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6.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.1.1 Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . 19
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1 Matrices

1.1 Synopsis

1.1.1 Introduction

Definition 1 Matrix is a rectangular array of numbers, symbols or expres-
sions. The individual items of the matrix are called elements or entries. The
generic element aij , has two indexes, in which the first one (i = 1, 2, ....,m)
indicates the row and the second one (j = 1, 2, ...., n) indicates the column:

⎡

⎢⎢⎢⎣

a11 a12 ... a1n
a21 a22 ... a2n
...

...
...

am1 am2 ... amn

⎤

⎥⎥⎥⎦

Definition 2 A matrix is of type m× n if is has m rows e n columns.

1.1.2 Matrix algebra

Definition 3 Matrix addition is the operation of adding two matrices by
adding the corresponding entries together. This operation requires that the
adding matrices are of same type.

Definition 4 Multiplication of two matrices is defined only if the number
of columns of the left matrix is the same as the number of rows of the right
matrix. If A is an m-by-n matrix and B is an n-by-p matrix, then their matrix
product AB is the m-by-p matrix whose entries are given by dot product of
the corresponding row of A and the corresponding column of B.

1.1.3 Transpose matrix. Symmetric matrix.

Definition 5 The transpose matrix of A is represented by AT and is formed
by turning rows into columns and vice versa.

Definition 6 A square matrix A that is equal to its transpose, i. e. A = AT ,
is a symmetric matrix. If A = −AT then A is said to be skew-symmetric
matrix.

Result 1 Transposing matrices do verify the following properties:

1. (A+B)T = AT +BT
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2.
(
AT

)T
= A

3. (AB · · ·C)T = CT · · ·BTAT

4. The product of two matrices is a symmetric matrix if and only they
are commutable.

1.2 Exercises

1. Consider the matrices

A =

⎡

⎣
1 2
0 1

−1 3

⎤

⎦ e BT =

[
1 0 −1
2 1 1

]
.

Calculate the matrixX, so that it verifies the following equality:
(
BT − 3X

)T−
3A = 2B.

2. Consider

A =

[
2 3
1 4

]
B =

[
2 0 1
1 0 2

]

C =

⎡

⎣
1 0 1
0 1 1
1 0 1

⎤

⎦ D =

⎡

⎣
2 0
0 1
0 2

⎤

⎦

(a) Determine, wherever possible AB ; BA ; ABC ; CD.

(b) Calculate BD and DB and discuss the results.

3. Let AT =
[
1 2 −1

]
e BT =

[
3 −2 1

]
. Calculate ATB e ABT .

4. Let A be a matrix oftype 3×1, with unitary elements. Calculate AAT

e ATA.

5. Consider

I =

[
1 0
0 1

]
e J =

[
0 1

−1 0

]
,

demonstrate that [aI + bJ ] + [aI − bJ ] = 2aI.

6. Consider the matrices:

A =

⎡

⎣
2 −3 5

−1 4 0
−2 1 −5

⎤

⎦ B =

⎡

⎣
1 3
2 4
1 2

⎤

⎦ C =

⎡

⎣
−1 0
−1 −3
1 −1

⎤

⎦
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(a) Show that (AB)T = BTAT .

(b) Calculate (AB)T + CT .

7. Determine the matrices X and Y that verify the system of equations
{

2X + 3Y = B
−X − Y = C

.

Use matrices B and C from previous exercise.

1.3 Solutions

1. X =

[
−4

3 0 4
3

−8
3 −4

3 −10
3

]

2. (a) AB =

[
7 0 8
6 0 9

]

BA can not be done (number of columns of A is not equal to the
number of rows of matrix B)

ABC =

[
15 0 15
15 0 15

]

CD =

⎡

⎣
2 2
0 3
2 2

⎤

⎦

(b) BD =

[
4 2
2 4

]
and DB =

⎡

⎣
4 0 2
1 0 2
2 0 4

⎤

⎦, therefore, the product

of matrices is not commutative.

3. ATB = −2 and ABT =

⎡

⎣
3 −2 1
6 −4 2
−3 2 −1

⎤

⎦

4. AAT =

⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦ and ATA = 3

6. (b) (AB)T + CT =

[
0 6 −4
4 10 −13

]

7. X =

⎡

⎣
2 −3
1 5
−4 1

⎤

⎦ and Y =

⎡

⎣
−1 3
0 −2
3 0

⎤

⎦
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2 Linear dependence of rows/columns of a
matrix; Elementary operations; Rank of a
Matrix

2.1 Sypnosis

A linear combination of rows of A is an expression like λ1L1+λ2L2+ .......+
λmLm in which:

• λ1,λ2, ......,λm are real numbers

• L1, L2, ......, Lm are respectively the m rows of the matrix A.

The expression λ1L1 + λ2L2 + ....... + λmLm = 0 will have one of the
following solutions:

1. λ1 = λ2 = ...... = λm = 0 , in this case, the rows of A are linearly
independents;

2. If there is, at least, one λi ̸= 0, (i = 1, 2, ......,m), the rows of A are
said to be linearly dependents.

The linear dependence of rows/columns of a matrix remains unchanged
when the following operations are applied to the matrix (designated as ele-
mentary operations):

1. interchange two rows;

2. Multiply a row with a nonzero number;

3. Add a row to another one multiplied by a number (Jacobi operation).

The maximum number of linearly independent rows of A, is caled the
rank of A, denoted: rank A. In general, to compute the rank of a matrix,
perform elementary row operations until the matrix is left in echelon form;
the number of nonzero rows remaining in the reduced matrix is the rank.
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2.2 Exercises

1. Consider the matrix A =

⎡

⎣
1 2 −1
2 −1 0
3 1 −1

⎤

⎦

(a) Use the definition of linear dependence of rows of a matrix to
verify if A has its rows linearly independents.

(b) What can you conclude about the columns of A ?

(c) Write row three as a linear combination of the other rows.

2. Use the definition of linear dependence of columns of a matrix to verify
if B has its columns linearly independents:

B =

⎡

⎣
1 2 −1
2 0 2

−1 −2 0

⎤

⎦

3. Using solely the elementary operations for matrices (O1, O2 e O3) show
how to transform the matrix A into B:

A =

⎡

⎣
0 2 3 4
2 3 5 4
4 8 13 12

⎤

⎦

B =

[
I2 0
0 0

]

4. Determine the rank of the following matrices:

A =

⎡

⎣
1 0 −1
1 2 1
1 1 1

⎤

⎦ B =

⎡

⎢⎢⎣

1 2 0 −1
−1 0 2 1
0 2 2 0
1 0 2 1

⎤

⎥⎥⎦

C =

⎡

⎢⎢⎣

1 2 0 3
3 1 2 −1
5 5 2 5
7 4 4 1

⎤

⎥⎥⎦

5. Show that the rows of the matrix
⎡

⎢⎢⎣

1 −1 0 2 3
3 2 1 −2 0

−1 0 2 −3 1
0 4 3 −9 −5

⎤

⎥⎥⎦
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are linearly dependents. How many rows at most are linearly indepen-
dents?

6. Let

A =

⎡

⎣
1 2
0 c
2 4

⎤

⎦

(a) Consider that c ̸= 0, which is the highert rank of A?

(b) Discuss the rank of A, in regard to the parameter c.

7. Show that

A1 =

⎡

⎢⎢⎣

1
0
1
0

⎤

⎥⎥⎦ A2 =

⎡

⎢⎢⎣

0
0
1
1

⎤

⎥⎥⎦ A3 =

⎡

⎢⎢⎣

1
1
1
0

⎤

⎥⎥⎦ A4 =

⎡

⎢⎢⎣

−1
0
0
1

⎤

⎥⎥⎦

are linerarly dependents.

8. Consider the matrix

A =

⎡

⎣
1 1 −3a 1
2 −1 a −2
7 −2 0 −5

⎤

⎦

(a) Write the third row as a linear combination of others.

(b) Are the columns of A, linearly independents? Explain yourself.

9. Consider the matrix

A =

⎡

⎣
1 k k − 1 1
−1 1 0 k
0 −k − 1 1− k k2

⎤

⎦

(a) Discuss the rank of A relatively to the parameter k.

(b) Discuss the linear dependence of the rows and the columns of A.

(c) Let k = 1 and prove with the definition, the columns are linearly
dependents.

10. A square matrix P is idempotent if P 2 = P . Show that if A.B = A
e B.A = B then, B e

(
AT .BT

)
are idempotents.

11. Prove that the non-null vectors
→
v1,

→
v2 , . . . ,

→
vm are linearly dependents

if one of them, for instance,
→
vi, is a linear combination of the previous

→
vi = ai

→
vi + ...+ ai−1

→
vi−1 .
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2.3 Solutions

1. (b) They are linearly dependents. The reason is the maximum num-
ber of rows that are linarly independents is equal to the maximum
number of columns that are linearly independents. As the maxi-
mum number of rows that are lineraly independents is less than 3,
therefore, the maximum number of columns linearly independents
will be less than 3.

(c) L3 = L1 + L2

4. rA = 3, rB = 3 e rC = 2

5. The maximum number of rows linearly independents is 3.

6. (a) rA = 2, for c ̸= 0

(b) If c ̸= 0, rA = 2; Whether c = 0, rA = 1.

8. (a) L3 = L1 + 3L2

(b) The columns are linearly dependents.

9. (a) rA = 3, ∀k.
(b) The rows are linearly independents.The columns are linearly de-

pendents.

3 Matrix inversion

3.1 Sypnosis

An n-by-n (square) matrix A is called invertible if there exists an n-by-n
matrix B such that AB = BA = I. If B exists, is designated as A−1 and
previous equality becomes: AA−1 = A−1A = I. In addition, matrix A must
have the rank equal to its dimension in order to be invertible.

3.2 Exercises

1. Let A and B nonsingular matrix of order n prove that:

(a) (A−1)−1 = A

(b) (A.B)−1 = B−1.A−1

(c)
(
AT

)−1
= (A−1)T
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2. Consider A, B and C nonsingular matrices with the same dimension,
generalize the result of question 1.b) proving the equality (ABC)−1 =
C−1B−1A−1.

3. Prove that, if A−1.A = I e C.A−1 = I then C = A.

4. Calculate if possible, the inverse of the following matrices:

a)

⎡

⎣
1 3 3
1 4 3
1 3 4

⎤

⎦ b)

⎡

⎢⎢⎣

1 2 3 1
1 3 3 2
2 4 3 3
1 1 1 1

⎤

⎥⎥⎦ c)

⎡

⎣
1 3 5
1 3 5
1 4 7

⎤

⎦

3.3 Solutions

4. (a)

⎡

⎣
7 −3 −3
−1 1 0
−1 0 1

⎤

⎦

(b)

⎡

⎢⎢⎣

1 −2 1 0
1 −2 2 −3
0 1 −1 1
−2 3 −2 3

⎤

⎥⎥⎦

(c) The marix has no inverse once the rows are linearly dependents:
(L1 = L2). The matrix is singular.

4 Determinants

4.1 Sypnosis

Definition 7 Determinant is a real number associated with a square matrix.
It is the sum of the product terms made up from the elements of the matrix.
In addtion, the product terms are affected by the positive or negative sign.
Those with a even number of inversion of the indexes carry the positive sign;
those with a odd number of inversion of the indexes will carry the negative
sign.

4.1.1 Some properties

• |A−1| = 1
|A|

• |AB| = |A| . |B|
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• |kA| = kn. |A|

•
∣∣AT

∣∣ = |A|

• |A|+ |B| ̸= |A+B|

4.1.2 Computation of determinants

For a 2 x 2 matrix, its determinant is found by subtracting the products of
its diagonals.
For a 3 x 3 matrix, the Sarrus rule is widely used.
Another widely used technique is the ”Laplacian”minor expansion: The de-
terminat of a square matrix is obtained by summing of the products of the
elements of a row (column) with their corresponding co-factors.

4.2 Exercises

1. Determine i and j so that the product term a1i.a32.a4j.a25.a53 of a
matrix of dimension 5 is even.

2. Calculate and justify the following determinants:

A =

∣∣∣∣∣∣

1 3 0
2 1 0
3 −1 0

∣∣∣∣∣∣
B =

∣∣∣∣∣∣

2 2 2
2 3 4
1 1 1

∣∣∣∣∣∣

C =

∣∣∣∣
1 2

−1 2

∣∣∣∣ D =

∣∣∣∣∣∣

1 −1 2
0 1 2
0 0 2

∣∣∣∣∣∣

(a) Comment on the linear dependence of the rows and columns of
the matrices based on the associated determinant.

(b) What is the rank of each of the matrices?
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3. Compute the determinants:

(a)

∣∣∣∣
1 2
3 4

∣∣∣∣ (b)

∣∣∣∣
2 3
1 5

∣∣∣∣

(c)

∣∣∣∣∣∣

2 3 5
1 0 1
2 1 0

∣∣∣∣∣∣
(d)

∣∣∣∣∣∣

2 −3 −4
1 0 −2
0 −5 −6

∣∣∣∣∣∣

(e)

∣∣∣∣∣∣∣∣

4 2 −1 2
1 3 2 −3
5 1 −4 −2
1 0 3 −1

∣∣∣∣∣∣∣∣
(f)

∣∣∣∣∣∣∣∣

2 −1 2 −1
2 4 0 −2
1 −3 2 0

−1 0 3 4

∣∣∣∣∣∣∣∣

(g)

∣∣∣∣∣∣∣∣

a 0 0 0
0 0 0 b
0 c 0 0
0 0 d 0

∣∣∣∣∣∣∣∣
(h)

∣∣∣∣∣∣∣∣∣∣

1 −1 2 0 3
1 2 −2 1 −1
0 −3 −1 1 2

−1 2 0 3 −1
1 2 1 −1 0

∣∣∣∣∣∣∣∣∣∣

(i)

∣∣∣∣∣∣∣∣∣∣

1 0 −2 0 1
3 −1 −2 1 3
0 0 1 −2 1

−1 0 2 3 −1
1 2 −1 −1 −1

∣∣∣∣∣∣∣∣∣∣

4. Solve the equation: ∣∣∣∣∣∣

x −4 0
1 −3 −1
2 x 5

∣∣∣∣∣∣
= 2

5. Solve the following equation:
∣∣∣∣∣∣∣∣

0 x− 2 0 0
x− 1 0 x 0
0 x 0 x− 2
0 0 x− 1 0

∣∣∣∣∣∣∣∣
= 0

6. Demonstrate the equality:
∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1
1 1 + x1 1 · · · 1
1 1 1 + x2 1
...

...
. . .

...
1 1 1 · · · 1 + xn

∣∣∣∣∣∣∣∣∣∣∣

= x1x2 · · · xn
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7. Show that ∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1
1 2 1 · · · 1
1 1 3 1
...

...
. . .

...
1 1 1 · · · n

∣∣∣∣∣∣∣∣∣∣∣

= (n− 1)!

8. Prove that ∣∣∣∣∣∣

1 1 1
a b c
a2 b2 c2

∣∣∣∣∣∣
= (c− a) (b− a) (c− b)

9. Show that: ∣∣∣∣∣∣

a b
2 c

2a2 b2 2c2

1 1
2 1

∣∣∣∣∣∣
= (a− b) (b− c) (c− a)

10. Prove the following
∣∣∣∣∣∣

ax a2 + x2 1
ay a2 + y2 1
az a2 + z2 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣

ax ax2 a
y y2 1
z z2 1

∣∣∣∣∣∣

11. Compute the value of x for which the equality is true. justify all your
steps: ∣∣∣∣∣∣

3k2 0 k2

3
2k − 6 −6 k

2
−6 + k3 k3 −2

∣∣∣∣∣∣
=

∣∣∣∣∣∣

2 −2 4
0 x 4

−1 −x 2x

∣∣∣∣∣∣

12. Determine the value of x, z and w that verifies the equation, using the
properties of the determinants.

∣∣∣∣∣∣

ax2 a 0
1 1 + z w
0 az aw

∣∣∣∣∣∣
= 0

13. Consider the

|A| =

∣∣∣∣∣∣∣∣

6x3 − x1 4y3 − y1 0 −10w3 − w1

−w2
3 + x1 x3 − 1 3 x2 − y2
4x2 −y2 0 2w2

3x3 2y3 0 −5w3

∣∣∣∣∣∣∣∣

|B| =

∣∣∣∣∣∣

y1 3y2 2y3
x1 −12x2 3x3

w1 −6w2 −5w3

∣∣∣∣∣∣
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Using only the properties of the determinants show that |A| = |B|

14. Consider

|A| =

∣∣∣∣∣∣

5x1 + 6x2 5y1 − 2y2 5z1 + 4z2
3x2 −y2 2z2
5x3 3y3 7z3

∣∣∣∣∣∣
e |B| =

∣∣∣∣∣∣

y1 5y2 3y3
x1 −15x2 5x3

z1 −10z2 7z3

∣∣∣∣∣∣

Using only the properties of the determinants show that |A| = |B|.

15. Each of the elements of the second column of the matrix

B =

⎡

⎣
−1 x 1
0 y 2
1 1 1

⎤

⎦

is equal to the sum of its respective co-factor to the third element of
the same column. Determine |B|.

16. Consider a square matrix

A =
[
f | F

]

in which
f =

[
1 f2 f3

]T
,

and f2 ̸= 0 e f3 ̸= 0 e

F =

⎡

⎣
f11 f12
f21 f22
0 0

⎤

⎦

(a) Let |A| = 0 . Show that by having f21.A22 = f3.A31 (in which Aij

is the co-factor of the element aij of the matrix A), then f12 = 0
∨ f21 = 0.

(b) Let f12.f21 =
1
2 e f22 ̸= 0 . Show that |A| ̸= 0 sse f11 ̸= (2f22)

−1.

(c) Let f2j = f2.f1j (j = 1, 2). Demonstrate with the definition that
the columns of A are linearly dependents. Supposing that f11 ̸= 0
∨ f12 ̸= 0, write down the first column as a linear combination of
the others.

17. Let X be a square matrix of dimension n and X + XT = 0 (null
matrix). Show that with n odd, then |X| = 0. (Hint: Remember that
A, a square matrix of dimension n, then |kA| = kn |A|).
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4.3 Solutions

1. i = 1; j = 4

2. • For A:

|A| = 0 (there is a null row);

(a) the rows or the columns are linerarly dependents for the de-
terminant is zero;

(b) r = 2;

• For B:

|B| = 0 (for row 1 is proportional to row 3);

(a) The rows and columns are linearly dependents for the deter-
minant is null;

(b) r = 2;

• Para C:

|C| = 4;

(a) as the determinant is not null, the rows and the columns are
lineraly independents;

(b) r = 2;

• For D:

|D| = 2 (the determinant of a row echelon form matriz is the term
of the main diagonal);

(a) As the determinant is not null, the rows and the columns are
linearly independents;

(b) r = 3;

3. (a) −2 (b) 7 (c) 9 (d) −18 (e) 275 (f) 0 (g) abcd
(h) −12 (i) 33

4. x = 2 ∨ x = 13

5. x = 1 ∨ x = 2

11. x = −1 ∨ x = −2

12. (x, z, 0) , ∀x, z and (±1, z, w) , ∀z, w

15. |B| = 10

16. (b) i. The first row as a linear combination of the others: l1 =
f1j
f2j

l2.
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5 Inverse matrix with determinant theory

5.1 Synopsis

An n-by-n (square) matrix A is called invertible if there exists an n-by-n
matrix B such that AB = BA = I. If B exists, is designated as A−1 and
previous equality becomes: AA−1 = A−1A = I.
Accordingly, matrix A have to be square and its rank equal to its dimension;
(|A| ̸= 0). The inverse of matrix A is A−1 = 1

|A|Â, being Â the adjoint
matrix, or in the other words, the matrix of co-factors transposed.

5.2 Exercises

1. Consider the matrices

A =

[
3 4
1 2

]
B =

⎡

⎣
1 −1 2
2 0 1
3 −1 2

⎤

⎦

C =

[
1 2
−1 2

]
D =

⎡

⎣
1 −1 2
0 1 2
0 0 2

⎤

⎦

Determine, whenever possible, the inverse of A, B, C and D, by using
the adjoint matrices.

2. Consider the following matrix equation: B−1XT |A| = B−1Â − |A| I.
Explicit the matrix X as a function of A e B.

3. A and B are two nonsingular matrices and let k ∈ R. Consider the
matrix equation: (XA−1)T +

(
BAT

)−1
= KI, explicit X.

4. Consider the matrix equation
[(
AT

)−1
X
]T

+ (AB)−1 = BB−1

(a) Explicit X as a function of A and B.

(b) Determine X, as A =

[
3 −4
0 2

]
and B =

[
−1 2
−1 3

]

5. Explicit X from the following equation
(
ÂA− I

)
(A−X)T = I |A|,

considering that |A| ̸= 1
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6. Given the following matrix equation Â (B−1 |A|)−1 = A−1X and knowing
that A and B are nonsingular matrices

A =

[
1 2
3 4

]
e B =

[
2 −2
3 1

2

]

Determine |X|.

7. Considering the matrices A and B nonsigular, and

A =

⎡

⎣
1 0 0
1 1 0
0 0 1

⎤

⎦ e B =

⎡

⎣
1 0 0
0 2 0
0 0 3

⎤

⎦

and do verify the matrix equation:
[(
AT

)−1
X
]T

+ (AB)−1 = A, de-

termine |X|.

8. Consider the matrix A =

⎡

⎣
4K 0 3
−1 1 K + 1
K −K 0

⎤

⎦

(a) Calculate the values of K so that A−1 will exist. Use the deter-
minant theory for this exercise.

(b) For K = 1 solve the matrix equation
(
AÂ− I

)
(X − A)T = I

|A|

9. Consider the following matrix equation
[(
BTX −1

)T]−1

|A| + AÂ =

B−1Â ( where Â=adj A). Explicit X as a function of A and B. Let

A =

[
1 −2
1 −3

]
e B =

[
−4 0
3 2

]
and determine X.

10. Prove that:
1

|B|

(
Â
)−1 [

AÂA−1
] ∣∣BTA−1

∣∣ |A| = I.

(Remember that |AB| = |A| |B|.)

11. Let |A| |B| = |AB| prove that |A−1| = 1
|A| , and |A| ̸= 0.

12. Let A a nonsingular matrix and |A| ̸= 1, show that

(
Â− A−1

)−1

=
A

|A|− 1
.
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13. Let A, B and C symmetric matrices of dimension n. The matrices

A and B verify the condition aij − bij =

{
1 (i = j)
0 (i ̸= j)

Discuss the

conditions so it is possible to solve for X the following matrix equation:
A

|A−B|

(
C−1XTC +B

)T
= A2

5.3 Solutions

1.

A−1 =

[
1 −2
−1
2

3
2

]
B−1 =

⎡

⎣
−1
2 0 1

2
1
2 2 −3

2
1 1 −1

⎤

⎦

C−1 =

[
1
2

−1
2

1
4

1
4

]
D−1 =

⎡

⎣
1 1 −2
0 1 −1
0 0 1

2

⎤

⎦

2. X = (A−1 − B)T

3. X = K.A− (B−1)T

4. (a) X = AT − (B−1)T

(b) X =

[
6 1
−6 1

]

5. X = A− |A|
|A|−1I

6. |X| = 7, see that X = B.

7. |X| = 0, see that |X| = |A2 −B−1|

8. (a) K ̸= 0 ∧ K ̸= −1

(b) X =

⎡

⎣
36
7 0 3
−1 15

7 2
1 −1 8

7

⎤

⎦, see that X = A+ |A|
|A|−1I

9. X = (A−1)T − BT , X =

[
7 −2
−2 −3

]

13. X = 1, if there is A−1.
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6 System of linear equations; Cramer’s Rule;
Rouché Theorem

6.1 Synopsis

6.1.1 Taxonomy

A general system of m linear equations with n unknowns can be written as

a11x1 + a12x2+ . . .+ a1nx1 = b1
a21x1 + a22x2+ . . .+ a2nx2 = b2

...
am1x1 + am2x+ . . .+ amnxn = bn

Here, the x1,x2,..., xn are the unknowns, a11, a12, ... amn are the coefficents
of the system and the b1, b2, ..., bn are the constant terms.
This system of linear equations can be written in the matrix form AX = b, so
that A is the matrix of the coefficents, X, the column matrix of the unknowns
and b is the column matrix of the constant terms.
A solution of a linear system is an assignment of values to the variables x1,
x2,..., xn such that each of the equation is satisfied. The set of all possible
solutions is call solution set.
This linear system may behave in any one of three possible ways:

1. The system has a single unique solution

2. The system has infinite many solutions

3. The system has no solution

In order to determine the nature of the solution set of the linear system
we start with calculating the rank of the matrix A, which is the highest
dimension sub-matrix within A with non-null determinant. Then, compare
the rank with the number of equations and the number of unknowns. The
outcome is described as follows:

1. r = m = n The system has a single unique solution

2. r = m < n The system has a infinite many solutions

3. r < m Check with Rouché Theorem.
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6.1.2 Rouché Theorem

Consider a system of linear equations with n unknows with matrix equation
AX = b. The system

1. has a solution: rank(A|b) = rank(A)

2. has a unique single solution: rank(A|b) = rank(A) = n

A system of linear equations with the matrix equation AX = b is ho-
mogeneous if b is a matrix of zeros. We write AX = 0. A homogenous
system of linear equations has always zero solution (trivial solution) or it has
a non-trivial solution, and therefore infinite many solutions, if and only if
rank(A|b) = rank(A) < n.

6.1.3 Cramer’s Rule

Consider a system of linear equations represented in matrix multiplication
form:

AX = b

Where the square matrix A is invertible and the vector X = [x1, ...xn]T

is a column vector of the variables. Then, the Cramer’s Rule states that

xi =
detAi

detA
i = 1 . . . n

Where Ai is the matrix formed by replacing th ith column of A by the
column vector b.

6.2 Exercises

1. Solve the following sytems of equations:

(a)

⎧
⎪⎪⎨

⎪⎪⎩

x+ 2y + z + 2t = 16
x+ y + z + t = 10
4x+ 2y + 3z + 4t = 33
4x+ 3y + 2z + t = 20

(b)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x+ y + 2z = 9
3x− 4y + 5z = 10
2x+ y − z = 1
6x− 2y + 6z = 20
x− 5y + 6z = 9
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(c)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x− 5y + z = 4
2x+ y − z = 1

x+ 6y − 2z = −3
4x− 4y + z = 9
x− 16y + 4z = 9

(d)

⎧
⎪⎪⎨

⎪⎪⎩

x+ 2y + z + t = 0
x− y + z + t = 0
2x+ y + z + t = 0
3x+ y + z + t = 0

(e)

⎧
⎨

⎩

x− y − z = 2
2x+ y − z = 1
3x− y − z = −2

(f)

{
2x+ y + z = 4
x+ y + 2z = 1

2. Study the nature of the solutions of the systems of equations as a
function o f parameter k:

(a)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x1 + x2 + x3 = 1
2x1 + x2 − x3 = −1
x1 + 3x2 + 2x3 = 2
2x1 + 2x2 + 3x3 = 3
x1 + x2 − 4x3 = k

(b)

⎧
⎨

⎩

kx+ y + z = 1
x+ ky + z = k
x+ y + kz = k2

3. Study the linear system as a function of the parameter m:
⎧
⎨

⎩

x+ y −mz +mt = 0
y + z + 2t = 1
x+ 2y + (2 +m)t = 1

Let m = 1, use the Cramer’s Rule to solve the linear system.

4. Consider the following system of linear equations
⎧
⎨

⎩

x+ y + (1−m)z = m+ 2
(1 +m)x− y + 2z = 0
2x−my + 3z = m+ 2

(a) Write the system in the form of AX = B e compute the determi-
nant of A.

(b) Discuss the nature of the system as a function of the parameter
m.
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(c) Solve the linear system

i. for the case in which there is a single and unique solution

ii. for the case of homegeneous system

iii. for which it has a infinite many solutions.

5. Consider the linear system with the variables x, y, z and w:
⎧
⎪⎪⎨

⎪⎪⎩

x− y = a
y − z = b
z + w = −b
x− aw = a

Discuss the system as a function of the parameters a and b. Solve it
by using Cramer’s Rule with the values of a e b such that the system
has an infinite many solutions.

6. Consider the sistem of equations
⎧
⎨

⎩

−2x1 + 3x2 − x3 = 0
x1 + 3x3 = 0
3x1 − x2 + ax3 = b

Determine a and b such that the system has an infinite many solutions
and solve it with Cramer’s rule.

7. Consider the system of equations with the unknowns x, y and z:
⎧
⎨

⎩

ax− z = 0
3
4x+ (a− 1)y = a
y − b = −z

(a) Write its equivalente in the matrix form.

(b) Analyse the nature of the system as a function of a and b.

8. Consider the following simplified Keynesian model:
{

Y = C + I0 +G0

C = a+ bY

Use Cramer’s Rule to compute the endogenous variables Y and C.
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item Consider the system S, with four equations and four unknowns
(p, q, r e s), and the main determinant

△ =

(p) (q) (s)∣∣∣∣∣∣

1 0 1
0 1 0
0 1 1

∣∣∣∣∣∣

Consider yet non principal equation (the third) q + r + s = 2b and

let
[
1 0 2b a

]T
the matrix of constant terms.

Discuss the nature of S as function of the parameters a and b.

9. Consider the linear system with unknowns x, y, z and t and the para-
meters c, d ∈ R ⎧

⎨

⎩

x− y + z = c+ d+ t
x+ y − z − t = c− d
cx− cz − dt = 4− dy

(a) Write the equivalent in matrix form.

(b) Study the system as a function of the parameters c and d.

(c) Let c = 1 e d = 0

i. Solve the system with Cramer’s Rule.

ii. Verify, if the equation x+ y − z − t = −1
is compatible with the system.

10. Consider the linear system with x, y, z and t:
⎧
⎪⎪⎨

⎪⎪⎩

x+ y = m
y + z = −n
z + t = p
x+mt = m

Study the system as function of m, n and p. Solve it with Cramer’s
Rule and with the values of m, n and p in which the system has an
infite many solutions.

11. Consider the system S with the unknowns x, y, w and t:
⎧
⎪⎪⎨

⎪⎪⎩

x+ w + kt = 0
y + t = 1
y + w + kt = 2a
y + w + t = b
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Discuzz the nature of the system according to the parameters k, a and
b . Solve it with Cramer’s Rule for the case of infinite many solutions.

12. Consider the following system of linear equations with the unknowns
x, y and z: ⎧

⎨

⎩

2x+ 3y − z = β
x+ 2y − 2z = 1
x+ αy + z = −1

(a) Write it in the matrix form.

(b) Discuss the nature of the system as a function of α and β.

(c) Let α = 1 and β = 0. Solve it with Cramer’s Rule.

13. Determine the values of k for which the system
⎧
⎨

⎩

x+ (k − 1)z = 0
ky + z = 0
kx+ z = 0

has non-trivial solution.Choose a vale for K and solve the system.

14. Consider the homogenous system for x, y e z (real numbers):
⎧
⎨

⎩

x+ ay + a2z = 0
x+ by + b2z = 0
x+ cy + c2z = 0

Discuss the nature of the system for a, b, and c.

Solve with Cramer’s Rule for the case of infinite many solutions.

15. Consider the system of linear equations Ax = b in the version of
homogenous system Ax = 0. Show that if y1 and y2 are two solutions
of the complete system Ax = b then z = y1−y2 is solution of Ax = 0.

6.3 Solutions

1. (a) Single and unique solution (SPD): (1, 2, 3, 4)

(b) Single and unique solution (SPD): (1, 2, 3)

(c) No solution (SI)

(d) Infinite many solutions (SPI) with d=1: (0, 0,−t, t) , ∀t
(e) Single and unique solution (SPD):

(
−2, 12 ,−

9
2

)
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(f) Infinite many solutions (SPI) com d=1: (3 + z, −2− 3z, z), ∀z

2. (a) k ̸= −4: No solution (SI); k = 4: Single and unique solution
(SPD)

(b) k ̸= 1 ∧ k ̸= −2: SPD; k = 1: SPI (d=1); k = −2: SI

3. m ̸= 1: SPI (d=1); m = 1: SPI (d=2). Form = 1 we get: (−1 + 2z + t, 1− z − 2t, z, t) , ∀z, t

4. (a)

⎡

⎣
1 1 1−m

m+ 1 −1 2
2 −m 3

⎤

⎦

⎡

⎣
x
y
z

⎤

⎦ =

⎡

⎣
m+ 2

0
m+ 2

⎤

⎦

|A| = m (m+ 2) (m− 2)

(b) m ̸= 0 ∧m ̸= ±2: SPD; m = 0: SPI (d=1); m = 2: SI; m = −2:
SPI (d=1)

i.
(

1
m−2 ,−

m+3
m−2 ,−

m+2
m−2

)
, for m ̸= 0 ∧m ̸= ±2;

ii. (x,−x, 0) , ∀x, for m = −2;

iii.
(
1− 3z

2 , 1 +
z
2 , z

)
, ∀z, for m = 0.

5. a ̸= −1 ∧ ∀b: SPD; a = −1 ∧ ∀b: SPI (d=1). For SPI we get
(−1− w,−w,−b− w,w) , ∀w.

6. a = 22
3 ∧ b = 0: The solution is

(
−3x3,−5x3

3 , x3

)
, ∀x3.

7. (a)

⎡

⎣
a 0 −1
3
4 a− 1 0
0 1 1

⎤

⎦

⎡

⎣
x
y
z

⎤

⎦ =

⎡

⎣
0
a
b

⎤

⎦

(b) a ̸= −1
2 ∧ a ̸= −3

2 ∧ ∀b: SPD; a = −1
2 ∧ b = 1

3 : SPI (d=1);
a = 3

2 ∧ b = 3: SPI (d=1); a = −1
2∧b ̸=

1
3 : SI; a = 3

2 ∧ b ̸= 3: SI.

8. b ̸= 1 (SPD): Y = I0+G0+a
1−b ∧ C = a+b(I0+G0)

1−b ;

b = 1 ∧ I0 +G0 + a = 0 (SPI): Y = C − a ∧ ∀C.

9. a = 2b: SPI (d=1); a ̸= 2b: SI.

10. (a)

⎡

⎣
1 −1 1 −1
1 1 −1 −1
c d −c −d

⎤

⎦

⎡

⎢⎢⎣

x
y
z
t

⎤

⎥⎥⎦ =

⎡

⎣
c+ d
c− d
4

⎤

⎦

(b) d ̸= c: SPI (d=1); d = c: SI

(c) i. (1 + t,−3 + t,−3 + t, t) , ∀t.
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ii. The equation is incompatible.

11. m ̸= 1∧∀p∧∀n: SPD; m = 1∧ p = −n∧∀n: SPI (d=1); m = 1∧ p ̸=
−n ∧ ∀n: SI; When it is infinite and many solutions, the solution is
(1− t, t,−n− t, t) , ∀t.

12. k ̸= 1∧∀a∧∀b: SPD; k = 1∧∀a∧b = 2a: SPI (d=1); k = 1∧∀a∧b ̸= 2a:
SI; For SPI the solution is (1− 2a− t, 1− t, 2a− 1, t) , ∀t.

13. (a)

⎡

⎣
2 3 −1
1 2 −2
1 α 1

⎤

⎦

⎡

⎣
x
y
z

⎤

⎦ =

⎡

⎣
β
1
−1

⎤

⎦

(b) α ̸= 1: SPD; α = 1 ∧ β = 0: SPI (d=1); α = 1 ∧ β ̸= 0: SI.

(c) SPI (d=1) and the solution is (−4z − 3, 3z + 2, z) ∀z.

14. k = 0 ∨ k = 1±
√
5

2

For k = 0, the solution is (0, y, 0) , ∀y;

For k = 1+
√
5

2 , the solution is
(

1−
√
5

2 z, 1−
√
5

2 z, z
)
, ∀z;

For k = 1−
√
5

2 , the solution is
(

1+
√
5

2 z, 1+
√
5

2 z, z
)
, ∀z.

15. a ̸= b ∧ b ̸= c ∧ a ̸= c: SPD; a ̸= b ∧ (a = c ∨ b = c): SPI (d=1);

a ̸= c∧ (a = b ∨ b = c): SPI (d=1); b ̸= c∧ (a = b ∨ c = a): SPI (d=1);
a = b = c: SPI (d=2)

For a ̸= b ∧ (a = c ∨ b = c), the solution is (abz,− (a+ b) z, z) , ∀z
For a ̸= c ∧ (a = b ∨ b = c), the solution is (acz,− (a+ c) z, z) , ∀z
For b ̸= c ∧ (a = b ∨ c = a), the solution is (bcz,− (b+ c) z, z) , ∀z
For a = b = c, the solution is (−ay − a2z, y, z) , ∀y, z.

7 Revision Exercises

1.

(a) Prove that

1

|B| .
(
Â
)−1

.
[
A.Â.A−1

]
.
∣∣BT .A−1

∣∣ . |A| = I,

The matrices A and B are square of dimension n and Â is the
adjoint matrix of A.
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(b) Solve the matrix equation for X
∣∣∣∣∣∣∣∣∣∣

x 0 −1 1 0
1 x −1 1 0
1 0 x− 1 0 1
0 1 −1 x 1
0 1 −1 0 x

∣∣∣∣∣∣∣∣∣∣

= 0

2. Consider the matrix equation B−1XT |A| = B−1Â− |A| I.

(a) Explicit the matrix X as a function of A and B. Justify.

(b) Consider the matrix A and

A =

⎡

⎣
α 1 α
1 1 1
0 1 1

⎤

⎦

Determine α such that AÂ = I, without computing the adjoint
matrix o A (Â).

(c) Use the value of α from previous exercise to determine |B−1|.
Consider that B = 2A and make use of the properties of the
determinants. Justify adequaltely.

3. Let A, X and I square matrices of dimension n, and I the identity
matric. Consider that |A| = 3 and:

AX (I + A)−
(
XTAT

)T
A = A2Â,

and, Â is the adjoint matrix of A.

(a) Show that it is false the following proposition: AX = X =⇒
A = I. What conditions have to be imposed on X so that the
proposition becomes true?

(b) Calcule |X|.

4. Consider the following determinants

|A| =

∣∣∣∣∣∣∣∣

1 2 1 b
5 3 a 3
−1 2 1 b
2 −1 a 1

∣∣∣∣∣∣∣∣
e |B| =

∣∣∣∣∣∣∣∣

1 5 −1 2
−2 −3 −2 1
1 a 1 a
b 3 b 1

∣∣∣∣∣∣∣∣

Determine, without computing directly the determinants |A|+ |B|, and
|B| is obtained from |A|.
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5. Considerthe following system of equations for the unknowns x, y, z e
w ⎧

⎨

⎩

y = z − w
ax = b− w
x− ay + z = a

(a) Write the system in the matrix form.

(b) Study the system according to the paramenters a and b.

(c) Let a = 2 and b = 1 solve the system with Cramer’s Rule.

6. Consider the linear system
⎧
⎨

⎩

4x+ 4y − 3z = 0
x+ y − z = 0

kx+ 2y + 2z = 0

(a) Determine k such that the system has non-trivial solutions. In
this case, what can be said about the linear dependence of the
rows of the coeficent matrix?

(b) Let k = 2 solve the system with Cramer’s Rule.

8 Solutions

1. (b) x = −1

2. (a) X = (A−1)T − BT

(b) α = 2

(c) |B−1| = 1
8

3. (a) It is necessary that X be nonsingular to be invertible.

(b) |X| = |3I| = 3n.|A|+ |B| = 0

4. |A|+ |B| = 0

5. (b) Se a ̸= 0 ∧ a ̸= 1: SPI, d=1.

Se a = 0: SPI, d=1.

Se a = 1 ∧ b = 1, SPI, d=2.

Se a = 1 ∧ b ̸= 1, SI.

(c) z = −3
2 +

3
2w, x = 1

2 −
1
2w, y = −3

2 +
1
2w
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6. (a) k = 2: C1 = C2 e |A| = 0. Rows are linearly dependents.

(b) (x, y, z) = (x,−x, 0) , ∀x.
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