Concurrency:
Deadlock and Starvation

wmmsmEms Chapter 6, Livro do William Stallings

i

WM STALLNES

Sistemas de Operacao, 2004-2005

m Permanent blocking of a set of processes
that either compete for system resources

Deadlock

or communicate with each other.
m No efficient solution.

m Involve conflicting needs for resources by

two or more processes.

1 1
1 1
i i
I8 |]
o | !
| B |
(]
3 2 B e R
4 1 = i) 5'1,
I] i
i :
g !
1 1
1 1
1 1
(a) Deadlock possible (b) Deadlock

Figure 6.1 Ilustration of Deadlock

Example

Process P

Get A
Get B

Release A
Release B

Process Q

Get B
Get A

Release B
Release A

Progress

ofQ
F

R Example 2
A
noredyy - P % Process P Process Q
Get A
: 3 | o N Get A Get B
Required '“":mk W : . Get A
Get B
i . Release A
Get A Get B Release A Release B ="'§§;‘55 Get B """
— Release B
Fequind Aoy Release B Release A
B Required
Figure 6.2 Example of Deadlock [BACO98]
Progress
of Q
¢ N Reusable Resources
Release H
A []
n 4 .
" - b > m Used by one process at a time and not
i v . depleted by that use.
Geta e m Processes obtain resources that they later
waea] | < release for reuse by other processes.
5 i
Getn ; m Processors, I/O channels, main and
H Sy secondary memory, files, databases, and
g semaphores.
" ofp

GetA ReleaseA Gel B Release B

A Required B Required

Figure 6.3 Example of No Deadlock [BAC098]

m Deadlock occurs if each process holds one
resource and requests the other.

Consumable Resources

m Created (produced) and destroyed
(consumed) by a process.

m Interrupts, signals, messages, and
information in I/O buffers.

m Deadlock may occur if a Receive message
is blocking.

m May take a rare combination of events to
cause deadlock.

Another Example of Deadlock

m Deadlock occurs if receive is blocking

Process P1 Process P2

Receive(P2) Receive(P1)

Send(P2,M1) | |Send(P1,M2)

4 Conditions for Deadlock

m Mutual exclusion
—only one process may use a resource at a
time
= Hold-and-wait

— A process request all of its required resources
at one time

4 Conditions for Deadlock

= No-preemption
— If a process holding certain resources is
denied a further request, that process must
release its original resources.

— If a process requests a resource that is
currently held by another process, the
operating system may preempt the second
process and require it to release its resources.

4 Conditions for Deadlock

= Circular Wait

— Prevented by defining a linear ordering of
resource types

Figure 6.5 Circular Wait

Resource Graph (not deadlock)

2

Resource Graph (deadlock)

R‘I HG
3 3 =
@< - (Fa)
\./ /
L] *
®
R, °

A,

Resource Graph
(with a cycle but no deadlock)

Graph Analysis

m If graph contains no cycles = no
deadlock.

m If graph contains a cycle =

—if only one instance per resource type, then
deadlock.

—if several instances per resource type,
possibility of deadlock.

How to Prevent Circular Wait?

m Define a linear ordering of resources:
R1, R2, R3,...., Rn

m If (i < j):

Acquire (Ri)
Acquire (Rj)

Acquire (Rj)

Acquire (Ri)

Examples

Processo P1: Processo P2: Processo P3: Processo P4:
Sem_wait(A); Sem_wait(B); Sem_wait(C); Sem_wait(B);
Sem_wait(C); Sem_wait(A); Sem_wait(A); Sem_wait(D);
gn;.'r;l:'s]gnal(c); gn;.'r;l:'srgnal(A); gn;.'r;l:'srgnal(A); gn;.'r;l:'srgnal(D);
em_signal(A); em_signal(B); em_signal(C); em_signal(B);
P1: P2: P3: P4:
Sem_wait(A); Sem_wait(B); Sem_wait(C); s
Sem_wait(C); Sem_wait(A); Sem_wait(A); Sem_wait(D);
Sem_signal(C); Sem_signal(A); Sem_signal(A); Sem_signal(D);
Sem_signal(A); Sem_signal(B); Sem_signal(C); Sem_signal(C);

NO DEADLOCK

Processo P1: Processo P2: Processo P3: Processo P4:
Sem_wait(A); Sem_wait(A); Sem_wait(A); Sem_wait(B);
Sem_wait(C); Sem_wait(B); Sem_wait(C); Sem_wait(D);
Sem_signal(C); Sem_signal(B); Sem_signal(C); Sem_signal(D);
Sem_signal(A); Sem_signal(A); Sem_signal(A); Sem_signal(B);
Processo P1: Processo P2: Processo P3: Processo P4:
Sem_wait(A); Sem_wait(B); Sem_wait(C);
Sem_wait(C); Sem_wait(A); Sem_wait(A); Sem_wait(D);
Sem_signal(C); Sem_signal(A); Sem_signal(A); Sem_signal(D);
Sem_signal(A); Sem_signal(B); Sem_signal(C); Sem_signal(C);

Deadlock Avoidance

Two Approaches to
Deadlock Avoidance

m Do not start a process if its demands
might lead to deadlock.

m Do not grant an incremental resource
request to a process if this allocation
might lead to deadlock.

Resource Allocation Denial

m Referred to as the Banker’s Algorithm

m State of the system is the current
allocation of resources to process.

m Safe state is where there is at least one

sequence that does not result in deadlock.

m Unsafe state is a state that is not safe.

Determination of a Safe State

Rl Rz R3 Rl Rz R3 Rl Rz R3
pr[3[z2]a pr[1 oo [9]3]56]
6 [13 6 [12
) 3 1 4) 2 1 1 Resource Vector
422 002 o = 5

Clai Matriz Allocation Matrix [o[tT1]

(a) nitial state

Question: can any of the 4 processes run into
completion with the available resources?

What about P1?
What about P2?

Determination of a Safe State

k1l Rz R3 Rkl E2 R3 El ER2 R3
M3]2]2 pr[1]oJo [6]27]3]
P2 0 0 0 P2 0 0 0
P3 3 1 2 p3) 1 1 Available Vector
P4 4 2 2 P4 0 0 2

Claim Matrix Allo cation Matrixz

(b) P2 runs to completion

P2 Runs to Completion

Determination of a Safe State

Rl Rz R3 Rl R2 R3 Rl R2 ER3
pr{oJoJo P[0 oo [7]=2]3]
P2 0 0 0 P2 0 0 0
3 3 1 4 P2 2 1 1 Available Vector
P4 4 2 2 P4 0 0 2

Claim Matriz Allocation Matriz

(c) P1 runs to completion

P1 Runs to Completion

Determination of a Safe State

F1
P2
E3
B4

Rl R2 R3 Rl R2 R3 kRl R2 R3
0o J o]0 prf[oJoTJo [o[2T4]
0 0 0 P2 0 0 0

0 0 0 P3 0 0 0 Available Vector

4 2 2 P4 0 0 2

Claim Matriz Allocation Matriz

{d) F3 runs to completion

P3 Runs to Completion

Deadlock Avoidance Strategy

m When a process makes a request for a set
of resources assume that the request is
granted, update the system state
accordingly and then determine if the
result is a SAFE STATE.

m If so, grant the request.

m If not, block the process until it is safe to
grant the request.

Determination of an Unsafe State

P1
P2
P3
P4

R1 R2 R3 Rl RZ R3 Rl R2 R3
N m[1]a]o NN
3 1 3 P2 5 1 1
Resource Vector
3 1 4 P3 2 1 1
4 2 2 P4 0 0 2
k1 R2 ER3
Claim Matrixz Allocation Matrix

Awailable Vector

(a) Initial state

Assume that P1 makes a request for one unit of R1 and one unit of R3.

If the request is granted see the next Figure...

Determination of an Unsafe State

Pl
P2
b3
P4

Rl R2 R3 Rl R2 R3 Rl R2 R3
6 1 3 2| 5 1 1
3 1 4 P3| 2 1 1 Aivailable Vector
412]¢2 a0 [o[2

Claim Matrix Allocation Matrix

(h) P1 requests one unit each of R1 and R3

Is this a SAFE STATE?

No, because each process will need at least an additional unit of
R1 and there are none available.

Thereby, to avoid a deadlock the request of P1 should be denied.

Unsafe State != Deadlocked State

F1
P2
B3
B4

R1 k2 E3 k1 E2 R3 k1 k2 R3

3 2 2 P1 2 0 1 | 0 ‘ 1 ‘ 1 ‘
6 1 3 s |11

3 1 4 P3| 2 1 1 Available Vector

4 [2 2 40 |0 |2

Claum Matrix Allocation Matrix

(h) P1 requests one unit each of R1 and R3

This is not a DEADLOCKED STATE!
It only has the potential for Deadlock.

Deadlock Detection

Algorithm

1. Mark each process that has a row in the Allocation
Matriz of all zeros.

2. Initialize a temporary vector W to equal the Available
Vector.

3. Find an index i such that process i is currently
unmarked and the ith row of Q is less than or equal to
W. That is, Q; <= W, (k=1...m).

4. If no such row is found terminate the algorithm.
If such a row is found mark process i and add the
corresponding row of the allocation matrix to W. That
is: set W, = W, + A, (k=1...m). Return to step 3.

‘ Q = Request Matrix; A = Allocation Matrix.

P1

P2

P3

P4

Deadlock Detection

R4 Rl R2 R3 R4 RS

P1 ‘2|1‘1|2‘1‘

P2

P3 Resource Vector

R2 R3
1 0
[} 1
o 0
o 1

[P I

R2
0
1
0
0

oo |o |~ |B
oo |o|o|B

- o |o |o

e o |o |
o |o |[= |=
o = |o |~

P4

Rl R2 R3 R4 RS

Lololo]o]s]

Available Vector

Request Matrix Q Allocation Matrix A

Figure 6.9 Example for Deadlock Detection

Illustrate the Deadlock
Detection Algorithm

m Mark P4, because P4 has no allocated
resources.

mSetW=[0000 1]

m The request of process P3 is less than or
equal to W, so mark P3 and set:
W=W+[00010]=[00011]
m No other unmarked process has a row in
Q that is less than or equal to W.
Therefore, terminate the algorithm.

‘ P1 and P2 are unmarked - these processes are deadlocked! ‘

Recovery from Deadlock...

m Abort all deadlocked processes.

m Back up each deadlocked process to some
previously defined checkpoint, and restart
all process
— original deadlock may occur

m Successively abort deadlocked processes
until deadlock no longer exists.

m Successively preempt resources until
deadlock no longer exists.

QUIZ

Considere o seguinte cenario onde existem 4 processos a usar 4 recursos de
sistema. A matriz de pedidos (Reguest), a matriz de recursos atribuidos
(Allocation) e o vector de recursos di: iveis (7 estdo repr

na Figura seguinte:

Matriz Allocation A: 0010
0010
2001
0120

Matriz de Requests Q: 1020
2001
1011
2100

Vector Available: 2100

Aplique o algoritmo de 30 de deadlocks e indi se existe ou ndo algum
deadlock entre os processos. (Ndo dé uma resposta binaria: explique a
aplicagdo do algoritmo).

10

