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Abstract: Considering the evidence that essential oils, as well as safrole, could modulate bacterial
growth in different resistant strains, this study aims to characterize the phytochemical profile and
evaluate the antibacterial and antibiotic-modulating properties of the essential oil Ocotea odorífera
(EOOO) and safrole against efflux pump (EP)-carrying strains. The EOOO was extracted by
hydrodistillation, and the phytochemical analysis was performed by gas chromatography coupled to
mass spectrometry (GC-MS). The antibacterial and antibiotic-modulating activities of the EOOO and
safrole against resistant strains of Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa
were analyzed through the broth microdilution method. The EP-inhibiting potential of safrole in
association with ethidium bromide or antibiotics was evaluated using the S. aureus 1199B and K2068
strains, which carry genes encoding efflux proteins associated with antibiotic resistance to norfloxacin
and ciprofloxacin, respectively. A reduction in the MIC of ethidium bromide or antibiotics was
used as a parameter of EP inhibition. The phytochemical analysis identified 16 different compounds
in the EOOO including safrole as the principal constituent. While the EOOO and safrole exerted
clinically relevant antibacterial effects against S. aureus only, they potentiated the antibacterial activity
of norfloxacin against all strains evaluated by our study. The ethidium bromide and antibiotic assays
using the strains of S. aureus SA1119B and K2068, as well as molecular docking analysis, indicated
that safrole inhibits the NorA and MepA efflux pumps in S. aureus. In conclusion, Ocotea odorifera
and safrole presented promising antibacterial and antibiotic-enhancing properties, which should be
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explored in the development of drugs to combat antibacterial resistance, especially in strains bearing
genes encoding efflux proteins.

Keywords: ethidium bromide; bacterial resistance; biological activity; chemical composition

1. Introduction

Compounds generated by the secondary metabolism of plants constitute a large group of substances
with significant structural and functional diversity, among which essential oils are notable bioactive
compounds with antifungal, antiviral, antiprotozoal and antibacterial properties [1–4]. Essential oils
are complex mixtures of volatile and aromatic compounds found in a great variety of plant species,
acting in defense against infections, parasites, and other stress conditions [5,6]. In this context, terpenes,
which comprise the largest class of natural products, have been identified as very potent bioactive
compounds [7]. Thymol and carvacrol are notable compounds with potent antimicrobial activities.
These monoterpenes have been found as major constituents of essential oils obtained from a wide
variety of aromatic plants [8]. Accordingly, the essential oil of the leaves of Aloysia gratissima and
Baccharis reticulata, which have 1,8-cineole, germacrene D, α-pinene, β-caryophyllene, and β -pinene
as major constituents, demonstrated bactericidal activity against both Gram-positive (Staphylococcus
aureus and Bacillus cereus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacterial
strains [9,10].

Ocotea odorífera (Lauraceae) is a plant popularly known as “sassafras”. This species, native to
Brazil, is widely found in the Atlantic Forest where is used by the local communities in the treatment
of malaria and rheumatism. In addition, due to its remarkable chemical constitution and abundance
of essential oils, this plant has been used as a source of flavoring agents in the food industry [11–13].
Previous research with the essential oil of O. odorifera (EOOO) has identified safrole (C10H10O2) as a
major constituent, with unique chemical and pharmacological properties [14–16]. Accordingly, safrole
has been used in the production of fragrances and as a raw material in the synthesis of drugs and
insecticides [17]. While the effects of essential oils containing safrole against Gram-negative strains
of Escherichia coli, Salmonella thyphimurium, and Pseudomonas aeruginosa, have been demonstrated
previously, the antibacterial activity of this organic compound against Staphylococcus aureus strains
remains to be characterized [18–20].

S. aureus is a Gram-positive bacterium with remarkable pathogenicity. Accordingly, resistance
to antibiotics is currently a major worldwide public health problem [21]. Resistant bacteria are
characterized by the presence of natural or acquired mechanisms that confer survivability even in
the presence of high concentrations of antibiotics [22]. In this context, genetic modification of the
binding site, enzymatic inactivation, and active transport by efflux pumps (EPs) are recognized as
the principal mechanisms of resistance to antibiotics [23]. Importantly, EPs were found to mediate
antibiotic resistance in several strains of S. aureus. By actively transporting drugs to the extracellular
medium, these transmembrane proteins reduce the intracellular concentrations of antibiotics, resulting
in ineffective therapy [24].

Aiming to discover new weapons to combat bacterial resistance, researchers have been
dedicated to investigating the antibacterial and antibiotic-modulating properties of natural products.
Therefore, considering the evidence that essential oils and safrole could modulate bacterial growth in
different resistant strains, this study aims to characterize the phytochemical profile and evaluate the
antibacterial and antibiotic-modulating properties of the essential oil of Ocotea odoriferas and safrole in
EP-carrying strains.
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2. Results

2.1. Chemical Composition of the Essential Oil of Ocotea Odorífera

The extraction of the EOOO by hydrodistillation presented a yield of 2.31%, considering the dry
weight of the botanical material. Phytochemical analysis of the essential oil through gas chromatography
coupled with mass spectrometry (GC-MS) identified 93.1% of the total constituents, revealing the
presence of 16 different compounds, including safrole (77.9%), spathulenol (4.0%) and ortho-cymene
(3.0%) as major constituents (Table 1).

Table 1. GC-MS profile of the essential oil of Ocotea odorífera.

RI Compound %

936 Alpha-pinene 0.3
951 Camphene 0.2
978 Beta-pinene 0.1

1005 Alpha-felandrene 1.9
1026 Ortho-cymene 3.0
1033 1,8-Cineole 0.9
1145 Camphor 0.4
1189 Alfa-terpineol 0.3
1292 Safrole 77.9
1356 Eugenol 0.6
1414 (E)-caryophyllene 0.4
1476 Gama-muurolene 0.3
1487 Delta-selinene 0.5
1491 Bicyclogemacrene 1.1
1572 Spathulenol 4.0
1648 11-selinen-4-alpha-ol 1.2
Total composition identified 93.1

Legend: RI = Retention Index.

2.2. Antibacterial Activities of the EOOO and Safrole

The broth dilution method was used to determine the Minimum Inhibitory Concentration (MIC)
of the essential oil of Ocotea odorifera and its major constituent safrole against multi-resistant strains
of S. aureus, E. coli and P. aeruginosa. The antibacterial activity analysis revealed that both treatments
presented MIC values above 1024 µg/mL against E. coli and P. aeruginosa, indicating that they exert
clinically ineffective antibacterial activity against these strains. However, both treatments presented
MIC values of 512 µg/mL against S. aureus, suggesting that O. odorifera and its major constituent safrole
exert antibacterial effects against this Gram-positive strain (Table 2).

Table 2. Minimum Inhibitory Concentrations (MICs) of the EOOO and safrole.

Bacterial Strain EOOO MIC(µg/mL) SafroleMIC (µg/mL)

S. aureus 10 512 512
E. coli 06 ≥1024 ≥1024

P. aeruginosa 24 ≥1024 ≥1024

2.3. Antibiotic-Potentiating Effects of the EOOO and Safrole

As the EOOO and safrole presented variable intrinsic antibacterial activity, this study analyzed
the ability of these substances to modulate the antibacterial resistance to norfloxacin, a fluoroquinolone
antibiotic. To this end, the MIC of this antibiotic was calculated after culturing the same bacterial
strains in the presence or absence of the natural products at concentrations equivalent to their MIC ÷ 8.
As shown in Figure 1, The MIC values of norfloxacin against strains of S. aureus, P. aeruginosa and E. coli
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were significantly reduced by both EOOO and safrole, indicating that they present antibiotic-modulating
effects against all investigated strains. Interestingly, while these treatments did not present direct
antibacterial effects against P. aeruginosa and E. coli, they were found to modulate the antibacterial
resistance to norfloxacin observed for the Gram-positive and Gram-negative strains evaluated by the
present study.
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Figure 1. Minimum Inhibitory Concentration (MIC) of norfloxacin alone or in the presence of O. odorífera
or safrole against the multiresistant strains E. coli 06, S. aureus 10 and P. aeruginosa 24. **** p < 0.0001
indicates significant differences between groups. Statistical significance was determined by one-way
ANOVA and Bonferroni’s post-hoc test.

2.4. Effects of Safrole on the S. aureus NorA and MepA Efflux Proteins

The ethidium bromide assay has been widely used to evaluate the potential action of drugs as EP
inhibitors [25]. Therefore, it was evaluated whether safrole could modulate bacterial resistance in the
S. aureus 1199B and K2068 strains, which express the NorA and MepA EP, respectively. The association
with subinhibitory concentrations of safrole or chlorpromazine (control drug) significantly reduced the
MIC of ethidium bromide against both strains, indicating that safrole could act as an EP inhibitor in
some S. aureus strains (Figure 2).
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Figure 2. Minimum Inhibitory Concentration (MIC) of ethidium bromide alone or associated with
safrole or chlorpromazine (control) against S. aureus 1199B and K2068 strains. **** p < 0.0001 indicates
significant differences between groups. Statistical significance was determined by one-way ANOVA
and Bonferroni’s post-hoc test.

Following the promising effects demonstrated by safrole in the ethidium bromide test, the effects of
this compound as a modulator of bacterial resistance in association with norfloxacin and ciprofloxacin
was investigated. Of note, the 1199B and K2068 strains, respectively, bear resistance genes against
each of these antibiotics. To this end, the MIC of this antibiotic was calculated after culturing the same
bacterial strains in the presence or absence of the natural products at concentrations equivalent to their
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MIC ÷ 8. As shown in Figure 3, the association with safrole or chlorpromazine (control) significantly
reduced the MICs of both antibiotics, suggesting that the resistance to these drugs was, at least partially,
reverted by safrole, which possibly inhibits the NorA and MepA-mediated efflux mechanisms in
S. aureus.
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Figure 3. Minimum Inhibitory Concentration (MIC) by safrole in association with norfloxacin or
ciprofloxacin against S. aureus 1199B and K2068 strains. **** p < 0.0001 indicates significant differences
between groups. Statistical significance was determined by one-way ANOVA and Bonferroni’s
post-hoc test.

2.5. Molecular Docking and Analysis of Knteractions between Safrole and Efflux Proteins

The docking simulations determined the ligand-bound protein complexes with minimal energy and
the best stability. The best-docked ligand conformations were saved in output clusters 0. The docking
studies revealed that chlorpromazine and safrole presented the most favorable interaction energies (IE),
which were positively correlated with their MIC values, inhibition constants (Ki) and size-independent
ligand efficiency (SILE) for both NorA (Table 3) and MepA (Table 4) efflux proteins. Together, this data
shows that safrole has a more favorable interaction with the MepA protein compared to NorA.

Table 3. Molecular docking and analysis of interactions between EP inhibitors and NorA.

Compound MIC (µg/mL) IE (Kcal/mol) Ki (µM) SILE

Ethidium Bromide 128 −7.8 1.95 0.74
Chlorpromazine 64 −6.4 20.64 7.86

Safrole 80.63 −5.9 47.95 18.72

Legends: MIC = minimum inhibitory concentration; IE = interaction energy; Ki = inhibition constant; SILE = size
independent ligand efficiency.

Table 4. Molecular docking and analysis of interactions between EP inhibitors and MepA.

Compound MIC (µg/mL) IE (Kcal/mol) Ki (µM) SILE

Ethidium Bromide 128 −8.6 0.51 0.19
Chlorpromazine 85.33 −6.9 8.88 3.47

Safrole 64 −6.1 34.23 15.19

Legends: MIC = minimum inhibitory concentration; IE = interaction energy; Ki = inhibition constant; SILE = size
independent ligand efficiency.

Figure 4 shows the chemical structures of safrole (Figure 4A) and chlorpromazine (Figure 4B) in the
binding pockets of the NorA (Figure 4C) and MepA (Figure 4D) efflux pumps. Interaction maps were
used to predict the participation of amino acid residues in the binding of chlorpromazine (Figure 4E,F)
or safrole (Figure 4G,H) to these efflux pumps. The interaction maps show that chlorpromazine and
safrole similarly interact with the MepA binding site through anchors with Glu287, Leu366, Met363,
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Met341 Pro286, Val283, Leu282, and Val334, as well as with the NorA binding site through Gly342,
Val286, Ile258, Ala261, Ile341, Ala339, Leu325, and Phe283. The interactions between these amino acids
and safrole are given at nonpolar and partially hydrophobic regions involving Van der Waals, π-Allyl,
and Allyl interactions. On the other hand, the binding of chlorpromazine to the corresponding amino
acids predominantly involves Van der Waals, π-Allyl, Allyl, carbon hydrogen bond, π-π, π-sigma, and
π-sulfur interactions. These findings corroborate the evidence that safrole, as well as chlorpromazine,
could act as efflux pump inhibitors in the S. aureus SA1119B and K2068 strains.
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Figure 4. Chemical structures of Safrol (A) and Chlorpromazine (B). Binding poses of best stability of
safrole and chlorpromazine with the NorA (C) and MepA (D). Interaction maps showing the binding of
chlorpromazine to amino acid residues in the NorA (E) and MepA (F) binding sites. Interaction maps
showing the binding of safrole to amino acid residues in the NorA (G) and MepA (H) binding sites.

3. Discussion

The discovery of penicillin represented an important milestone in the therapy of bacterial diseases
and opened new perspectives for antibacterial drug development. Additionally, the introduction
of the last generation of antibiotics has had a significant impact on public health, contributing to
reduced morbidity and mortality rates caused by bacterial infections. However, the irrational use of
this therapeutic classes has contributed to the selection of multidrug-resistant bacterial strains, against
which conventional antibiotics may become ineffective. Therefore, the discovery of new antibiotics is
crucially important to ensure the success of antibiotic therapy in future medicine [26–28].

The present research investigated the antibacterial effects of the essential oil of O. odorifera and its
major constituent safrole against multi-resistant strains. The phytochemical analysis identified 93.1% of
the total constituents of the EOOO, revealing the presence of 16 different compounds, including safrole
as a major constituent. This finding is corroborated by a previous study showing a similar composition,
as well as the presence of safrole as the principal component of essential oil obtained from the leaves of
the same species [29]. According to Junior et al. [30] and Lorenzi and Matos [31], safrole is a bioactive
compound widely used in the food, cosmetic, and pharmaceutical industries. In general, essential oils
present significant yield, and their composition can vary depending on climatic and environmental
factors, such as temperature, humidity, precipitation, soil, and time of collection. Additionally, the part
of the plant used (leaves, bark, seeds or root), as well as the method of the extraction, may interfere
with the composition of the essential oil of a given species [15,32,33].

The antibacterial activity analysis revealed that while the essential oil of O. odorifera and safrole
presented clinically ineffective antibacterial activity against E. coli and P. aeruginosa, they presented
clinically relevant MIC values against S. aureus. The data obtained by this study suggest that safrole is,
at least partially, responsible for the antibacterial effects of the EOOO. It is still suggested that both the
oil and the isolated compound are more effective against Gram-positive strains, which may be justified
by differences in the constitution of the membrane of Gram-positive and Gram-negative bacteria.

According to Nazzaro et al. [34], Gram-negative bacteria are more resistant to the penetration of
essential oils due to the presence of an outer layer of lipopolysaccharides. Accordingly, Betim et al. [35],
comparing the antibacterial activities of O. odorífera and O. nutans, demonstrated that the essential oil
of O. odorífera presented more potent effects. In addition, they found that both essential oils were more
effective against Gram-positive bacteria, corroborating the findings of the present research. On the
other hand, a study by Damascemo et al. [36] found clinically ineffective MIC values for the essential
oil of O. bicolor against S. aureus, P. aeruginosa, and E. coli. Furthermore, Cansian et al. [37] found that an
essential oil obtained from O. odorifera was more efficient against Gram-negative bacteria. As discussed
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above, the chemical composition of a species may be significantly influenced by several environmental
factors, which may affect the pharmacological effects of extracts, fractions, and essential oils.

Following the antibacterial activity analysis, this work investigated the ability of the EOOO and
safrole ability to modulate the antibacterial resistance to norfloxacin, a fluoroquinolone antibiotic.
The MIC values of norfloxacin against strains of S. aureus, P. aeruginosa, and E. coli were significantly
reduced in the presence of a subinhibitory concentration of the EOOO and safrole (MIC ÷ 8) indicating
that both the oil and the isolated compound can modulate the antibacterial resistance to norfloxacin
observed for the Gram-positive and Gram-negative strains evaluated by our study. Nevertheless,
the isolated compound showed more potent antibiotic-enhancing activity against all strains, reducing
the MIC of norfloxacin by up to 7 fold in comparison with the antibiotic alone. Studies have
demonstrated that antibacterial resistance to norfloxacin is significantly mediated by the expression of
efflux systems [38]. Therefore, it is hypothesized that the antibiotic-enhancing effects shown by the
EOOO and safrole might involve inhibition of efflux pumps.

Efflux pumps are membrane proteins that carry out the active transport of a wide range of
molecules, removing potentially toxic substances from the intracellular medium. However, in the
context of antibiotic therapy, the active transport of drugs by these proteins results in reduced
intracellular concentrations and, consequently, failure in the therapeutic effect [23]. Increasing evidence
has demonstrated that efflux pumps are overexpressed in multiresistant bacterial strains, such as
methicillin-resistant Staphylococcus aureus (MRSA). Thus, considering the notable role of efflux pumps
on antibacterial resistance in S. aureus, we evaluated the potential involvement of EP inhibition on
safrole-mediated antibiotic resistance modulation in the S. aureus 1199B and K2068 strains, which
express the NorA and MepA EP, respectively. In the present study, the association with subinhibitory
concentrations of safrole or chlorpromazine (control drug) significantly reduced the MIC of ethidium
bromide against both strains. According to Tintino et al. [39], when natural or synthetic compounds
are tested against EP-bearing strains in association with ethidium bromide, a reduction in the MIC of
this substance indicates that the tested compound also acts as an EP inhibitor. Thus, it is suggested
that safrole could serve as an EP inhibitor in these S. aureus strains.

Accordingly, Oliveira-Tintino et al. [40] reported that while the essential oil of Chenopodium
ambrosioides significantly reduced the MIC of ethidium bromide against the 1199B strain, its principal
constituent α-Terpinene presented no significant modulating effect, suggesting that other components
of the C. ambrosioides oil could act as EP inhibitors. However, the molecular mechanisms associated with
EP inhibition by essential oils, as well as their isolated components, remain to be fully characterized.
Nevertheless, since ethidium bromide is used as a substrate by bacterial EP, it is hypothesized that these
natural products could act by blocking the binding of the substrate to the pump. Additionally, it has
been suggested that energy depletion, competition with ATP, and interference with the proton gradient
are potential mechanisms associated with EP inhibition by natural or synthetic compounds [41].

Considering the promising effects demonstrated by safrole in the efflux pump inhibition assay,
it was evaluated whether safrole could modulate bacterial resistance S. aureus strains bearing resistance
genes against norfloxacin and ciprofloxacin. The results of the present study demonstrated that
safrole, as well as the EP inhibitor chlorpromazine (control), significantly reduced the MICs of both
antibiotics, suggesting that the resistance to these drugs was, at least partially, reverted by safrole, which
possibly inhibits the NorA- and MepA-mediated efflux mechanisms in S. aureus [42,43]. To confirm
this hypothesis, molecular modeling and docking analysis were used to evaluate in silico, the potential
interactions between safrole or chlorpromazine (control drug) and the NorA and MepA efflux pumps.
The present findings suggest that safrole, as well as chlorpromazine, could act as efflux pump inhibitors
in the S. aureus SA1119B and K2068 strains, and that safrole has a more favorable interaction with the
MepA protein compared to NorA.

Previous studies suggest that chlorpromazine affects the membrane potassium flow in S. aureus.
However, in multi-drug resistant strains, a significant inhibition is observed only at concentrations
above 50 µM [44]. Chlorpromazine is a typical antipsychotic drug acting as a dopamine antagonist.
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Curiously, studies have shown that this drug also acts as a strong inhibitor of the NorA efflux pump,
and there is evidence that the interaction between this drug and the amino acid residues is favored
by its hydrophobic properties and molecular dimension, corroborating the findings shown in the
interaction map [45].

Finally, structure-activity relationship (SAR) studies indicate that phenyl-ether groups significantly
contribute to the interactions with the NorA and MepA EP in S. aureus [46]. Additionally, accumulating
evidence suggest that high lipophilicity facilitates the action of EP inhibitors on these proteins,
corroborating the findings of the present research [43].

4. Materials and Methods

4.1. Collection and Identification of the Botanic Material

The essential oil was extracted from terminal branches and inflorescences of plants (Figure 5)
collected in a segment of Atlantic Forest in the State of Paraná, Southern Brazil, located at the following
geographical coordinates: S 25◦ 19.862′ W 49◦ 48.338′. The collection and transport of the plant samples
were performed under the authorization of the Paraná Environmental Institute (registry number 284/11).
A voucher specimen was prepared and registered at the Herbarium of “Faculdades Integradas Espirita”
(HFIE) (registry number 9.000). Terminal branches and inflorescences were randomly collected from at
least 10 individual plants and dried with an electric dryer (Gama Italy IQ perfetto 127V) at 40 ◦C for
24 h.
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Figure 5. Sample of the plant Ocotea odorífera.

4.2. Essential Oil Extraction

The essential oil of O. odoriferous was extracted by hydrodistillation in a Clevenger type apparatus.
Briefly, approximately 1 kg of the plant material was crushed and subjected to extraction with 2.5 L of
distilled water at boiling temperature for 2 h. After extraction, the essential oil was combined with
anhydrous sodium sulfate (Na2SO4) and stored under refrigeration (−4 ◦C) for preservation [47].

4.3. Calculation of Essential Oil Yield

The yield of the essential oil was calculated as a percentage of the dry biomass obtained from the
aerial parts of the plant, using the following equation:

TO =
VO
MS

× 100 (1)
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Legend: TO = oil content in 100 g of biomass; VO = volume of oil obtained; MS = amount of dry
biomass, free of water and humidity; and 100 = conversion factor to percentage [48].

4.4. Phytochemical Analysis

The chemical composition of the essential oil was determined by gas chromatography coupled to
mass spectrometry (CG-EM) using an Agilent 6890 chromatograph (Palo Alto, CA, USA) coupled to an
Agilent 5973N mass selection detector. The separation of the constituents was obtained in a capillary
column HP-5MS (5%-phenyl-95%-dimethylpolysiloxane, 30 m × 0.25 mm × 0.25 µm) and using helium
as the carrier gas (1.0 mL min−1). The chemical constituents were identified by comparing their mass
spectra with the standards reported in the literature [49].

4.5. Bacterial Cultures

The following multidrug-resistant strains were used in the antibacterial tests: Pseudomonas
aeruginosa 24, Staphylococcus aureus 10 and Escherichia coli 06. The origin and resistance profile of these
strains is shown in Table 5.

Table 5. Origin and antibiotic resistance profile of the strains.

Bacterial Strain Origin Resistance Profile

S. aureus 10 Rectum swab Amc, Amox, Amp, Asb, Azi, Cefa Cef, Cf, Cip, Cla, Clin, Ery, Lev,
Mox, Oxa, Pen

E. coli 06 Urine Asb, Cefa, Cef, Cfo, Cpm, Ctx
P. aeruginosa 24 Nasal discharge Ami, Cip, Ctz, Imi, Lev, Mer, Ptz

Legend: Amc—Amoxicillin + Clavulanic Acid, Ami—Amikacin, Amox—Amoxicillin, Amp Ampicillin, Asb—Ampicillin
+ Sulbactam, Azi—Azithromycin, Cefa—Cefadroxil; Cef—Cephalexin, Cfo—Cefoxitin, Cip—Ciprofloxacin,
Cla—Clarithromycin, Clin—Clindamycin, Cpm—Cefepime, Ctx—Ceftriaxone, Ctz—Ceftazidime, Ery—Erythromycin,
Imi—Imipenem, Lev—Levofloxacin, Mer—Meropenem, Mox—Moxifloxacin, Oxa—Oxacillin, Pen—Penicillin
and Ptz—Piperacillin.

S. aureus strains 1199B and K2068, which carry the NorA and MepA efflux proteins, respectively,
were kindly provided by Prof. S. Gibbons (University of London). All strains were initially kept
on blood agar (Laboratorios Difco Ltd.a., São Paulo, Brazil) and maintained in Heart Infusion Agar
(HIA, Difco) medium at 4 ◦C. Samples were transferred from the solid medium to test tubes containing
sterile saline, and turbidity was assessed using a value of 0.5 on the McFarland scale, corresponding to
105 CFU.

4.6. Drugs

Norfloxacin and ciprofloxacin were used in the tests with the 1199B and K2068 strains, respectively.
These strains carry the NorA and MepA efflux proteins, respectively, which confer resistance to the
corresponding antibiotic. Ethidium bromide was used as an efflux pump inhibitor control. Both
antibiotics were dissolved in DMSO and diluted in water, while ethidium bromide was dissolved in
water. All drugs were prepared at initial concentrations of 1024 µg/mL and serially diluted in test tubes.
Both antibiotics, ethidium bromide and safrole were purchased from SIGMA Chemical Co. (St. Louis,
MO, USA).

4.7. Determination of Minimum Inhibitory Concentration (MIC)

Each inoculum was prepared with 10% Brain Heart Infusion (BHI) at a ratio of 1:9. Next, 100 µL
of inoculum in medium was placed in wells on a 96-well plate with 100 µL of the substance at
concentrations ranging from 1024 to 8 µg/mL, followed by incubation at 37 ◦C for 24 h. Positive
controls (medium + inoculum) were included in the last wells of the plate [50]. After incubation, 20 µL
of sodium resazurin was added to each well, followed by an additional 1 h incubation period at room
temperature. A change in the color of the solution, due to the reduction of resazurin, was used as an
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indicator of bacterial growth [51,52]. The MIC was defined as the lowest concentration capable of
inhibiting bacterial growth. All experiments were carried out in triplicate for all bacterial strains.

4.8. Analysis of Antibiotic Resistance Modulation

To evaluate the ability of the EOOO and safrole to modulate bacterial resistance in the presence of
other drugs, the MICs of norfloxacin and ciprofloxacin against resistant strains of P. aeruginosa, E. coli,
and S. aureus were determined in the presence or absence of these natural products at concentrations
equivalent to their MIC ÷ 8 [53]. The readings were performed as described above.

4.9. Efflux Pump Inhibition Analysis Using an Ethidium Bromide Assay

In this test, the MIC of ethidium bromide was determined in the presence or absence of
sub-inhibitory concentrations of the EOOO and safrole. Briefly, the bacterial inocula were prepared in
BHI medium, and the treatments were added at concentrations equivalent to their MIC ÷ 8. Wells on
a 96-well plate were filled with 100 µL of the solutions of each treatment and then, ethidium bromide
was added to the wells at concentrations ranging from 1024 to 0.5 µg/mL. A reduction in the ethidium
bromide MIC was interpreted as EP inhibition [54]. Experimental controls and MIC values for both
OEOC and safrole were determined as described above. All tests were performed in triplicate.

4.10. Efflux Pump Inhibition Analysis Using an Antibiotic Resistance Modulation Assay

Considering that the S. aureus strains 1199B and K2068 carry genes encoding efflux proteins
associated with antibiotic resistance to norfloxacin and ciprofloxacin, respectively, this protocol was
used to evaluate the ability of the EOOO and safrole to modulate bacterial resistance in association with
these antibiotics against the corresponding strain. The bacterial inocula were prepared in BHI medium
and the treatments were added at concentrations equivalent to their MIC ÷ 8. Wells on a 96-well plate
were filled with 100 µL of the solutions of each treatment and then, each antibiotic was added to the
wells at concentrations ranging from 1024 to 0.5 µg/mL. A reduction in the MIC of the antibiotic was
interpreted as EP inhibition [54]. Experimental controls and MIC values for both EOOO and safrole
were determined as described above. All tests were performed in triplicate.

4.11. Molecular Modelling and Docking Studies

The three-dimensional (3D) structures of the NoRA and MepA proteins were determined
using homology models as follows: the three-dimensional structures were predicted using the
Protein Homology/Analogy Recognition Engine version 2.0 (Phyre2, available http://www.sbg.bio.
ic.ac.uk/phyre2) web server, and confirmed using the Iterative Threading Assembly Refinement
(I-TASSER, available http://zhanglab.ccmb.med.umich.edu/I-TASSER/) and MODELLER 9.14 servers.
The stereochemical quality of the protein structures was checked by the Ramachandran plot using the
PROCHECK program [55]. The topographic structure of the pockets and cavities were characterized
using the Computed Atlas of Surface Topography of proteins (CASTp, available http://cast.engr.uic.edu)
with a standard value of 1.4 Å of the radius, and the ligand-binding sites were predicted using the
3DligandSite server [56].

Docking simulations were carried out with a binding region defined by a 10 Å × 10 Å × 10 Å
box set at the centroid of predicted ligand-binding sites. The structures were adjusted using a protein
preparation tool provided by the Chimera package (version 1.14, University of California, San Francisco,
CA, USA), the 3D structures of ligands were obtained using the corina® 3D structure generator (version
4.3, Altamira LLC, Oklahoma city, OK, USA), and minimization of energy was achieved using the
UCSF Chimera structure build module [57]. The docking analyses were carried out using the UCSF
Chimera and AutoDock Vina software (version 1.1.2., The Scripps Research Institute, La Jolla, CA, USA)
based on the iterated local search global optimizer [58]. Proteins and ligands were maintained flexible
during the docking process. The selection of flexible residues from proteins was based on the active
site at 4.0 Å from the co-crystallized ligands. The most favorable binding free energy was represented

http://www.sbg.bio.ic.ac.uk/phyre2
http://www.sbg.bio.ic.ac.uk/phyre2
http://zhanglab.ccmb.med.umich.edu/I-TASSER/
http://cast.engr.uic.edu
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by clustering the positional Root-mean-square deviation of atomic positions (RMSD) data with no
more than 1.0 Å. The final docked complexes were analyzed using the Discovery Studio visualizer
program version 3.1 (Dassault Systèmes, San Diego, CA, USA). The binding energy score was used
to calculate the inhibition constant (Ki value)-based in an equation by Onawole et al. [59], and the
size-independent ligand efficiency (SILE) was measured using the equation described by Nissink, J. W.
M. [60].

4.12. Statistical Analysis

Data are expressed as arithmetic means ± standard error of the mean and were analyzed by
analysis of variance (ANOVA), followed by Bonferroni’s post-test using GraphPad Prism software
version 7.00 (available http://www.graphpad.com/scientific-software/prism/). Statistical significance
was considered when p < 0.05.

5. Conclusions

The essential oil of Ocotea odorifera has antibacterial and antibiotic-enhancing activities that are,
at least partially, mediated by its major constituent, safrole. Safrole modulates antibiotic resistance in
the S. aureus SA1119B and K2068 strains, possibly through direct inhibition of the NorA and MepA
efflux pumps, respectively.

In conclusion, Ocotea odorifera and safrole present promising antibacterial and antibiotic-enhancing
properties, which should be explored in the development of drugs to combat antibacterial resistance,
especially in strains bearing genes encoding efflux proteins.
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