

3.º TESTE DE MATEMÁTICA A - 11.º 5

3.º Período

14/05/2021

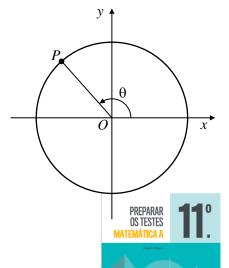
Duração: 90 minutos

Nome:

N.º:

Classificação:

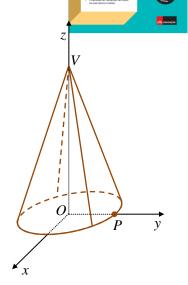
O professor:


Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva na folha de respostas o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

1. Considere, na circunferência trigonométrica da figura, o ponto $P\left(-\frac{2}{3}, \frac{\sqrt{5}}{3}\right)$. Seja θ a amplitude de um ângulo orientado cujo lado origem é o semieixo positivo Ox e cujo lado extremidade é a semirreta OP.

Qual é o valor de $sen(\theta + \pi) + cos(\theta - \frac{\pi}{2}) + tg\theta$?


- **(A)** $-\frac{7\sqrt{5}}{6}$
- **(B)** $-\frac{\sqrt{5}}{2}$
- **(C)** 1,118
- **(D)** 2,609

- **2.** Considere, na figura junta, o cone representado num referencial o.n. Oxyz. Sabe-se que:
 - o volume do cone é igual a 8π ;
 - a base do cone está contida no plano xOy e tem centro no ponto O;
 - o ponto P tem coordenadas (0,2,0) e pertence à circunferência que delimita a base do cone;
 - o vértice V do cone pertence ao eixo Oz.
 - **2.1.** Considere o vetor $\vec{u}(5,3,-1)$. Qual é o valor de $\overrightarrow{PV} \cdot \vec{u}$?

(A)
$$(0,-6,-6)$$

- **(B)** (-7,-5,0)
- **(C)** -12
- **(D)** -6
- **2.2.** Considere o plano α definido por 2y-3z-4=0. Mostre que o ponto P pertence a α e escreva uma equação da reta r que contém o ponto P e é perpendicular a α .

3. De uma progressão geométrica de termos positivos (a_n) , sabe-se que $a_1 = \frac{1}{10} \land a_9 = \frac{27a_6}{125}$.

Mostre que a soma dos primeiros n termos de $\left(a_n\right)$ é igual a $\frac{1}{4}\bigg[1-\Big(\frac{3}{5}\Big)^n\,\bigg]$.

- **4.** Seja f a função, de domínio $\mathbb{R} \setminus \{2\}$, definida por $f(x) = \frac{3x-7}{x-2}$.
 - **4.1.** Para um certo número real k, a função g, definida por g(x) = f(x) + k, não tem zeros. Qual é o valor de k?

(A) -3

(B) 3

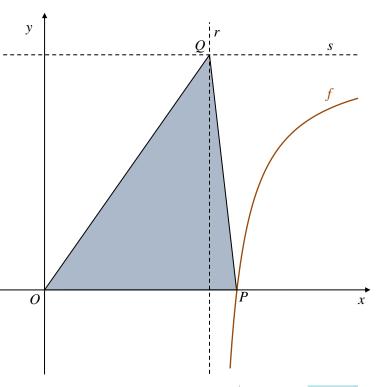
(C) -2

(D) 2

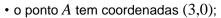
4.2. No referencial o.n. xOy da figura estão representados parte do gráfico da função f, as retas r e s, assíntotas do seu gráfico, e o triângulo [OPQ].

Sabe-se que:

- o ponto P pertence ao gráfico de f e ao eixo Ox ;
- o ponto Q é o ponto de interseção das retas r e s.

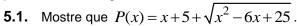

Determine a área do triângulo [OPQ].

4.3. Seja h a função, de domínio $\mathbb{R} \setminus \{2\}$, definida por $h(x) = f(x) + x^2 + 4x$.

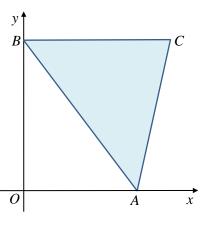

O gráfico de h tem dois pontos de abcissa negativa e ordenada nula. Recorrendo à calculadora gráfica, determine a distância entre esses pontos.

Na sua resposta, deve:

- reproduzir, num referencial, o gráfico da função h que visualizar na calculadora nesse referencial.
- apresentar os pontos pedidos com as abcissas arredondada às milésimas;
- apresentar a distância pedida, arredondada às centésimas.



5. No referencial o.n. *xOy* da figura, está representado o triângulo [*ABC*]. Sabe-se que:



- o ponto *B* tem coordenadas (0,4);
- a reta BC é paralela ao eixo das abcissas.

Seja x a abcissa do ponto C, com x > 3, e considere P(x) como sendo o perímetro do triângulo [ABC].

Determine, na forma de intervalo de números reais, os valores de x para os quais o perímetro do triângulo [ABC] é inferior ou igual a 13 unidades.

6. Na figura, está representada, num referencial o.n. xOy, parte do gráfico de uma função f, de domínio $\mathbb{R} \setminus \{3\}$.

Tal como a figura sugere:

•
$$f(0) = 1$$
;

• as retas de equações x = 0, x = 3 e y = -2 são assíntotas do gráfico

Sejam (a_n) e (b_n) as sucessões cujos termos gerais são $a_n = \frac{8^n}{32n}$ e

Quais são os valores de $\lim f(a_n)$ e $\lim f(b_n)$, respetivamente?

(A)
$$+\infty$$
 e -2

(B)
$$+\infty$$
 e 3

(C)
$$1 e -2$$

- Considere a função f, de domínio \mathbb{R} , definida por $f(x) = 3 \sqrt[3]{x+5}$. 7.
 - **7.1.** Justifique que f admite inversa e caracterize-a.
 - **7.2.** Considere agora a função g, também de domínio \mathbb{R} , definida por $g(x) = \begin{cases} \frac{x^3 27}{3 + 2x x^2} & \text{se } x < 3 \\ f(x) + k & \text{se } x \ge 3 \end{cases}$.

Sabendo que $\lim_{x\to 3} g(x)$ existe, determine k.

8. Seja a um número real negativo.

Quanto ao valor de $\lim_{x\to a} \frac{ax-a^2}{(x-a)^3}$

- (A) Não existe;
- **(B)** É igual a $+\infty$;
- **(C)** É igual a $-\infty$;
- **(D)** É igual a 0.

9. Seja
$$f$$
 a função, de domínio \mathbb{R} , definida por $f(x) = \begin{cases} \frac{1}{6x+6} & \text{se } x \leq 1 \\ \frac{\sqrt{x+8}-3}{2x-2} & \text{se } x > 1 \end{cases}$

Calcule, se existirem:

- **9.1.** $\lim_{x \to +\infty} f(x);$
- **9.2.** $\lim_{x \to 1} f(x)$.

FIM

Formulário

Geometria

Volume de uma pirâmide: $\frac{1}{3} \times \acute{A}rea\ da\ base \times Altura$

Volume de um cone: $\frac{1}{3} \times \acute{A}rea\ da\ base \times Altura$

Volume de uma esfera: $\frac{4}{3} \pi r^3 (r - raio)$

Progressões

Soma dos n primeiros termos de uma progressão (u_n) :

Progressão aritmética: $\frac{n}{2}(u_1 + u_n)$

Progressão geométrica: $u_1 \times \frac{1-r^n}{1-r}$

COTAÇÕES

	Item														
	Cotação (em pontos)														
1.	2.1.	2.2.	3.	4.1.	4.2.	4.3.	5.1.	5.2.	6.	7.1.	7.2.	8.	9.1.	9.2.	
8	8	14	19	8	14	14	14	19	8	14	19	8	14	19	200