
9

Google
and the PageRank Algorithm

The first three sections of this chapter make use of linear algebra (diagonalization,

eigenvalues, and eigenvectors) and elementary probability theory (independence of

events and conditional probability). These sections provide the basics and can be cov-

ered in about three hours. Combined, they give a good idea of how the PageRank

algorithm works. Section 9.4 is more advanced, requiring a familiarity with real anal-

ysis (accumulation points and convergence of sequences); this section may be covered

in one or two hours.

9.1 Search Engines

In the digital world, new problems are generally quickly solved by new algorithms or
new hardware. Those who have used the world wide web for more than a few years, say
since 1998, will no doubt remember the search engines provided by AltaVista and Yahoo.
More than likely, these same people now use Google’s search engine. Surprisingly, among
all the general-purpose search engines, Google rose to its current supremacy in a matter
of months. It did so thanks to its algorithm for ranking search results: the PageRank
algorithm. The goal of this chapter is to describe this algorithm and the mathematical
foundations on which it is built: Markov chains.

Using a search engine is fairly simple. It starts with somebody sitting at a computer
connected to the Internet, and a desire to learn about a particular subject. Suppose,
for example, that he wants to learn about the annual snowfall in Montreal. He decides
to query Google1 with the keywords precipitation, snow, Montreal, and century. (Of
these, the last word may seem a little strange. However, the user has chosen this word
to indicate his desire for long-term statistics.) The search engine responds with a brief
list of what it deems to be the best sources of information on the topic (see Figure 9.1).
The horizontal bar at the top of the page indicates that the search was performed in

1Google can be found at http://www.google.com

C. Rousseau and Y. Saint-Aubin, Mathematics and Technology,
DOI: 10.1007/978-0-387-69216-6 9, c⃝ Springer Science+Business Media, LLC 2008

266 9 Google and the PageRank Algorithm

Fig. 9.1. A Google search on the keywords precipitation, snow, montreal and century.

less than a tenth of a second, and that around 91,200 potentially relevant pages were
identified. The first is a link to an online database of Canadian climate data, provided
by Environment Canada, which runs the Canadian weather office. (From here we can
learn that the most snow seen since accurate record-keeping began was 384.3 cm in
1954! Thankfully, we also learn that the 30-year average is a little more reasonable, at
217.5 cm.) The first search result returned by Google often has quite a good chance of
answering the user’s question. How about the others? As we descend through the list,

9.1 Search Engines 267

the focus of the results tends to wander, with many documents concerning the Montreal
Protocol on climate change. These later documents are of very little interest to the
user, since they do not speak at all about snow in Montreal. But they are related in
some sense, for they effectively all contain at least three of the four search terms.

This anecdote brings up an important point:2 the pages that Google returns first
are often exactly those that satisfy the user’s needs. The search would definitely be
hopeless if the user had to go through the 91,200 pages. The exact keywords entered by
the user will obviously have an impact on the pages returned, but how in general can
Google use a computer to guess the desires of the user?

Automated search tools have been around for a few decades. We can immediately
think of several domains with large bodies of knowledge that need to be efficiently nav-
igated: library catalogs, government registries (births, deaths, taxes) and professional
databases (legal, dental, medical, parts catalogs). These bodies of information all have
a few points in common. First off, they all contain data that lies within a single clearly
defined scope. For example, all the books in a library contain a title, one or more
authors, a publisher, etc. The uniformity of the data to be organized thus makes the
database more easily categorized and more easily searched. The quality of the informa-
tion is also very high. For example, books are normally entered into a library’s catalog
by professionals, and the error rate is thus very low. If and when an error occurs, the
simplicity of the database makes it easy for corrections to be made. The uniformity of
the user’s needs is also an advantage in these systems. The goal of a library catalog
is above all to maintain a concise listing of exactly what books are on hand. Even
though specialized terms may exist (for example in medical or legal databases), the
users are typically professionals in the field and will all be familiar with them. Thus,
these databases may be searched with relative ease by their users. These databases all
evolve relatively slowly. In a library, very few books leave the collection in a year, and
a year that sees 10% growth in the catalog would be rare. Add to this the fact that
the information already in a library catalog is always accurate, and never changes! The
growth rate is therefore relatively slow, and such databases are easily maintained by
humans. Finally, it is easy to achieve a consensus rating on the quality of the items in
the database. In most university faculties, committees guide the purchase of new books
for the library. Moreover, professors guide students directly toward the best books for
their courses.

None of these characteristics exists on the web. The pages on the web have an
immense diversity: technical, professional, promotional, commercial, entertainment, etc.
The quality to be found is also very inconsistent: we can expect to find many spelling
and grammar errors, as well as misinformation (whether these errors are accidental or
otherwise). The users of the web are also as numbered and varied as the pages on the
web, and their familiarity with search engines is extremely variable. The speed at which

2If the user were to repeat this search again today, chances are the results would be vastly
different and in all probability there would be many more returned pages. This is due to the
constantly changing and expanding nature of the world wide web.

268 9 Google and the PageRank Algorithm

the web evolves is staggering: as of the end of 2005 (when they stopped publishing the
size of their database on their front page), Google was indexing well over 9 billion pages,
with others appearing and disappearing daily. Finally, it seems illusory to establish a
consensus on the relative quality of web pages given their number, their diversity, and
the equally varying interests of the hundreds of millions of users worldwide. It seems
that web pages have nothing in common!

In fact, this is a bit of a lie, since most pages on the web do have something in
common. They are nearly all written in HTML (HyperText Markup Language) or
in some related dialect. And the method in which they are related to each other is
uniform: links between pages are all encoded in the same manner. These links consist
of a few fixed characters preceding the address of the page, otherwise known as its
URL (Uniform Resource Locator). These are precisely the links that a human user may
follow in surfing the web, and which a computer can differentiate from the text, images,
and other elements of a web page. In January 1998, four researchers from Stanford
University, L. Page, S. Brin, R. Motwani, and T. Winograd, proposed an algorithm [3]
for ranking pages on the web. This algorithm, PageRank, does not use the textual or
visual content of the page, but rather the structure of the links between them.3

9.2 The Web and Markov Chains

The web is composed of billions of individual pages, and even more links between them.4
As such, the web can be modeled as a directed graph, where pages are nodes, and links
are directed edges between them. For example, Figure 9.2 represents a (small) web
containing five pages (A, B, C, D, and E). The directed edges between the nodes
indicate that

• the only link from page A leads to page B,
• page B links to pages A and C,
• page C links to pages A, B, and E,
• the only link from page D leads to page A, and
• page E links to pages B, C, and D.

In order to determine the ranking to be accorded to each of these five pages, we
consider a simple version of the PageRank algorithm. Suppose that an impartial web
surfer navigates through this web by randomly choosing links to follow. When he has
only one choice (for example, if he finds himself on page D), then he will follow that link
(leading to page A in this example). If he finds himself on page C, he will follow the link
to page A one-third of the time and similarly for the links to pages B and E. In other

3The first four letters of PageRank refer to the first author’s last name, and not to pages
of the web.

4When Page et al. published their algorithm in 1998, they estimated the size of the web
as roughly 150 million pages with 1.7 billion links between them. In early 2006, the web was
estimated as containing around 12 billion pages.

9.2 The Web and Markov Chains 269

Fig. 9.2. A web of five pages and its links.

words, when he finds himself on a given page, he will randomly choose from among the
outbound links, according each an equal probability. If such a web surfer were left to
crawl the web in such a manner following one link per minute, where would he find
himself in an hour, in two days, or after some large number of jumps? More precisely,
given that his path is determined probabilistically, with what probability would he find
himself on a given page after a given amount of time?

Figure 9.3 answers this question for the first two steps of an impartial web surfer
starting at page C. This page contains three outbound links; thus the web surfer can
end up only on one of the pages A, B, E. Thus, after the first step he would find
himself on page A with probability 1

3 , on page B with probability 1
3 , and on page E

with probability 1
3 . This is indicated in the middle column of Figure 9.3 by the three

relations
p(A) =

1
3
, p(B) =

1
3
, p(E) =

1
3
.

Similarly,
p(C) = 0 and p(D) = 0

indicate that after one step the web surfer could not possibly be on page C or D, since
no links from his previous page can lead him there. Each of the three possible paths
is indicated by its probability of being taken. Furthermore, given that he must stay
within the web, they satisfy

p(A) + p(B) + p(C) + p(D) + p(E) = 1.

The results after the first step are rather simple and predictable. However, even
after only two steps, things begin to get complicated. The third column of Figure 9.3
gives the possible trajectories after a second step. If the web surfer was on A after the
first step, he would be guaranteed to be on B after a second step. Since he had been
on A with probability 1

3 , this path contributes 1
3 to the probability of being on B after

270 9 Google and the PageRank Algorithm

Fig. 9.3. The first two steps of an impartial web surfer starting at page C.

a second step. However, p(B) does not equal 1
3 after the second step, since there is

another independent path that could lead him there: C → E → B. If the web surfer
found himself on page E after the first step, he could choose (with equal probability)
from the three links leading to pages B, C, and D. Each of these paths contributes
1
3 × 1

3 = 1
9 to the probabilities p(B), p(C), and p(D) after the second step. Although

there are more possibilities and the attached probabilities are more complicated, the
end result is relatively simple. After two steps, the web surfer finds himself on a given
page with the following probabilities:

p(A) =
1
6
, p(B) =

4
9
, p(C) =

5
18

, p(D) =
1
9
, p(E) = 0.

Again, we see that these probabilities satisfy

9.2 The Web and Markov Chains 271

p(A) + p(B) + p(C) + p(D) + p(E) =
1
6

+
4
9

+
5
18

+
1
9

+ 0

=
3 + 8 + 5 + 2 + 0

18
= 1.

At this point, the method should seem clear, and we could continue to calculate the
probabilities after a few more steps. However, it is useful to formalize this impartial
walk through the web. The tool best suited to this job is the theory of Markov chains.

A random process {Xn, n = 0, 1, 2, 3, . . . } is a family of random variables parame-
terized by the integer n. We assume that each of these random variables Xn takes its
values from a finite set T . In the example of the impartial web surfer, T is the set of
pages in the web: T = {A,B,C,D,E}. For each step n ∈ {0, 1, 2, . . .}, the position
of the web surfer is Xn. Sticking to the language of random processes, we determined
earlier the probabilities of the possible outcomes for X1 and X2 assuming that the walk
started from C. This can be rephrased as a conditional probability P (I|J), which gives
the probability that event I occurs given that event J has already occurred. For exam-
ple, P (X1 = A|X0 = C) gives the probability of the web surfer finding himself on page
A at step 1 after having been on page C at the beginning (step 0). Thus

p(X1 = A|X0 = C) =
1
3
, p(X1 = B|X0 = C) =

1
3
, p(X1 = C|X0 = C) = 0,

p(X1 = D|X0 = C) = 0, p(X1 = E|X0 = C) =
1
3
,

and

p(X2 = A|X0 = C) =
1
6
, p(X2 = B|X0 = C) =

4
9
, p(X2 = C|X0 = C) =

5
18

,

p(X2 = D|X0 = C) =
1
9
, p(X2 = E|X0 = C) = 0.

The random walk followed by the impartial web surfer possesses the defining property
of Markov chains. First off, we will define Markov chains.

Definition 9.1 Let {Xn, n = 0, 1, 2, 3, . . . } be a random process taking its values from
the set T = {A,B,C, . . .}. We say that {Xn} is a Markov chain if the probability
P (Xn = i), i ∈ T , depends only on the value of the process at the previous step, Xn−1,
and not on any of the preceding steps, Xn−2,Xn−3, We define N < ∞ as the
number of elements in T .

In the example of the impartial web surfer, the random variables are the positions Xn

after n steps. In thinking back to our earlier calculations we notice that in calculating
the probabilities after the first step, P (X1), we used only the starting point. Similarly, in
calculating the probabilities after the second step, P (X2), we used only the probabilities
from the first step. This property of being able to calculate P (Xn) using only the
information from P (Xn−1) is the defining property of Markov chains. Are all random

272 9 Google and the PageRank Algorithm

processes Markov chains? Certainly not. It takes only a slight change to the rules of
our impartial web surfer in order to lose the Markov property. Suppose that we want to
prevent the web surfer from ever returning immediately to the page where he came from.
For example, after the first step, our web surfer found himself on pages A, B, and E
with equal probability. He cannot return to page C from page A, but he could possibly
do so from pages B and E. Thus, we could prevent the web surfer from following the
links to page C from pages B and E. Under these new rules, the web surfer would
have only a single choice when arriving at page B from page C (he would have to go
to page A), and he would be reduced to two choices at page E (either page B or page
D). In prohibiting the web surfer from following links to its previous page we have
lost the Markov property: the process has memory. In fact, in order to determine the
probabilities P (X2) we need to know not only the probabilities at step 1, but also the
page (or pages) where the web surfer was at the start (step zero). The rules that we
originally defined are thus rather special in a mathematical sense: Markov chains have
no memory of past states, and the future state is completely determined by the current
state.

Markov chains are unique in that their behavior may be entirely characterized by
their initial state (p(C) = 1 in the example of Figure 9.3) and a transition matrix given
by

p(Xn = i | Xn−1 = j) = pij . (9.1)

A matrix P is a Markov chain transition matrix if and only if

pij ∈ [0, 1] for all i, j ∈ T and
∑

i∈T

pij = 1 for all j ∈ T . (9.2)

For our impartial web surfer, the elements pij of the transition matrix P represent
the probabilities of finding himself at page i ∈ T when he is coming from page j ∈ T .
However, our rules force the surfer to choose with equal probability from among the
available links. Thus, if page j offers m links, then column j of P will contain 1

m in the
rows corresponding to the m linked pages, and 0 in the remaining rows. The transition
matrix for the simple web in Figure 9.2 is thus given by

P =

A B C D E⎛

⎜⎜⎜⎜⎝

0 1
2

1
3 1 0

1 0 1
3 0 1

3
0 1

2 0 0 1
3

0 0 0 0 1
3

0 0 1
3 0 0

⎞

⎟⎟⎟⎟⎠

A
B
C
D
E

(9.3)

The columns of P indicate possible destinations: from page E the web surfer may
proceed to pages B, C, and D. Similarly, the nonzero entries in rows indicate possible
origins: the single nonzero entry in the fourth row indicates that we may arrive at page
D only from page E.

9.2 The Web and Markov Chains 273

What exactly does the second constraint of (9.2) mean? To clarify, we rewrite it
with the help of the transition matrix defined in (9.1):

∑

i∈T

pij =
∑

i∈T

p(Xn = i | Xn−1 = j) = 1,

which may be read as follows: if at step n − 1 the system is in state j (at page j ∈ T),
then the probability of being in any possible state at step n is 1. Stated even more
simply, this means that a web surfer on a given page at step n − 1 must certainly find
himself still in the web at step n. Thus, the constraint is actually rather simple.

This formalization has several advantages. The operation of matrix multiplication
suffices to reproduce the multitude of tedious calculations performed as we followed the
web surfer through his first two steps. As before, we assume that the web crawler starts
at page C. Thus

p0 =

⎛

⎜⎜⎜⎜⎝

p(X0 = A)
p(X0 = B)
p(X0 = C)
p(X0 = D)
p(X0 = E)

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

0
0
1
0
0

⎞

⎟⎟⎟⎟⎠
.

The probability vector p1 after the first step is given by p1 = Pp0, and therefore

p1 =

⎛

⎜⎜⎜⎜⎝

p(X1 = A)
p(X1 = B)
p(X1 = C)
p(X1 = D)
p(X1 = E)

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

0 1
2

1
3 1 0

1 0 1
3 0 1

3
0 1

2 0 0 1
3

0 0 0 0 1
3

0 0 1
3 0 0

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

0
0
1
0
0

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

1
3
1
3
0
0
1
3

⎞

⎟⎟⎟⎟⎠
,

the same as we calculated before. In the same manner, applying the transformation
matrix again yields p2 = Pp1; the probability vector after the second step is therefore

p2 =

⎛

⎜⎜⎜⎜⎝

p(X2 = A)
p(X2 = B)
p(X2 = C)
p(X2 = D)
p(X2 = E)

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

0 1
2

1
3 1 0

1 0 1
3 0 1

3
0 1

2 0 0 1
3

0 0 0 0 1
3

0 0 1
3 0 0

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

1
3
1
3
0
0
1
3

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

1
6
4
9
5
18
1
9
0

⎞

⎟⎟⎟⎟⎠
.

The same method may be followed to calculate the probability vector after any
number of steps: pn = Ppn−1, or alternatively,

pn = Ppn−1 = P (Ppn−2) = · · · = PP · · ·P︸ ︷︷ ︸
n times

p0 = Pnp0.

The constraints of (9.2) on the transition matrix P result in several properties of
Markov chains that are very important for the PageRank algorithm.

274 9 Google and the PageRank Algorithm

This first property we will examine can be seen by taking several powers of the
transition matrix P . The powers P 4, P 8, P 16, and P 32, rounded to three decimal places,
are given by

P 4 =

⎛

⎜⎜⎜⎜⎝

0.333 0.296 0.204 0.167 0.420
0.222 0.463 0.531 0.667 0.160
0.389 0.111 0.160 0.000 0.370
0.056 0.000 0.031 0.000 0.019
0.000 0.130 0.074 0.167 0.031

⎞

⎟⎟⎟⎟⎠
, P 8 =

⎛

⎜⎜⎜⎜⎝

0.265 0.313 0.294 0.323 0.279
0.420 0.360 0.409 0.372 0.381
0.217 0.233 0.191 0.201 0.252
0.031 0.022 0.018 0.012 0.035
0.067 0.072 0.088 0.092 0.052

⎞

⎟⎟⎟⎟⎠
,

P 16 =

⎛

⎜⎜⎜⎜⎝

0.294 0.291 0.293 0.291 0.294
0.388 0.392 0.389 0.391 0.391
0.220 0.219 0.221 0.221 0.218
0.024 0.025 0.025 0.025 0.024
0.074 0.073 0.072 0.072 0.074

⎞

⎟⎟⎟⎟⎠
, P 32 =

⎛

⎜⎜⎜⎜⎝

0.293 0.293 0.293 0.293 0.293
0.390 0.390 0.390 0.390 0.390
0.220 0.220 0.220 0.220 0.220
0.024 0.024 0.024 0.024 0.024
0.073 0.073 0.073 0.073 0.073

⎞

⎟⎟⎟⎟⎠
.

We observe that Pm seems to converge to a constant matrix as m increases. As it turns
out, this is not just by luck, but rather it is a property of most Markov chain transition
matrices.

Property 9.2 The transition matrix P of a Markov chain has at least one eigenvalue
equal to 1.

Proof: Recall that the eigenvalues of a matrix are always equal to the eigenvalues of
its transpose. This is a result of the fact that both matrices share the same characteristic
polynomial:

∆P t(λ) = det(λI − P t) = det(λI − P)t = det(λI − P) = ∆P (λ),

which itself follows from the fact that the determinant of a matrix is equal to that of
its transpose. It is simple to find an eigenvector of P t. Let u = (1, 1, . . . , 1)t. Then
P tu = u. In fact, expanding the matrix multiplication directly, we see that

(P tu)i =
n∑

j=1

[P t]ijuj =
n∑

j=1

pji · 1, since all uj are 1,

= 1,

by (9.2). !

Property 9.3 If λ is an eigenvalue of an n × n transition matrix P , then |λ| ≤ 1.
Furthermore, there exists an eigenvector associated to the eigenvalue λ = 1 with all
nonnegative entries.

9.2 The Web and Markov Chains 275

This property is a direct result of a theorem attributed to Frobenius. Although the
proof relies only on elementary linear algebra and analysis, it is far from simple. We
will explore this proof in Section 9.4.

Hypotheses Before we continue, we will state three hypotheses that we will assume
from now on.

(i) First off, we will suppose that there is exactly one eigenvalue such that |λ| = 1, and
therefore by Property 9.2 this eigenvalue is 1.

(ii) Next, we will suppose that this eigenvalue is not degenerate, which is to say that
the associated eigensubspace has dimension 1.

(iii) Finally, we will take for granted that the transition matrix P representing the web
is diagonalizable, meaning that its eigenvectors form a basis.

The first two hypotheses are not actually true for all transition matrices, and it is
in fact possible to construct valid transition matrices that violate both of them (see
the exercises). However, these remain reasonable hypotheses for transition matrices
generated by large webs. The third hypothesis is there to simplify the following result.

Property 9.4 1. If the transition matrix P of a Markov chain satisfies the three hy-
potheses above, then there exists a unique vector π such that the entries πi = P (Xn =
i), i ∈ T , satisfy

πi ≥ 0, πi =
∑

j∈T

pijπj , and
∑

i∈T

πi = 1.

We will call the vector π the stationary regime of the Markov chain.
2. Regardless of the initial point p0

i = P (X0 = i) (where
∑

i p0
i = 1), the distribution of

probabilities P (Xn = i) will converge to the stationary regime π as n → ∞.

Proof: The first point simply repeats the fact that P has a single eigenvector with
eigenvalue 1 whose components sum to 1. In fact, the defining equation for the stationary
regime is simply π = Pπ. In other words, π is the eigenvector of P associated with
the nondegenerate eigenvalue 1. Property 2 tells us that π is composed of nonnegative
entries. Since an eigenvector is always nonzero, the sum of its entries must be strictly
positive. By renormalizing this vector we can therefore always ensure that

∑
i πi = 1.

To show the second point we rewrite the initial state vector p0 in terms of the basis
formed by the eigenvectors of P . We index the eigenvalues of P as follows: 1 = λ1 >
|λ2| ≥ |λ3| ≥ · · · ≥ |λN |. Hypotheses (i) and (ii) tell us that the first inequality in this
ordering is strict (that is, the absolute value of λ1 is strictly larger than that of λ2),
while hypothesis (iii) assures us that the eigenvectors of P form a basis for the space
of dimension N where P acts. (For this last step, the eigenvalues must be counted
with their multiplicities.) Let vi be the eigenvector associated with the eigenvalue λi.
Furthermore, assume that v1 has been normalized such that v1 = π. The set {vi, i ∈ T}
forms a basis, allowing us to write

276 9 Google and the PageRank Algorithm

p0 =
N∑

i=1

aivi,

where the ai are the coefficients of p0 in this basis.
We will show that the coefficient a1 is always 1. For this, we will make use of the

vector ut = (1, 1, . . . , 1) that was introduced in the discussion of Property 1. If vi is an
eigenvector of P with eigenvalue λi (which is to say that Pvi = λivi), then the matrix
product utPvi can be simplified in two ways. The first yields

utPvi = (utP)vi = utvi,

and the second,
utPvi = ut(Pvi) = λiu

tvi.

These two expressions must be equal by the associativity of matrix multiplication. For
i ≥ 2, the eigenvalue λi is not 1, and the equality can only hold if utvi = 0, which
expands as

utvi =
N∑

j=1

(vi)j = 0,

where (vi)j represents the jth coordinate of the vector vi. This condition states that
the sums of the coordinates of the vectors vi, i ≥ 2, must all be zero. If we now sum the
components of p0, we get 1 by hypothesis (

∑N
i=1 p0

i = 1). Thus

1 =
N∑

j=1

p0
j =

N∑

j=1

N∑

i=1

ai(vi)j =
N∑

i=1

ai

N∑

j=1

(vi)j

= a1

N∑

j=1

(v1)j = a1

N∑

j=1

πj = a1.

(To obtain the second inequality we used the expression p0 written in the basis of the
eigenvectors. For the fourth, we used the fact that the sums of the coefficients of the vi

are all zero-valued except for v1.)
To obtain the behavior after m steps, repeatedly apply the transition matrix P (m

times) starting from the initial state p0:

Pmp0 =
N∑

j=1

ajP
mvj =

N∑

j=1

ajλ
m
j vj = a1v1 +

N∑

j=2

λm
j ajvj = π +

N∑

j=2

λm
j ajvj .

Thus, the distance between the state at the mth step, Pmp0, and the stationary regime
π is

∥P mp0 − π∥2 =

∥∥∥∥∥∥

N∑

j=2

λm
j (ajvj)

∥∥∥∥∥∥

2

.

9.2 The Web and Markov Chains 277

The sum on the right-hand side is a sum over the fixed vectors ajvj whose coefficients
diminish exponentially like λm

j . (Recall that the λj , j ≥ 2, all have length less than 1.)
This sum is finite, and therefore converges to zero as m → ∞. Thus, pm = Pmp0 → π
as m → ∞. !

Return to our impartial web surfer. The properties of Markov chains can be inter-
preted as saying that if the impartial web surfer continues to crawl through the web
long enough, he will find himself on each of the pages with a probability that approaches
those given by the stationary regime π, where π is the normalized eigenvector associated
with eigenvalue 1.

We are now ready to make the connection between the vector π and the PageRank
ordering of pages.

Definition 9.5 (1) The score given to page i in the (simplified) PageRank algorithm
is the corresponding coefficient πi from the vector π.

(2) We sort the pages based on their PageRank scores, with the largest coming first.

The initial example with the web of five pages (Figure 9.2) allows us to obtain an
understanding of this score. The norms |λi| of the eigenvalues of the associated matrix
P are 1 with multiplicity 1, and 0.70228 and 0.33563 each with multiplicity 2. Only
the eigenvalue 1 is a real number. The eigenvector associated with the eigenvalue 1 is
(12, 16, 9, 1, 3), which, when normalized, yields

π =
1
41

⎛

⎜⎜⎜⎜⎝

12
16
9
1
3

⎞

⎟⎟⎟⎟⎠
.

This tells us that given a sufficiently long walk, the impartial web surfer would visit
page B the most often, with 16 out of 41 steps leading to it. Similarly, he would nearly
completely ignore page D, visiting it once per 41 steps on average.

What is the final order given to the pages? Page B is ranked number 1, which means
that it is the most important page. Page A is ranked second, followed by pages C, E,
and finally, the least important, page D.

There is an another way in which PageRank scores may be interpreted: each page
gives its PageRank score to all of the pages it links to. Return to the vector π =
(12
41 , 16

41 , 9
41 , 1

41 , 3
41). Page D is linked to only once, from page E. Since E has a score

of 3
41 and three outbound links that must share this value, D receives a final score of

one-third that of E, 1
41 . Three pages point to page B: pages A, C, and E. The three

pages have respective scores of 12
41 , 9

41 , and 3
41 . Page A has only one outgoing link, while

pages C and E have three each. Thus, the score of page B is

score (B) = 1 · 12
41

+
1
3
· 9
41

+
1
3
· 3
41

=
16
41

.

278 9 Google and the PageRank Algorithm

Why does the order implied by the PageRank scores give a reasonable ordering of the
pages on the web? Mostly because it entrusts the users of the web itself to make the
decisions as to which pages are better than others. Similarly, it ignores completely what
the creator thinks of the importance of his own page. Moreover, the effect is cumulative.
An important page that links to a few other pages can “transmit” its importance to
these other pages. Thus, users display their confidence by linking to certain pages, and
by doing so they transmit part of their score to these pages in the PageRank algorithm.
This phenomenon has been named “collaborative trust” by the PageRank inventors.

9.3 An Improved PageRank

The algorithm described in the last section is not quite useable as is. There are two
rather evident difficulties that must first be overcome.

The first is the existence of pages that have no outgoing links. The absence of links
may come from the fact that Google’s web-spider has not yet indexed the destinations
of the links, or that the page simply does not have any links. Thus, the impartial web
crawler that arrives at this page would be forever caught there. One way of avoiding
this problem is simply to ignore such pages, and remove them (and all the links leading
to them) from the web. The stationary regime may then be calculated. After this is
done, it is possible to assign scores to these pages by “transmitting” importance from
all of the pages that link to them, as discussed at the end of the previous section:

n∑

i=1

1
li

ri,

where li is the number of links issued by the ith page leading to the dead-end page,
and ri is the calculated importance of the ith page. The next problem shows that this
somewhat crude approach offers only a partial solution.

The second difficulty resembles the first, but it is not quite so easy to fix. An example
is depicted in the web of Figure 9.4. The web consists of the five pages from our original
example, plus two others that are connected to the original web by a single link from
page D. We saw in the last section that the impartial web surfer did not spend much
time on page D. However, all the same, he did occasionally visit it, spending 1

41 of his
time there. What happens in this new modified web? Each time the web surfer visits
page D he will choose to go to page A half of the time, while the other half of the
time he will choose page F . If he chooses the latter option, then he can never return
to the original pages A, B, C, D, or E. It is not surprising then that the stationary
regime π of this new web is π = (0, 0, 0, 0, 0, 1

2 , 1
2)t. In other words, the pages F and

G “absorb” all of the importance that should have been divided up among the other
pages! (Watch out! In this example, (−1) is also an eigenvalue of P , which means
that P n no longer approaches the matrix with columns π as n → ∞.) Can we solve
this problem as before, by simply removing the offending pages from the web? This is

