File Management

Chapter 12, Livro do William Stallings
Chapter 12, Livro do Silberchatz

Sistemas de Operacao, 1° Semestre, 2004-2005

Objectives for a
File Management System

Meet the data management needs and requirements of
the user.

Guarantee that the data in the file are valid.
Optimize performance.
Provide I/O support for a variety of storage device types.

Minimize or eliminate the potential for lost or destroyed
data.

Provide a standardized set of I/O interface routines.
Provide I/O support for multiple users.

File Management Functions

Identify and locate a selected file.

Use a directory to describe the location of
all files plus their attributes.

On a shared system describe user access
control.

Blocking for access to files.
Allocate files to free blocks.
Manage free storage for available blocks.

File-System Structure

File structure
Logical storage unit
Collection of related information

File system resides on secondary storage
(disks).
File system organized into layers.

File control block — storage structure
consisting of information about a file.

Layered File System

application programs

!

logical file system

v

file -organization module

.

basic file system

y

I/O control

y

devices

A Typical File Control Block

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks

In-Memory File System
Structures

The following figures illustrate the

necessary file system structures provided
by the operating systems.

Figure (a) refers to opening a file.

Figure (b) refers to reading a file.

In-Memory File System
Structures

N 0O
[][]
directory structure

open (filename) ’l:l

directory structure

ile control block

user space kernel memory secondary storage

(@)

index

L[]
r | // data bloc%|

per-process system-wide file control block
open-file table open-file table

30

/
.

read (index)

user space kernel memory secondary storage

(b)

per-process

file ptr array

Process
descriptor

__iil' i

ctdont

System-wide

Open file table

System-wide
File descriptor table

(-ir

I-W pos. 1110 de

_—

[-W pPO5. 1110 de

1N-Memory
copy ofinodg
ptr to on-disk

1110l s

otderr /

/

0S

0S

File data

Sharing File Descriptors

parent

F
shared seek
fset 1n shared
>

-

shared file
_/: (inodeorvnode)

child

process file system open
process descriptors file table
objects

File Directories

Contains information about files
Attributes

Location
Ownership

A directory is a file owned by the
operating system

Provides mapping between file names and
the files themselves

File Name
File Type

File Organization

Volume
Starting Address
Size Used

Size Allocated

Owner

Access Information

Permitted Actions

Date Created

Identity of Creator

Date Last Read Access
Identity of Last Reader
Date Last Modified
Identity of Last Modifier
Date of Last Backup

Current Usage

Basic Information
Name as chosen by creator (user or program). Must be unique within a specific directory.
For example: text, binary, load module, etc.

Faor systems that support different organizations

Address Information
Indicates device on which file is stored
Starting physical address on secondary storage (e.z., cylinder, track, and bleck number on disk)
Current size of the file in bytes, words, or blocks

The maximuwm size of the file

Access Control Information

User who is assigned control of this file. The owner may be able to grant/deny access to other

users and to change these privileges

A simple version of this element would include the user's name and password for each
authorized user.

Controls reading, writing, executing, transmitting over a network
Usage Information
When file was first placed in directory
Usually but not necessarily the current owner
Date of the last time a record was read
User who did the reading
Date of the last update, insertion, or deletion
User who did the modifying
Date of the last time the file was backed up on another storage medium
Information about current activity on the file, such as process or processes that have the file

open, whether it is locked by a process, and whether the file has been updated in main memory
but not yet on disk

Hierarchical, or Tree-
Structured Directory

= Master directory with user directories.

= Each user directory may have
subdirectories and files as entries.

Master Directory

Subirectory Subirectory Subirectory

A s,

Subirectory Subirectory File

A s,

File File File

Figure 12.4 Tree-Structured Directory

Master Directory

System

User A

Liser B

Lser C

Directory I Directory
"lser C Directory '"User B" "Lser A"
Draw
17 Word
Drirectory '"Word" - Directory ""Draw"
Unit A — ABC
Directory "Unit A"
r
. rARC
L 4 .
File
ARG

Pathmame: User B/'Word/UnitA/ARC

Figure 12.5 Example of Tree-Structured Directory

Hierarchical, or Tree-
Structured Directory

Files can be located by following a path
from the root, or master, directory down
various branches

This is the pathname for the file
Can have several files with the same file

name as long as they have unique path
names

cpsllo

] D]]:Qg,];giﬁ nodk “cps110/current/Proj/proj3”
File current
current node# > Attributes Mm%ﬂf_mlﬁ/ File

=—J"

Atiributes

index node of wd <

Secondary Storage
Management

Secondary Storage
Management

Space must be allocated to files

Must keep track of the space available for
allocation

Preallocation versus Dynamic Allocation.

Preallocation

Need the maximum size for the file at the
time of creation

Difficult to reliably estimate the maximum
potential size of the file

Tend to overestimated file size so as not
to run out of space

File Allocation Methods

Contiguous allocation
Linked allocation

Indexed allocation

Contiguous Allocation

Each file occupies a set of contiguous blocks on the disk.

Simple — only starting location (block #) and length
(number of blocks) are required.

Random access.
Wasteful of space (dynamic storage-allocation problem).

Files cannot grow.

External fragmentation will occur.

Contiguous Allocation

file start length
count t . ,
i En s n] R A
f mal 19 6
a1 s[] e[7[] list o8 4
f 6 2
8[] o[J1o[J11[]
tr
12]13[]14[] 15[]
16[17]18[J19[]
mail
20[]21[]22[]23[]
24[]25[]26[]27[]
list
28[]29[]30[]31[]

N~N~—

File A File Name Start Block Length
0 Y I O O Fike A 2 3
File B 9 5
O T]J-mm| | s » 3
File B grtan
o 1[I o] o s e & B

WA 2 bz A 1

File

a5firA el |27l Jo2al Joof |
wfed] g [|m[

Figure 12.7 Contiguous File Allocation

Fike Allocation Tahle

File A File Name Start Block Length
ofeny IR RSN o 4 File A i 3
Fik B File I 3 5
O B A | ey
pike C File I 16 3

nfrA el u us

File E File I}

il wl] 19fRRY

Z2 23 24

X7 % 29

Figure 12.8 Contiguous File Allocation (After Compaction

Linked/Chained Allocation

Each file is a linked list of disk blocks: blocks may be
scattered anywhere on the disk.

Simple — need only starting address

Free-space management system — no waste of space
No external fragmentation

No accommodation of the principle of locality

No random access

Ex: File-allocation table (FAT) — disk-space allocation
used by MS-DOS and OS/2.

Linked/Chained Allocation

file start end

8[] jo[re] 10ps] 11[]
121314]15[]
16[1]17[]18[]19[]
20[] 21[f22[]23[]
24[] 2526]27[]

28[] 29[]30[]31[]
w

File Allocation Tabke

File Name Start Block Length

Fike K 1 5

Figure 12.9 Chained Allocation

Fike Alocation Tahle
File Name Siart Block Lenmpth

File B 0 3

Figure 12.10 Chained Allocation (after consolidation)

File-Allocation Table

directory entry

| test | ... | 217 |—

name start block

—p 217 618

339 | end-of-file [—

618 339 |g— |

no. of disk blocks -1

FAT

FAT: File Allocation Table

Lecture.ppt

>

Notes.txt N =
\

Indexed Allocation

= Brings all pointers together into the /index

%D

||
%D
=

||

block.
» Logical view.

Indexed Allocation

directory

file index block
jeep 19

24[]25[]26[]27[]

28[] 29[]30[]31[]
_/

Indexed Allocation (Cont.)

Need index table
Random access

Dynamic access without external

fragmentation, but have overhead of index
block.

Mapping from logical to physical in a file of
maximum size of 256K words and block size
of 512 words. We need only 1 block for
index table.

File Allocation Ta bl
File 1 File Name Imclex Block
Fik B 24
1
]
3
14
28

Figure 12,11 Indexed Allocation with Block Portions

File Alloscation Tahle

Fiile 3 File Name Inddex Block
ﬂ l L & F #
File B 24

5 & T o] L see e
10 11 12
1% 16 17

e Start Elock Length

20 21 22 | 3

28 4

25 2% 27 14 I

sol] s e[[]

Figure 12.12 Indexed Allocation with Variable-Length Portions

Indexed Allocation — Mapping

File Allocation Methods

Contiguous

Chained

Indexed

Pre-Allocation?

Mecessary

Possible

Possible

Fixed or variable size | Variable Fixed blocks Fixed blocks Variable
portions?

Portion size Large Small Small Medium
Allocation frequency COnee Low to high High Low
Time to allocate Medium Long Short Medium
File allocation table Cine entry Cne entry Larze Medium

size

Combined Scheme:
UNIX (4K bytes per block)

mode

owners (2)

timestamps (3)

— data

size block

—» data
count

—» data

direct blocks

—»| data

-+—»| data — >
single indirect ——>|Z : data
—+—(data — .
double indirect ‘._’_ »| data

triple indirect

data

| » data

Unix Inodes

File Mode 16-bit flag that stores access and execution permissions associated with
the file.

12-14 File type (regular, directory, character ar black special. FIFO pipe
9-11 Execution flags

8 Owner read permission

7 Owner write permission

6 Owner execute permission

5 Group read permission

4 Group write permission

3 Group execute permission

2 Other read permission

1 Other write permission

0 Other execute permission
Link Count Number of directory references to this inode
Owner 1D Individual owner of file
Group ID Group owner associated with this file
File Size Number of bytes in file
File Addresses 39 bytes of address information
Last Accessed Time of last file access
Last Modified Time of last file modification

Inode Modified Time of last inode modification

Directi)

Directil)

Direct(2)

Direct(3)

Directi4)

Direct(5)

Directif)

Direct(T)

Direct(5)

Directi)

single
indirect

double
indirect

triple
indirect

Inode address
Tields

Blocks on disk

Figure 12.13 UNIX Block Addressing Scheme

An l-node
: Blue are data blocks
At butf/ Green are (single) indirect block
Magenta are double indirect
= Red is triple indirect
)
“u\\

\\'

Capacity of a UNIX File

Level

Number of Blocks

Number of Bytes

Direct
Single Indirect
Double Indirect

Triple Indirect

10K

256K

65M

16G

Blocos de 1 k
Ponteiro: 32 bits

Capacity of a UNIX File

Level

Number of Blocks

Number of Bytes

Direct
Single Indirect
Double Indirect

Triple Indirect

256 % 65K =

16M

Blocos de 4 k
Ponteiro: 32 bits

Go to QUIZ#10

Efficiency and Performance

Efficiency dependent on:
disk allocation and directory algorithms
types of data kept in file's directory entry

Performance

disk cache — separate section of main memory for
frequently used blocks

free-behind and read-ahead — techniques to optimize
sequential access

improve PC performance by dedicating section of
memory as virtual disk, or RAM disk.

Various Disk-Caching

Locations

CPU

ram disk

open-file table

block buffer

p— o

main memory

controller

disk

Page Cache

A page cache caches pages rather than disk
blocks using virtual memory techniques.

Memory-mapped I/O uses a page cache.

Routine I/O through the file system uses the
buffer (disk) cache.

This leads to the following figure.

I/0 Without a Unified Buffer
Cache

/O using

memory-mapped |/O read() and write()

|

page cache

\

buffer cache

|

file system

Unified Buffer Cache

A unified buffer cache uses the same page
cache to cache both memory-mapped
pages and ordinary file system I/0.

I/0 Using a Unified Buffer
Cache

/0O using
read() and write()

A4

buffer cache

I

file system

memory-mapped I/O

Recovery

Consistency checking — compares data in
directory structure with data blocks on disk, and
tries to fix inconsistencies.

Use system programs to back up data from disk
to another storage device (floppy disk, magnetic
tape).

Recover lost file or disk by restoring data from
backup.

Log Structured File Systems

Log structured (or journaling) file systems record each
update to the file system as a transaction.

All transactions are written to a log. A transaction is
considered committed once it is written to the log.
However, the file system may not yet be updated.

The transactions in the log are asynchronously written to
the file system. When the file system is modified, the
transaction is removed from the log.

If the file system crashes, all remaining transactions in
the log must still be performed.

Windows 2000 File System

Key features of NTFS
Recoverability
Security
Large disks and large files
Multiple data streams
General indexing facility

Windows NTFS Attributes

Attribute Type Description

Standard information Includes access attributes (read-only, read/write, etc.): time
stamps, including when the file was created or last modified;
and how many directories point to the file (link count).

Attribute list A list of attributes that make up the file and the file reference
of the MFT file record in which each attribute is located. Used
when all attributes do not fit into a single MFT file record.

File name A file or directory must have one or more names.
Security descriptor Specifies who owns the file and who can access it.
Data The contents of the file. A file has one default unnamed data

attribute and may have one or more named data attributes.

Index root Used to implement folders.
Index allocation Used to implement folders.
Volume information Includes volume-related information. such as the version and

name of the volume.

Bitmap Provides a map representing records in use on the MFT or
folder.

VO Manager

Lﬂg the transaction

L NTFS Driver Read/write a
Service |
Read/write mirrored or
the file Fault Tokrant triped volume

Flush the wWrite the Driver

bog Tile cache

L Cache Load data from

Manager disk into
Memory

Readfwrite
the disk

Disk Driver

Access the map ped
file or flush the cache

'

Virtual Memory
Manager

Figure 12.15 Windows NTFS Components [CUST94]

