

WG 2 - Modelling of CBM and the behaviour of structures

Strategic view

Mateusz Wyrzykowski (CH) and Farid Benboudjema (FR)

<u>mateusz.wyrzykowski@empa.ch</u> <u>farid.benboudjema@dgc.ens-cachan.fr</u>

WG 2 motivation and objectives

Motivation:

- Variety of parameters to be described
- Long time-span considered (service life predictions)

Objectives:

- to support unified approaches for conducting numerical experiments for material properties of CBM
- to support unified approaches for macroscopic modelling of CBM behaviour during the life cycle. For such purpose, multi-physics models will be deployed, framed in the context of the thermodynamics of porous reactive media.
- to **integrate the conclusions from different modelling scales** (cement paste, mortar, concrete, structural level) to create a set of general instructions to be used in designing software for CBM and reinforced concrete structures.

Scope of the WG2

- The Action has a special focus on predicting behaviour of CBM over ist service life, starting from the phenomena occuring at early ages
- Modelling at different scale levels:

 - Macroscopic level → multi-physics modeling of transport, deformations + stresses and damage at a structural level
- Models at different complexity levels (from simple empirical predictions to complex multi-scale, multi-physics models)

Workgroup structure

Group priorities:

- GP2.1 Micro-mesoscopic approach
- GP2.2 Macroscopic approach
- GP2.3 Benchmarking

 a) Simple examples (in cooperation with WG1)
 b) Case studies

Group priorities (1)

GP2.1 – Micro – mesoscopic approach

Microstructural and meso-structural approaches:

- Transport and microstructure
 - Simulate microstructure evolution due to hydration
 - Relate microstructure evolution to transport, sorptivity
 - Describe material degradation due to leaching, carbonation, microcracking, etc.
 - CEMHYD3D, HYMOSTRUC, μic, Meso-level FEM models ...
- Mechanical properties
 - Simulate mechanical properties, stress and creep evolution and damage (cracking)
 - Meso-level FEM models, lattice models, analytical/numerical homogenization

Group priorities (2)

GP2.2 – Macroscopic approach

Thermo-hygro-mechanical modeling of concrete at a structural level

- Poromechanical models (commercial, e.g. COMSOL, or home-made modeling platforms)
- ...
- Constitutive relationships for transport, deformations, stresses, creep, damage
 - Empirical approach
 - Analytical/numerical homogenization (up-scalling from micro-meso level models)

Effect of hygro-thermal behaviour and damage on structural performance

- coupling of multi-physics macroscopic models with traditional RC design tools → cooperate with commercial tools developers (Robot, DIANA, etc.)
- development of simple design approaches

Group priorities (3)

GP2.3 – Benchmarking

a) Simple benchmarking based on WG1 data

- Micro-meso approaches
 - Predict evolution of porosity, transport properties, mechanical properties based on the input characteristics
- Macroscopic modeling
 - Boundary value problem: predict evolution of e.g. temperature, drying, water or CO₂ ingress, thermal expansion and drying shrinkage, stress development

Group priorities (4)

GP2.3 – Benchmarking

b) Case studies

- EDF Vercors project (early age behaviour data should be available from 2015) – contact by Farid Benboudjema
- CEOS.FR project contact by Farid Benboudjema
- Slab casting (concrete producers or construction companies to be contacted)
- Case studies provided by the participants...

Gantt chart

	Year	1			Year	2			Year	3			Year	4		
Activity /month	3	6	9	12	15	18	21	24	27	30	33	36	39	42	45	48
Meetings	К	1		2		3		4		5		6		7		End
Workshops				2a				4a				6a				С
Accept GP structure																
Assign GP members, collect the relevant models, plan benchmarking																
Micro-meso level modeling based on WG1 data																
Macro-level modeling based on WG1 data (Boundary vaue problems)																
Case studies (micro-meso-macro modeling)																
Recommendations for modeling at the structural level																
Dissemination																

K - Kick-off meeting 18 November 2014, Paris

C - conference

Meetings:

1 - discuss necessary input from WG1 (at start of WG1 Round-Robin test)

2 and 2a - present recent developments and the results of the micro-meso level modelling, review (recent developments of the models) and plan simulations at macro-level (Boundary value problems from WG1)

3 - plan the case studies, contact companies for incorporation of the models in RC design

4 and 4a - present data on micro-meso level and macro-level benchmark

5 - discuss the progress of case studies, launch preparation of reccomendations for modelling (in cooperation with WG3)

6 and 6a - present recent achievements and results of case studies

7 - discuss the progress of recommendations, finalize macro-level modeling of boundary value problems (exchange informations with WG1) End and C - present the final results

Thank you for your attention.

- Mateusz Wyrzykowski and Farid Benboudjema
- mateusz.wyrzykowski@empa.ch
- <u>farid.benboudjema@dgc.ens-cachan.fr</u>