Microeconomics

Monika Köppl-Turyna

Department of Economics | ISCTE-IUL

Winter 2014/2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Köppl-Turyna

Market Structure: Imperfect Competition

Köppl-Turyna

Introduction to Game Theory I

- Why does OPEC limit extraction of crude oil?
- Under perfect competition it is virtually impossible to make firms cooperate.
- If there are only a few competitors in the market the incentive for either strategic behavior or collusion arises.

イロト 不得下 不良下 不良下 一度

- With only few competitors actions (e.g. increase in quantity produced) affects the whole market.
- The characteristic feature of oligopolistic markets is interdependence among firms.

Introduction to Game Theory II

Strategic Behavior as the Prisoner's Dilemma

		Prisoner Y	
		Confess	Remain silent
	Confess	5 years	0 years for X
Prisoner X		for each	20 years for Y
Prisoner X	Remain silent	20 years for X	l year
		0 years for Y	for each

イロト 不得 とくきとくきとう き

Köppl-Turyna

Introduction to Game Theory III

Brand Switching as the Prisoner's Dilemma

		Firm I	
		Don't advertise	Advertise
Firm 2	Don't advertise	$\Pi_1 =$ 500	$\Pi_{1} = 750$
		$\Pi_2 = 500$	$\Pi_{2} = 0$
	Advertise	$\Pi_1 = 0$	$\Pi_1 = 250$
		$\Pi_2 = 750$	$\Pi_2 = 250$

イロト 不得下 不良下 不良下 一度

Introduction to Game Theory IV

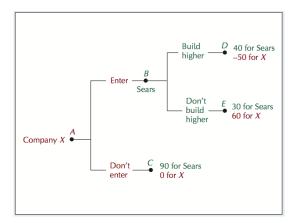
Nash Equilibrium

Nash equilibrium the combination of strategies in a game such that neither player has any incentive to change strategies given the strategy of his opponent.

Köppl-Turyna

Introduction to Game Theory IV

Nash Equilibrium


Nash equilibrium the combination of strategies in a game such that neither player has any incentive to change strategies given the strategy of his opponent.

		Firm I	
		Don't advertise	Advertise
Firm 2	Don't advertise	$\Pi_{1} = 500$	$\Pi_1 = 750$
		$\Pi_{2} = 400$	$\Pi_2 = 100$
	Advertise	Π, = 200	Π, = 300
		$\Pi_2 = 0$	$\Pi_2 = 200$

Köppl-Turyna

Introduction to Game Theory V

Sequential Game – Strategic Entry Deterrence

- ▲ ロ ▶ ▲ 圖 ▶ ▲ 圖 ▶ → 圖 → の � �

Köppl-Turyna

Oligopoly

- An oligopoly is a market form in which a market or industry is dominated by a small number of sellers.
- Strategic behavior by oligopolists needs to take into account the likely responses of the other market participants.

Köppl-Turyna

Oligopoly

- An oligopoly is a market form in which a market or industry is dominated by a small number of sellers.
- Strategic behavior by oligopolists needs to take into account the likely responses of the other market participants.
- Some forms of oligopolistic competition:
 - Competition in Quantities Cournot Model
 - Competition in Prices Bertrand Model
 - Dominant Firm Stackelberg Model
 - Competition in Differentiation Salop and Hotelling Models

イロト 不得下 不足下 不足下 一足

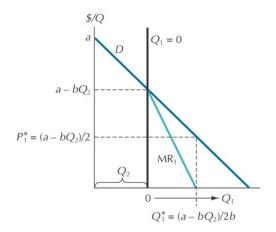
Monopolistic Competition – Chamberlin Model

Cournot Model I

Cournot Model

An oligopoly model in which each firm assumes that its rivals will continue producing at their current levels of output.

- Each duopolist treats the other's quantity as a fixed number.
- Total market demand given by


$$P = a - b(Q_1 + Q_2)$$

- Assume production at 0 marginal cost.
- We get the demand curve for firm 1 by subtracting *bQ*₂ from the vertical intercept of the market demand curve
- We can rewrite the demand as

$$P = (a - bQ_2) - bQ_1$$

- 4 同 2 4 回 2 4 U

Cournot Model II

• The residual demand of a Cournot duopolist.

Cournot Model III

Marginal revenue of firm 1:

$$MR_1 = (a - bQ_2) - 2bQ_1$$

Firms are symmetric so it must be that $Q_1 = Q_2$

• Optimization problem: set the marginal revenue equal marginal cost and solve for output of firm 1 in terms of Q_2 :

$$Q_1 = \frac{a - bQ_2}{2b}$$

イロン 不同と 不同と 不同とう

3

Köppl-Turyna

Cournot Model III

Marginal revenue of firm 1:

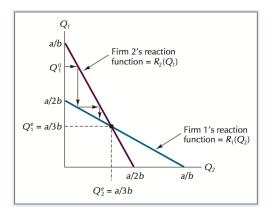
$$MR_1 = (a - bQ_2) - 2bQ_1$$

- Firms are symmetric so it must be that $Q_1 = Q_2$
- Optimization problem: set the marginal revenue equal marginal cost and solve for output of firm 1 in terms of Q₂:

$$Q_1 = \frac{a - bQ_2}{2b}$$

イロト 不得下 不足下 不足下 一足

Definition


Reaction function is a curve that tells the profit-maximizing level of output for one oligopolist for each amount supplied by another.

Solving simultaneously yields
$$Q_1 = Q_2 = \frac{a}{3b}$$

Köppl-Turyna

Cournot Model IV

Graphical Solution

▲日▼▲圖▼▲国▼▲国▼ 回 めるの

Köppl-Turyna

Bertrand Model

Bertrand Model

An oligopoly model in which each firm assumes that rivals will continue charging their current prices.

- Each firm decides on the price it charges..
- If firm 1 charges *p*₁, firm 2 has three choices:
 - it can charge more than p_1 , in which case it sells nothing.
 - it can charge $p_2 = p_1$, in which case they split the market evenly.
 - it can charge a marginally lower price, in which case it will capture the entire market demand.

イロト イ押ト イヨト イヨトー

 The third option is the most profitable – The price will be driven down to the marginal cost.

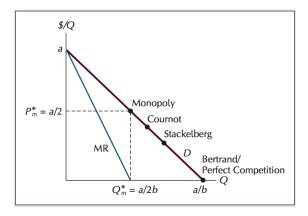
Stackelberg Model

- "What would a firm do if it knew its only rival were a naive Cournot duopolist?"
- Suppose firm 1 knows that firm 2 will treat firm 1s output level as given and use this knowledge.
- Reaction function of firm 2:

$$Q_2^* = \frac{a - bQ_1}{2b}$$

Demand is then:

$$P = a - b[Q_1 + R_2(Q_1)] = \frac{a - bQ_1}{2}$$


(4 回) (4 回) (4 回)

3

•
$$Q_1^* = \frac{a}{2b}$$
 and $Q_2^* = \frac{a}{4b}$

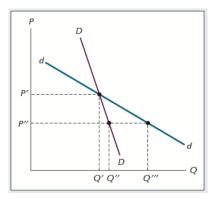
Firm 1 is referred to as **Stackelberg Leader**

Comparison of Outcomes I

Köppl-Turyna

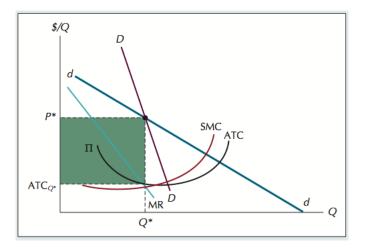
Comparison of Outcomes II

Model	Industry output Q	Market price P	Industry profit Π
Shared monopoly	$Q_m = a/(2b)$	$P_{m}^{} = a/(2)$	$\Pi_m = a^2/(4b)$
Cournot	(4/3)Q _m	(2/3)P _m	(8/9) ∏ _m
Stackelberg	(3/2)Q _m	(1/2)P _m	(3/4) ∏ _m
Bertrand	2Q _m	0	0
Perfect competition	2Q _m	0	0


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Monopolistic Competition I

- Monopolistic competition is a market structure that is close to perfect competition,
- Occurs if many firms serve a market with free entry and exit, but in which one firms products are not perfect substitutes for the products of other firms.
- Because the products are viewed as close but not perfect substitutes, each firm will confront a downward-sloping demand schedule.
- Because the products are close substitutes, this in turn means that each firm perceives its demand schedule as being highly elastic.
- In contemplating the demand for its own product, the firm assumes that its competitors do not respond in any way to its price and quantity decisions.
- As a result a firm confronts two different demand curves one that describes what will happen when it alone changes its price and a second that describes what will happen when all prices change.


ロト (日) (日) (日) (日) (日) (0)

Monopolistic Competition II

Köppl-Turyna

Monopolistic Competition III

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ● ● ● ●

Köppl-Turyna