Francisco

Escola Secundária de Francisco Franco (2015/2016)

5.º TESTE DE MATEMÁTICA A – 10.º 5

N.º:

3.º Período 29/04/16 Duração: 90 minutos

Nome:

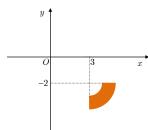
Classificação: O professor:

VERSÃO 1

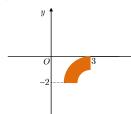
Grupo I

Na resposta a cada um dos itens deste grupo, selecione a única opção correta.

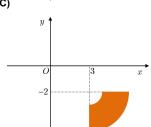
Escreva, na folha de respostas:

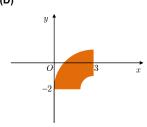

- · o número do item;
- · a letra que identifica a única opção escolhida.

Não apresente cálculos, nem justificações.


1. Considere a condição $1 \le (x-3)^2 + (y+2)^2 \le 9 \land x \le 3 \land y \ge -2$

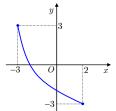
Em qual das opções seguintes está representado, num plano munido de um referencial o.n. xOy, o conjunto de pontos definido por essa condição?


(A)

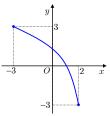

(B)

(C)

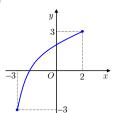
(D)

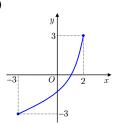


- **2.** Dado um referencial cartesiano no espaço, sabe-se que os vetores $\vec{u}(k+5,2,t)$ e $\vec{v}(0,3,4)$ são colineares. Indique os valores, respetivamente, de $k\,$ e $t\,$
 - (A) $5 e^{\frac{8}{2}}$
- **(B)** 5 e $\frac{10}{3}$
- (C) $-5 \text{ e } \frac{8}{3}$ (D) $-5 \text{ e } \frac{10}{3}$


- **3.** De uma função f, sabe-se que:
 - $D_f = [-3, 3]$
 - f é bijetiva;
 - f é crescente;
 - \bullet 2 é um zero de f

Em qual das figuras abaixo pode estar a representação gráfica da função f^{-1} , função inversa de f?

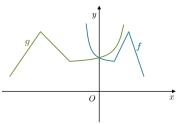

(A)


(B)

(C)

(D)

4. Considere as funções f e g representadas graficamente no referencial o.n. xOy do lado.

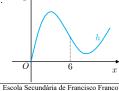

É possível concluir que:

(A)
$$g(x) = -\frac{1}{2}f(x)$$

(B)
$$g(x) = f(-\frac{1}{2}x)$$

(C)
$$g(x) = -2f(x)$$

5. Considere a função h, de domínio \mathbb{R} , parcialmente representada no referencial o.n.

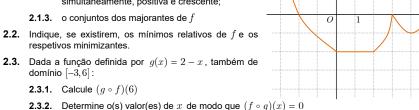

Sabendo que h é uma função ímpar qual pode ser o valor de h(-6)?

(A) 4

(B) −4

(C) 0

(D) 6



Grupo II

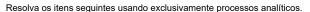
Nas respostas a cada um dos itens deste grupo apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

Atenção: quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

- 1. Considere, fixado um referencial o.n. do espaco:
 - a reta r de equação vetorial $P = A + k\vec{u}, k \in \mathbb{R}$, com A(-2.5.1) e $\vec{u}(2.8.0)$
 - a superfície esférica S de equação $x^2 + (y-3)^2 + (z+5)^2 = 40$
 - **1.1.** Escreva as equações paramétricas da reta AC, sendo C o centro da superfície esférica S
 - **1.2.** Determine as coordenadas do ponto B pertencente à reta r e ao plano xOz
- **2.** Considere ao lado o gráfico da função f, de domínio [-3,6]representado em referencial o.n. xOu
 - **2.1.** Indique:
 - **2.1.1.** o maior intervalo de números reais onde f é decrescente em sentido lato;
 - **2.1.2.** o maior intervalo de números reais onde f seia. simultaneamente, positiva e crescente;
 - respetivos minimizantes.
 - domínio [-3,6]:

3. Considere as funções quadráticas definidas por $f(x) = \frac{x^2}{2} + 2x + 3$ e $g(x) = 4 - 2x^2$

Sabe-se que $f(x) \le g(x)$ num certo intervalo [a,b]


Recorrendo à calculadora gráfica, determine os valores de $a \, e \, b$

Na sua resposta:

- reproduza, num referencial, o(s) gráfico(s) da(s) função(ões) que visualizar na calculadora e que lhe permite(m) resolver a equação, devidamente identificado(s) (sugere-se a utilização da janela de visualização em que $x \in [-3,3]$ e $y \in [-5,10]$);
- apresente os valores de a e b arredondados às centésimas.

4. Um drone foi lançado de um prédio e, nos primeiros 15 segundos, a sua altura em relação ao solo foi dada, em metros, pela função definida por

$$h(t) = \frac{t^2}{4} - 2t + 12$$
, com t em segundos.

Nota: a calculadora pode ser usada em cálculos numéricos.

- **4.1.** Calcule, em metros, a altura atingida pelo drone no final da contagem.
- 4.2. Determine, em metros, a altura mínima atingida pelo drone.

- 5. Resolva, usando processos analíticos, o item 5.1. ou o item 5.2.
 - **5.1.** Considere a função definida em \mathbb{R} por $f(x) = (2k 5k^2)x^2 + 4x 8$ Determine os valores de k de modo que o gráfico de f tenha a concavidade voltada para baixo.
 - **5.2.** Considere a função definida em \mathbb{R} por $q(x) = ax^3 2$, com a < 0Prove que q é decrescente em $\mathbb R$

FIM

COTAÇÕES

Grupo I (50 pontos) Cada resposta certa: 10 Cada questão errada, não respondida ou anulada
--

Grupo II (150 pontos)	129 1.112 1.717	258 2.117 2.212 2.3.112 2.3.217	317	429 4.112 4.217	517
--------------------------	-----------------------	---------------------------------	-----	-----------------------	-----

O professor: Roberto Oliveira