

Mathematics (Year 1)

BSc in Management

27/01/2014

2nd Final Exam

Total time length of the exam: 2h30m

Name (in full):	
(Block letters)	
Student id.:	Class: Ga i
Lecturer:	

- > Use no calculator or other electronic means of calculation.
- Use only black or blue ink ball point pen.
- > During the test, all mobile devices must be switched off.
- No doubts will be entertained.
- > Maintain intact the booklet. Violating the booklet will disqualify the student to go on.
- > Use only the reserved spaces for your answers. Present justification to your results whenever applicable.
- Use no more than the allowed page for drafts. If you need to use the draft page for your answers, please signal it clearly.

Reserved for marking.

1.a	5.a
1.b	5.b
2	6
3	
4.a	7.a
4.b 4.c	7.b

1. Consider the following system of linear equations:

$$\begin{cases} ax + 2y + (a + 1)z = 0\\ x - y + z = 1\\ -x + y + (a + 1)z = b \end{cases}$$

a) Discuss the solution set based on the parameters of *a* and *b*. [2.0 valores]

b) For a = 0 e b = -1, solve the system by using the Cramer's Rule [2.0 valores]

2. Let $(I + 2A)^{-1} = \begin{bmatrix} -1 & 2 \\ -4 & 5 \end{bmatrix}$. Determine the matrix A.

[2.0 valores]

3. Consider the set of vectors in \mathfrak{N}^3 S= {(1,1,3), (1,0,-2), (2,1,k+1)}. Determine os values of *k* such that S forms a basis in \mathfrak{N}^3 .

[1.5 valores]

4. Consider the linear transformation $T: \mathfrak{N}^3 \rightarrow \mathfrak{N}^3$

$$T(x, y, z) = (ax, x + by, x + y + z)$$

where *a* and *b* are real numbers.

a) Write the transformation matrix of T in the unitary basis.

[1.5 valores]

b) Determine *a* and *b* such that the eigenvalues of T would have the algebraic multiplicity of 3. In this situation, determine the respective eigenvectors set.

[1.5 valores]

c) Determine the kernel of the linear transformation and indicate the dimension of it. For those who have not solve the previous question, consider a = b = 2.

[1.5 valores]

5. Consider the function $f: D \subset \mathfrak{N}^2 \rightarrow \mathfrak{N}$ defined as follows:

$$f(x, y) = \frac{xy}{x+2}$$
 and $f(0,0) = 1$

- a) Figure out the domain of definition of *f* and represent it graphically. [1.5 valores]
- b) Study *f* in terms of continuity and differentiability in the origin of the axes.

[1.5 valores]

6. Let
$$z = x^{\alpha} g\left(\frac{y}{x}\right)$$
 and α is a constant. Evaluate the $\frac{\partial z}{\partial x}$

[2.0 valores]

- 7. Consider the function $f(x, y) = 3 + \frac{(x^2 y^2)}{(x^2 + y^2)}$
- a) Determine the degree of homogeneity of f.

[2.0 valores]

b) What is the degree of homogeneity of $\frac{df}{dx}$. Justify your answer.

[1.0 valores]

Drafts