Threads and Processes

Chapter 4, Livro do William Stallings

=

WILLLIM STALLINES.

Sistemas de Operagdo, 2004-2005

Multithreading

» Operating system supports multiple
threads of execution within a single
process

m MS-DOS supports a single thread.

= UNIX supports multiple user processes but
only supports one thread per process.

= Windows 2000, Solaris, Linux, Mach, and
0S/2 support multiple threads.

Single-thread vs Multi-thread

[J e | oo

thread —» g g g 3 T thread

single-threaded multithreaded

;

¢!

one process one process

] L] e el

multlple processes
one thread per process

multiple processes
multiple threads per process

s = Instruction trace

Figure 4.1 Threads and Processes [ANDE97]

Process

» Has a virtual address space which holds
the process image.

» Protected access to processors, other
processes, files, and I/O resources.

Thread

» An execution state (running, ready, etc.).
» Saved thread context when not running.
» Has an execution stack.

m Some static storage for local variables.

m Access to the memory and resources of its
process:

= all threads of a process share memory and
resources.

Single-Threaded Multithreaded
Process Model Process Model
e d el Wi
) ["Threaa |i 1 Thread |} ["Threaa |;
Process User i| control [i| control [I || Controf |!
Control Stack I mock fi 1| miock |} 1 Biock |
Block I I b !
| 1 - !
User Kernel Process | || User i 1| User i 1| User i
‘\d:e_l Stack Control } Stack |, : Stack |, : Stack |
chuninhin Block | I r | }
S .
|]]
! ! !
User } Kernel : : Kernel : : Kernel }
Address | || Stack || || Stack |; || Stack [
! ! !
Space | | 2 ol |
______ =} e=====d e=====d

Benefits of Threads

Figure 4.2 Single Threaded and Multithreaded Process Models

» Takes less time to create a new thread than a
process.

» Less time to terminate a thread than a process.

» Less time to switch between two threads within
the same process.

= Since threads within the same process share
memory and files, they can communicate with
each other without invoking the kernel.

Solaris Threads

copy-on-write fork

= Unlike processes, threads run within the same
address space and share their process' data.

= In such environments, the thread creation and
destruction takes place considerably faster
compared to a full-blown process' creation or
destruction.

= Under Solaris, for example, launching a new
thread is about 70 times faster than launching a
New process.

= Linux supports copy-on-write fork.

» It leaves the mapped memory shared between a
parent process and its child as long as the child
doesn't alter the shared addressable region.

= Only when the child writes to the shared address
space does the kernel allocate new storage.

= Hence, launching a new process in Linux
involves significantly lower overhead compared
to Solaris and other OSs.

Uses of Threads

Threads

Foreground to background work.
Asynchronous processing.

Speed execution.

Responsiveness

Resource Sharing

Utilization of Multi-processor Architectures

» Suspending a process involves suspending
all threads of the process since all threads
share the same address space.

» Termination of a process, terminates all
threads within the process.

Threading Issues

» Semantics of fork() and exec() system calls.

» Thread cancellation.
= Signal handling

= Thread pools

» Thread specific data

Thread States

m States associated with a change in thread

state

= Spawn
= Spawn another thread

= Block

= Un

block

= Finish
n Deallocate register context and stacks

Remote Procedure Call

Using Threads

Time ——»

RPC RPC
Request Request

Process 1

o>l it

(a) RPC Using Single Thread
274 Blocked, waiting for response to RPC
ESSSY Blocked. waiting for processor, which is in use by Thread B
I Running,

Figure 4.3 Remote Procedure Call (RPC) Using Threads

Remote Procedure Call

Thread

Thread B (Process 1)

Using Threads
wre —¥Gened

Request

A (Process 1) VITITISIITISS NN

LTS LSS
ok -
Request @

{b) RPC Using One Thread per Server fon a uniprocessor)

Blocked, waiting for response to RPC
CSSSY Blocked, waiting for processor, which is in use by Thread B
I Running

Figure 4.3 Remote Procedure Call (RPC) Using Threads

Synchronizing Threads

User-Level Threads (ULT)

» Threads share the same address space
and resources.

» Therefore, it is the responsibility of the
programmer to assure the correctness in
the concurrent access to data and
resources

» All thread management is done by the
application.

m The kernel is not aware of the existence of
threads.

» A context switch between two threads of
the same process essentially jumps from
one code location to another, plus setting
a few CPU registers.

User-level Threads and
Processes

Kernel-Level Threads (KLT)

» W2K, Linux™, and OS/2 are examples of
this approach.

» Kernel maintains context information for
the process and the threads.

» Scheduling is done on a thread basis.

(*) LinuxTreads: provides kernel-level threads

There are other libraries with user-level threads

\Q/btl Thread) b bil)

Combined Approaches

» Example is Solaris.
» Thread creation done in the user space.

m Bulk of scheduling and synchronization of
threads done in the user space.

Solaris 2 Threads

task 1 task 2 task 3

user-level thread

lightweight process

kernel thread

222‘

2R

Dooo-

Solaris Process

process id
memory map
priority
list of open
files
— WP, | LWP, — LWPy — e
Solaris process

B s P44
Threads User User \ /-",m User
Library Space ‘ ‘ ‘ Space ‘ Library ‘ Space
Kernel Kernel Kernel
Space Space Space
© ©®
®
®) E
(@) Pure user-level) Pure kernek-level {€) Combined

; User-level thread @ Kerneklevel thread ® Process

Figure 4.6 User-Level and Kernel-Level Threads

Advantages of ULT

Disadvantages of ULT

= Thread switching does not require kernel mode
privileges.

= Scheduling can be application specific without
disturbing the underlying OS scheduler.

= ULTs can run on any operating system (the
threads library is a set of application-level
utilities shared by all applications).

= Many system calls are blocking. When a
ULT executes a blocking system call all the
threads in that process will be blocked.

= Multithreaded applications that make use
of ULT cannot take advantage of
multiprocessing.

Advantages of KLT

Disadvantages of KLT

» The two previous problems (blocking and
support for multiprocessing) are solved
with KLT.

= Kernel routines themselves can also be
multithreaded.

m The transfer of control between two
threads of the same process require a
mode switch to the kernel.

Thread Operation Latencies

Combined Approach

Operation |User-Level| Kernel- | Processes
Threads Level
Threads
Null Fork 34 948 11,300
Signal 37 441 1,840
Wait

‘ VAX machine running Unix (values in us) proc call=7 ps; kernel trap=17 us

» Multiple threads within the same
application can run in parallel on multiple
processors.

» A blocking system call does not block the
entire process.

» The approach combines the advantages of
ULT and KLT.

Multithreading Models

= Many-to-One
= One-to-One

= Many-to-Many

Many-to-One Model

ST

- Many user-level threads mapped to single kernel thread.

- Used on systems that do not support kernel threads.

One-to-one Model

S
oYoYoYoums

= Each user-level thread maps to kernel thread.

= Examples
- Windows 95/98/NT/2000
- 0S/2

Many-to-Many Model
S8
: e

<— kemel thread

» Allows many user level threads to be mapped to many kernel threads.

» Allows the operating system to create a sufficient number of kernel
threads.

= Solaris 2

PThreads

» A POSIX standard (IEEE 1003.1c) API for
thread creation and synchronization.

» API specifies behavior of the thread
library, implementation is up to
development of the library.

= Common in UNIX operating systems.

Linux Threads

m Linux refers to them as fasks rather than
threads.

» Thread creation is done through clone()
system call.

» Clone() allows a child task to share the
address space of the parent task (process)

Linux Process

= State

= Scheduling information

» Identifiers

» Interprocess communication
n Links

= Times and timers

= File system

= Virtual memory

= Processor-specific context

Linux States of a Process

= Running

» Interruptable

= Uninterruptable
= Stopped

» Zombie

even

L enmrrup tible

xmr Tuptible

Figure 4.18 Linux Process/Thread Model

Java Threads

» Java threads may be created by:

= Extending Thread class
= Implementing the Runnable interface

» Java threads are managed by the JVM.
» One process: multiple threads.

10

Java Threads States

- sleep()
—_ suspend()
110

blocked

Access

Virtual address space description

.

token
Process
Avallable
Object Table objects
I
Handle1 HE
I
(N —
Handle2 i
HE
Handle3 HE
¥
¥
¥

Figure 4.12 Windows 2000 Process and Its Resources

Windows 2000
Process Object

Object Type

Process 1Dy
Securily Descriptor
Base priority
Default processor affinity
Object Body Quota limits

Attributes Execution time
1/0 counters
VM operation counters
Exception/debugging ports
Exit status

Creale process

Open process

Services Query process information
Set process information

Terminate process

() Process object

Object Type R

Windows 2000 T

Thread conlext
Dynamic priorty

Thread Object o | hmit...,

Altributes Thread execution time
Alert status
Suspension count
Impersonation token
Termination port
Thread exit status

Create thread

Open thread

Query thread information
Set thread information
o Current thread

i Terminate thread

Cet context

Implements the one-to-one mapping. glu;ts;mm

Each thread contains Resume

- a thread id T

- register set Register lermination port
- separate user and kernel stacks () Thread object

- private data storage area

11

Windows 2000
Thread States

= Ready

= Standby

= Running

= Waiting

= Transition
= Terminated

Runnable
Pick to Standby ;
Run Switch
Preempted
Ready Running
J N]
Resource Unblock/Resume Terminate
Awnanlle/ \whm .y
Suspend
Transition 4——————— Waiting Terminated

Resource Not A vallablle
Not Runnable

Solaris

» Process includes the user’s address space,
stack, and process control block

= User-level threads
» Lightweight processes
= Kernel threads

Figure 4.14 Windows 2000 Thread States

ssss’ssfssss
\ | || | |
User er {';;:::L_

[Kernel

[Hardware IPI |P| IPI IPI |P|
Sl\ﬁr-kwllhlvnd @ Kernellevel thread (L) Light-weight Process E Processor

Figure 4.15 Solaris Multithreaded Architecture Example

12

UNIX Process Structure

Process ID
User IDs

Memory Map

[P]
[md Mok]
i
SIACK
File Deseriptons, [T
Processor Stk

Figure 4.16 Process Structure in Traditional UNIX and Solaris [LEWI96]

Solaris Process Structure

Process ID

User IDs

Memary Map

Filke Descripiors, E‘\

Solaris Thread Execution

» Synchronization
= Suspension

» Preemption

= Yielding

Stop

Stopped

@

/ ﬁ‘
Preempt

User-Level Threads

Wakeup

Runnable

Sleeping

Dswu
Active

“Timeslice
or Preempt,
Dspau—n

Runnable

Wlkellp

Lightweight Processes

Stopped
Blocking

System
can

Running
| w.m..,

Cnnunue

Blocked

Figure 4.17 Solaris User-Level Thread and LWP States

Microkernels

= Small operating system core

= Contains only essential operating systems
functions

= Many services traditionally included in the
operating system are now external subsystems
= device drivers

file systems

m virtual memory manager

= windowing system

= security services

13

Benefits of a Microkernel
Organization

= Uniform interface on request made by a
process
= All services are provided by means of
message passing
= Extensibility
= Allows the addition of new services
» Flexibility
= New features added
= Existing features can be subtracted

Benefits of a Microkernel
Organization

» Portability

= Changes needed to port the system to a new
processor is changed in the microkernel - not
in the other services

» Reliability
= Modular design
= Small microkernel can be rigorously tested

Benefits of Microkernel
Organization

» Distributed system support
= Message are sent without knowing what the
target machine is
= Object-oriented operating system

= Components are objects with clearly defined
interfaces that can be interconnected to form
software

Microkernel Design

» Low-level memory management

= mapping each virtual page to a physical page
frame

» Inter-process communication
» I/O and interrupt management

14

