB} = r$ (raio do círculo)

Aplicando o Teorema de Pitágoras:

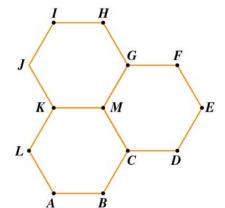
$$r^2 = 25^2 - 7^2$$
, ou seja, $r^2 = 576$.

Daqui resulta que $r = \sqrt{576}$.

Área do círculo: πr^2 , ou seja, 576π .

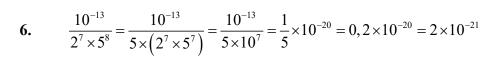
O valor da área, em cm², arredondada às centésimas é 1809,56.

Resposta: 1809,56 cm²


FIM (Caderno 1)

Caderno 2

4.


4.1. Resposta: \overrightarrow{CG}

4.2. Resposta: Reflexão deslizante de eixo ME e vetor \overrightarrow{LD}

$$4^{-2} = \left(\frac{1}{4}\right)^2 = \frac{1}{16}$$

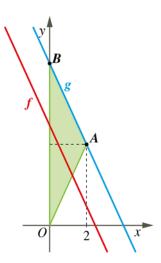
Resposta: $\frac{1}{16}$

Resposta: 2×10^{-21}

Proposta de teste de avaliação [março - 2019]

7.

7.1.
$$g(x) = -2x + k$$


Como A(2, 4) pertence ao gráfico de g, então g(2) = 4.

$$g(2) = 4 \Leftrightarrow -2 \times 2 + k = 4 \Leftrightarrow k = 8$$

Então, g(x) = -2x + 8.

O ponto B tem coordenadas (0,8).

Área do triângulo [*OAB*]: $\frac{2 \times \overline{OB}}{2} = \frac{2 \times 8}{2} = 8$

Resposta: 8 u.a.

7.2.
$$(f(x))^2 - 16 = 0 \Leftrightarrow (-2x+5)^2 - 4^2 = 0 \Leftrightarrow (-2x+5-4)(-2x+5+4) = 0 \Leftrightarrow$$

$$\Leftrightarrow$$
 $-2x+1=0 \lor -2x+9=0 \Leftrightarrow x=\frac{1}{2} \lor x=\frac{9}{2}$

Resposta: Conjunto-solução: $S = \left\{ \frac{1}{2}, \frac{9}{2} \right\}$

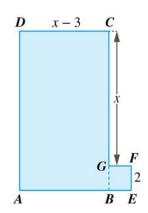
8.
$$(2x-1)^2 + 3(x+1) = 4x^2 - 4x + 1 + 3x + 3 = 4x^2 - x + 4$$
 (1)

Pretende-se que
$$(2x-1)^2 + 3(x+1) = 4x^2 + kx + 4$$
. (2)

Comparando (1) e (2), conclui-se que k = -1.

Resposta: k = -1

9.


9.1.
$$\overline{AD} = x + 2$$

Área da superfície da piscina é dada pela expressão:

$$(x-3)(x+2)+2^2$$

$$(x-3)(x+2)+2^2 = x^2+2x-3x-6+4 = x^2-x-2$$

Resposta: $x^2 - x - 2$

Proposta de teste de avaliação [março - 2019]

9.2. Perímetro do esquema é dado pela expressão:

$$\overline{EF} + \overline{FG} + \overline{GC} + \overline{CD} + \overline{DA} + \overline{AE} = 2 + 2 + x + (x - 3) + (x + 2) + (x - 1) = 4x + 2$$

Se o perímetro é 46, tem-se: 4x + 2 = 46.

$$4x + 2 = 46 \Leftrightarrow 4x = 44 \Leftrightarrow x = 11$$

Se
$$x = 11$$
, então $\overline{CD} = 8$ e $\overline{AD} = 13$.

Recorrendo ao Teorema de Pitágoras, tem-se: $\left(\overline{AC}\right)^2 = 8^2 + 13^2 = 233$.

Daqui resulta que $\overline{AC} = \sqrt{233}$.

$$\overline{AC} \approx 15,26 \text{ m}$$

Resposta: 15,26 m

FIM (Caderno 2)

Caderno 2 Página 11 de 11