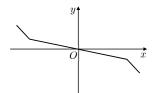
# 5.° TESTE DE MATEMÁTICA A – 10.° 7 3.º Período 02/05/18 Duração: 90 minutos Nome: N.º: Classificação: O professor:

#### VFRSÃO 1

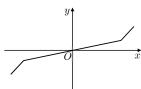
## Grupo I

Na resposta a cada um dos itens deste grupo, selecione a única opção correta.

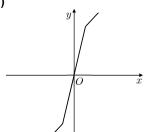
Escreva, na folha de respostas:


- · o número do item;
- a letra que identifica a única opção escolhida.

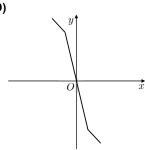
Não apresente cálculos, nem justificações.


1. Na figura ao lado está parte da representação gráfica de uma função ímpar f.

Em qual das figuras abaixo pode estar a representação gráfica da função  $f^{-1}$ , função inversa da função f?







(B)



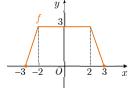
(C)



(D)

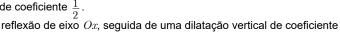


2. Considere a função f, cujo gráfico cartesiano se encontra ao lado, e a função afim q definida por q(x) = x + 1.


Qual das seguintes é uma proposição falsa?

**(A)**  $(f \circ q)(1) = -3$ 

**(B)**  $(f \circ q)(2) = 0$ 


**(C)**  $(q \circ f)(3) = 1$ 

**(D)**  $(q \circ f)(-2) = 4$ 



**3.** Ao lado estão representadas, graficamente, as funções f e q. É possível concluir que se obtém o gráfico de q a partir do de fatravés:

- (A) de uma reflexão de eixo Oy, seguida de uma dilatação vertical de coeficiente 2.
- **(B)** de uma reflexão de eixo Oy, seguida de uma contração vertical de coeficiente  $\frac{1}{2}$
- (C) de uma reflexão de eixo Ox, seguida de uma contração vertical de coeficiente  $\frac{1}{2}$ .
- (**D**) de uma reflexão de eixo Ox, seguida de uma dilatação vertical de coeficiente 2.



**4.** Considere, no referencial o.n. Oxyz da figura, o octaedro regular [ABCDEF].

Sabe-se que:

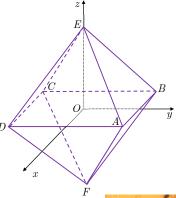
- · a origem do referencial é o centro do quadrado [ABCD];
- o ponto A tem coordenadas (2,2,0).
- 4.1. Qual é a área total do octaedro?



**(B)** 
$$26\sqrt{2}$$

**(C)** 
$$32\sqrt{3}$$

**(D)** 
$$24\sqrt{3}$$


4.2. Qual das seguintes representa uma equação vetorial da reta AC?

**(A)** 
$$(x, y, z) = k(-1, 1, 0), k \in \mathbb{R}$$

**(B)** 
$$(x, y, z) = k(1, 1, 0), k \in \mathbb{R}$$

(C) 
$$(x, y, z) = (2, 2, 0) + k(-1, 1, 0), k \in \mathbb{R}$$

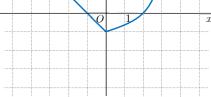
**(D)** 
$$(x, y, z) = (2, 2, 0) + k(-1, 1, 1), k \in \mathbb{R}$$



### Grupo II

Nas respostas a cada um dos itens deste grupo apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

Atenção: quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.


- **1.** Considere, no referencial o.n. xOy do lado, o gráfico cartesiano da função f, de domínio ]-5,4].
  - **1.1.** Acrescentando as colunas necessárias, complete as tabelas a seguir de:
    - 1.1.1. variação da função;

| x    |  |  |
|------|--|--|
| f(x) |  |  |



1.1.2. sinal da função.

| x    |  |  |
|------|--|--|
| f(x) |  |  |



### 1.2. Indique:

- **1.2.1.** o maior intervalo de números reais onde f é decrescente em sentido lato;
- **1.2.2.** o intervalo de números reais onde f é crescente e positiva;
- **1.2.3.** o conjunto dos minorantes e o dos majorantes de f;
- **1.2.4.** os mínimos relativos de f e os respetivos minimizantes;
- **1.2.5.** os máximos relativos de f e os respetivos maximizantes;
- **1.2.6.** o domínio e o contradomínio da função definida por g(x) = f(x+3).
- **2.** Seja g a função quadrática definida por  $g(x) = (3-2m)x^2 + 4x$ , sendo m um certo número real.
  - **2.1.** Determine os valores de m de modo que a concavidade do gráfico de g esteja voltada para cima.
  - **2.2.** Suponha agora que m = 3.
    - **2.2.1.** Estude a paridade da função g.
    - **2.2.2.** Considere agora a função afim h definida por h(x)=2x-4 . Justifique que existe a função  $h^{-1}$ e caracterize-a.
    - **2.2.3.** Sabe-se que  $g(x) \ge h(x)$  num certo intervalo [a,b].

Determine, recorrendo à calculadora gráfica, os valores de  $\it a$  e  $\it b$ .

Na sua resposta:

- reproduza, num referencial, os gráficos das funções g e h (sugere-se a utilização da janela de visualização [–2,3] x [–10,3]);
- ullet apresente os valores de a e b arredondados às centésimas.

3. O Aécio fez um salto de bungee-jumping a partir da Torre de Macau.

Admita que, t segundos após o Aécio começar o salto, a distância desde o local de onde ele saltou até ao mar foi dada, em metros, pela função definida por

$$d(t) = t^2 - 28t + 233, t \in [0, 20].$$

Resolva os itens seguintes usando exclusivamente processos analíticos.

- 3.1. A que distância do mar, em metros, se encontrava o Aécio quando fez o salto?
- **3.2.** Após quanto tempo (em segundos) o Aécio atingiu a distância mínima do mar?

Qual foi essa distância mínima (em metros)?

#### 4. Resolva o item 4.1. ou o item 4.2..

**4.1.** Considere a função, de domínio  $\mathbb{R}$ , definida por  $f(x)=a^2-2ax-x^2$ , sendo a um número real

Determine, justificando, o contradomínio de f.

**4.2.** Considere a função, de domínio  $\mathbb{R}$ , definida por  $g(x) = 4x^2$ .

Prove que g é uma função decrescente em  $]-\infty,0]$ .

FIM



## COTAÇÕES

| (40 pontos) Caua resposia certa. 6 anulada: 0 |
|-----------------------------------------------|
|-----------------------------------------------|

| Grupo II<br>(160 pontos) | 1.1 | 2.1 | 324<br>3.110<br>3.214 | 414 |
|--------------------------|-----|-----|-----------------------|-----|
|--------------------------|-----|-----|-----------------------|-----|