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m Permanent blocking of a set of processes
that either compete for system resources

Deadlock

or communicate with each other.
m No efficient solution.

m Involve conflicting needs for resources by

two or more processes.
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Figure 6.1 Ilustration of Deadlock

Example

Process P

Get A
Get B

Release A
Release B

Process Q

Get B
Get A

Release B
Release A
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Figure 6.2 Example of Deadlock [BACO98]
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Figure 6.3 Example of No Deadlock [BAC098]

m Deadlock occurs if each process holds one
resource and requests the other.




Consumable Resources

m Created (produced) and destroyed
(consumed) by a process.

m Interrupts, signals, messages, and
information in I/O buffers.

m Deadlock may occur if a Receive message
is blocking.

m May take a rare combination of events to
cause deadlock.

Another Example of Deadlock

m Deadlock occurs if receive is blocking

Process P1 Process P2

Receive(P2) Receive(P1)

Send(P2,M1) | |Send(P1,M2)

4 Conditions for Deadlock

m Mutual exclusion
—only one process may use a resource at a
time
= Hold-and-wait

— A process request all of its required resources
at one time

4 Conditions for Deadlock

= No-preemption
— If a process holding certain resources is
denied a further request, that process must
release its original resources.

— If a process requests a resource that is
currently held by another process, the
operating system may preempt the second
process and require it to release its resources.




4 Conditions for Deadlock

= Circular Wait

— Prevented by defining a linear ordering of
resource types

Figure 6.5 Circular Wait
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Graph Analysis

m If graph contains no cycles = no
deadlock.

m If graph contains a cycle =

—if only one instance per resource type, then
deadlock.

—if several instances per resource type,
possibility of deadlock.

How to Prevent Circular Wait?

m Define a linear ordering of resources:
R1, R2, R3,...., Rn

m If (i < j):

Acquire (Ri)
Acquire (Rj)

Acquire (Rj)

Acquire (Ri)

Examples

Processo P1: Processo P2: Processo P3: Processo P4:
Sem_wait(A); Sem_wait(B); Sem_wait(C); Sem_wait(B);
Sem_wait(C); Sem_wait(A); Sem_wait(A); Sem_wait(D);
gn;.'r;l:'s]gnal(c); gn;.'r;l:'srgnal(A); gn;.'r;l:'srgnal(A); gn;.'r;l:'srgnal(D);
em_signal(A); em_signal(B); em_signal(C); em_signal(B);
P1: P2: P3: P4:
Sem_wait(A); Sem_wait(B); Sem_wait(C); s
Sem_wait(C); Sem_wait(A); Sem_wait(A); Sem_wait(D);
Sem_signal(C); Sem_signal(A); Sem_signal(A); Sem_signal(D);
Sem_signal(A); Sem_signal(B); Sem_signal(C); Sem_signal(C);

NO DEADLOCK

Processo P1: Processo P2: Processo P3: Processo P4:
Sem_wait(A); Sem_wait(A); Sem_wait(A); Sem_wait(B);
Sem_wait(C); Sem_wait(B); Sem_wait(C); Sem_wait(D);
Sem_signal(C); Sem_signal(B); Sem_signal(C); Sem_signal(D);
Sem_signal(A); Sem_signal(A); Sem_signal(A); Sem_signal(B);
Processo P1: Processo P2: Processo P3: Processo P4:
Sem_wait(A); Sem_wait(B); Sem_wait(C);
Sem_wait(C); Sem_wait(A); Sem_wait(A); Sem_wait(D);
Sem_signal(C); Sem_signal(A); Sem_signal(A); Sem_signal(D);
Sem_signal(A); Sem_signal(B); Sem_signal(C); Sem_signal(C);




Deadlock Avoidance

Two Approaches to
Deadlock Avoidance

m Do not start a process if its demands
might lead to deadlock.

m Do not grant an incremental resource
request to a process if this allocation
might lead to deadlock.

Resource Allocation Denial

m Referred to as the Banker’s Algorithm

m State of the system is the current
allocation of resources to process.

m Safe state is where there is at least one

sequence that does not result in deadlock.

m Unsafe state is a state that is not safe.

Determination of a Safe State

Rl Rz R3 Rl Rz R3 Rl Rz R3
pr[3[z2]a pr[1 oo [9]3]56 ]
6 [ 13 6 [ 12
) 3 1 4 ) 2 1 1 Resource Vector
422 002 o = 5

Clai Matriz Allocation Matrix [o[tT1]

(a) nitial state

Question: can any of the 4 processes run into
completion with the available resources?

What about P1?
What about P2?




Determination of a Safe State
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(b) P2 runs to completion

P2 Runs to Completion

Determination of a Safe State
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(c) P1 runs to completion

P1 Runs to Completion

Determination of a Safe State
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{d) F3 runs to completion

P3 Runs to Completion

Deadlock Avoidance Strategy

m When a process makes a request for a set
of resources assume that the request is
granted, update the system state
accordingly and then determine if the
result is a SAFE STATE.

m If so, grant the request.

m If not, block the process until it is safe to
grant the request.




Determination of an Unsafe State
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(a) Initial state

Assume that P1 makes a request for one unit of R1 and one unit of R3.

If the request is granted see the next Figure...

Determination of an Unsafe State
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(h) P1 requests one unit each of R1 and R3

Is this a SAFE STATE?

No, because each process will need at least an additional unit of
R1 and there are none available.

Thereby, to avoid a deadlock the request of P1 should be denied.

Unsafe State != Deadlocked State
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(h) P1 requests one unit each of R1 and R3

This is not a DEADLOCKED STATE!
It only has the potential for Deadlock.

Deadlock Detection




Algorithm

1. Mark each process that has a row in the Allocation
Matriz of all zeros.

2. Initialize a temporary vector W to equal the Available
Vector.

3. Find an index i such that process i is currently
unmarked and the ith row of Q is less than or equal to
W. That is, Q; <= W, (k=1...m).

4. If no such row is found terminate the algorithm.
If such a row is found mark process i and add the
corresponding row of the allocation matrix to W. That
is: set W, = W, + A, (k=1...m). Return to step 3.

‘ Q = Request Matrix; A = Allocation Matrix.
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Figure 6.9 Example for Deadlock Detection

Illustrate the Deadlock
Detection Algorithm

m Mark P4, because P4 has no allocated
resources.

mSetW=[0000 1]

m The request of process P3 is less than or
equal to W, so mark P3 and set:
W=W+[00010]=[00011]
m No other unmarked process has a row in
Q that is less than or equal to W.
Therefore, terminate the algorithm.

‘ P1 and P2 are unmarked - these processes are deadlocked! ‘

Recovery from Deadlock...

m Abort all deadlocked processes.

m Back up each deadlocked process to some
previously defined checkpoint, and restart
all process
— original deadlock may occur

m Successively abort deadlocked processes
until deadlock no longer exists.

m Successively preempt resources until
deadlock no longer exists.




QUIZ

Considere o seguinte cenario onde existem 4 processos a usar 4 recursos de
sistema. A matriz de pedidos (Reguest), a matriz de recursos atribuidos
(Allocation) e o vector de recursos di: iveis ( 7 estdo repr

na Figura seguinte:

Matriz Allocation A: 0010
0010
2001
0120

Matriz de Requests Q: 1020
2001
1011
2100

Vector Available: 2100

Aplique o algoritmo de 30 de deadlocks e indi se existe ou ndo algum
deadlock entre os processos. (Ndo dé uma resposta binaria: explique a
aplicagdo do algoritmo).
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