Resultados de convergência de séries

R1 Série modular.

Dada uma série $\sum_{n\geq 1} u_n$, a série de termos não-negativos $\sum_{n\geq 1} |u_n|$ diz-se a sua série modular.

R2 Convergência absoluta.

Uma série $\sum_{n\geq 1}u_n$ diz-se absolutamente convergente quando a série modular $\sum_{n\geq 1}|u_n|$ é convergente. Neste caso, também a série (original) $\sum_{n\geq 1}u_n$ é convergente (dado o resultado R3)

R3
$$\sum_{n\geq 1} |u_n|$$
 série convergente $\implies \sum_{n\geq 1} u_n$ série convergente

ou seja, uma série $\sum_{n\geq 1} u_n$ é convergente sempre que a sua série modular $\sum_{n\geq 1} |u_n|$ o for.

R4 Convergência simples.

Uma série numérica $\sum_{n\geq 1}u_n$ diz-se simplesmente convergente. quando é convergente mas a sua série modular $\sum_{n\geq 1}|u_n|$ é divergente (ou seja, $\sum_{n\geq 1}u_n$ convergente mas não é absolutamente convergente).

R5 Relações. Convergência absoluta ⇒ Convergência simples

Não-convergência simples \implies Não-convergência absoluta

Convergência simples

⇒ Convergência absoluta

R6 A série de potências $\sum_{n\geq 1}\left[v_n\cdot(x-a)^{n-1}\right]$ é absolutamente convergente para os valores de x que verifiquem $x\in]a-R,a+R[$ (ou seja, |x-a|< R) e divergente para $x\in]-\infty,a-R[\cup]a+R,+\infty[$ (ou seja, |x-a|>R) em que R é dado por

$$R = \frac{1}{L}$$

com

$$L = \lim_{n} \left| \frac{v_{n+1}}{v_n} \right|$$
 ou $L = \overline{\lim}_{n} \sqrt[n]{|v_n|}$.

Se |x-a| > R então a série de potências é divergente. Para x = a - R e x = a + R (ou seja, |x-a| = R) é necessário o estudo particular da série numérica respectiva.