
1

Virtual Memory

Chapter 8 do William Stallings
Chapter 10 do Silberschatz

SISTEMAS OPERATIVOS, 1º Semestre, 2004-2005

Hardware and Control Structures

• Memory references are dynamically translated
into physical addresses at run time
– A process may be swapped in and out of main

memory such that it occupies different regions.

• A process may be broken up into pieces that do
not need to located contiguously in main
memory.
– All pieces of a process do not need to be loaded in

main memory during execution.

Swap-in/Swap-out Execution of a Program

• Operating system brings into main
memory a few pieces of the program.

• Resident set - portion of process that is in
main memory.

• If a process tries to access a logical
address that is not in main memory ->
interrupt (memory access fault).

• Operating system places the process in a
blocking state.

2

Execution of a Program (cont)

• Piece of process that contains the logical
address is brought into main memory.
– Operating system issues a disk I/O Read

request.
– Another process is dispatched to run while the

disk I/O takes place.
– An interrupt is issued when disk I/O complete

which causes the operating system to place
the affected process in the Ready state.

Advantages of
Breaking up a Process

1. More processes may be maintained in
main memory:

- Only load in some of the pieces of each
process.

- With so many processes in main memory, it is
very likely a process will be in the Ready
state at any particular time.

2. A process may be larger than all of
main memory.

Types of Memory
• Real memory

– Main memory

• Virtual memory

– Memory on disk
– Allows for effective multiprogramming and

relieves the user of tight constraints of main
memory.

Memória Virtual

3

Thrashing
• When the processor spends most of its

time swapping pieces rather than
executing user instructions …

this is thrashing.

Thashing

• Se um processo não tem páginas “suficientes”,
o ritmo de faltas de página aumenta muito. Isto
é caracterizado pelo comando vmstat:
– Baixa taxa de ocupação do CPU.
– Grande número de operações de I/O sobre o disco

de paginação.
– Poucas “frames”livres.

• Thrashing ≡ o processo está praticamente
sempre à espera que o SO carregue páginas
(page-in) e a transferir páginas (page-out)
de/para o disco.

Thrashing Principle of Locality

• Data references within a process tend to
be accessed in a cluster of locality.

• Only a few pieces of a process will be
needed over a short period of time.

• Possible to make intelligent guesses about
which pieces will be needed in the future.

• This suggests that virtual memory may
work efficiently.

4

Support for Virtual Memory

• Hardware must support paging and
segmentation.

• Operating system must be able to
manage the movement of pages and/or
segments between secondary memory
and main memory.

Paging

Paging: free pages Paging: Page Table Entries

• Each process has its own page table.
• Each page table entry (PTE) contains the

frame number of the corresponding page
in main memory.

• A bit is needed to indicate whether the
page is in main memory or not (presence
bit).

5

Protection

• Memory protection implemented by
associating protection bit with each frame.

• Valid-invalid bit attached to each entry in
the page table:
– “valid” indicates that the associated page is in

the process’ logical address space, and is
thus a legal page.

– “invalid” indicates that the page is not in the
process’ logical address space.

Modify Bit in Page Table

• Another bit is needed to indicate if the
page has been altered since it was last
loaded into main memory (modify bit).

• If no change has been made, the page
does not have to be written to the disk
when it needs to be swapped out.

Page Table Entries

6

Page Fault …Page Fault
1. Trap to OS
2. Save user registers and process state
3. Determine that interrupt was page fault
4. Check that page reference was legal, determine location of page on disk
5. Issue read from disk to free (physical) frame:

– Wait in queue for device to service read request
– Wait for device seek / rotational latency
– Wait for transfer

6. [While waiting for disk: allocate CPU to another process]
7. Interrupt from disk…
8. [Save registers and process state for other process]
9. Determine that interrupt was from disk
10. Update page / OS tables (incl. valid bit) to show page is in memory
11. [Wait for CPU to be allocated to this process]
12. Restore registers, process state, page table
13. Restart instruction

Paging and Virtual Memory

Go to QUIZ_5

7

Page Table Structures:

A- Hierarchical Paging
B- Hashed PageTables
C- Inverted Page Tables

Page Tables

• The entire page table may take up too
much main memory.

• Page tables are also stored in virtual
memory.

• When a process is running, part of its
page table is in main memory.

Exemplo: VAX

• 231 = 2 Gbytes of virtual memory
• Size of page= 512 bytes (29)
• Nºpage table entries per process= 222.

• The Page Table is stored in virtual
memory and subject to paging...

(A) Two-Level Scheme for
32-bit Address

Root page always remains
in main memory.

8

(A)- Two-Level Paging System

• 32-bit address: Address Space = 232 (4 Gbytes)
• 4 Kbytes pages: 212

• 220 pages
• If a page table entry used 4 bytes then the Page

Table requires: 222 bytes.
• This corresponds to 210 pages...
• These 210 pages can be kept in virtual memory

and mapped by a Root Page Table with 210

page table entries, occupying 4Kbytes (212) of
main memory.

Two-Level Paging Example
• A logical address (on 32-bit machine with 4K page size) is divided into:

– a page number consisting of 20 bits.
– a page offset consisting of 12 bits.

• Since the page table is paged, the page number is further divided into:
– a 10-bit page number.
– a 10-bit page offset.

• Thus, a logical address is as follows:

• where pi is an index into the outer page table, and p2 is the displacement
within the page of the outer page table.

page number page offset

pi p2 d

10 10 12

(A)- Address Translation:
2-level Paging System (A)- Two-level Page-Table

9

(A)- Address Translation ...
• Address translation scheme for a two-level 32-

bit paging architecture

N-Level Paging

• 64-bit UltraSparc would require 7 levels of
paging ... Not appropriate.

• Use other schemes (Hashed Page Tables;
Inverted Page Table) and a TLB.

(B) Hashed Page Tables

• Common in address spaces > 32 bits.

• The virtual page number is hashed into a page
table. This page table contains a chain of
elements hashing to the same location.

• Virtual page numbers are compared in this chain
searching for a match. If a match is found, the
corresponding physical frame is extracted.

(B)-Hashed Page Table

10

(C) Inverted Page Table

• One entry for each real page of memory.
• Entry consists of the virtual address of the page

stored in that real memory location, with
information about the process that owns that
page.

• Decreases memory needed to store each page
table, but increases time needed to search the
table when a page reference occurs.

• Use hash table to limit the search to one — or at
most a few — page-table entries.

(C)-Inverted Page Table

Translation Lookaside
Buffer (TLB)

Translation Lookaside Buffer

• Each virtual memory reference can cause
two physical memory accesses:
– one to fetch the page table
– another one to fetch the data

• To overcome this problem a high-speed
cache is set up for page table entries
– TLB - Translation Lookaside Buffer

11

Paging Hardware with a TLB Translation Lookaside Buffer

• Contains page table entries that have
been most recently used.

• Works in a same way as a memory cache.
• Usually has between 64 and 1024 entries.

Translation Lookaside Buffer

• Given a virtual address, the processor
examines the TLB.

• If page table entry is present (a hit), the
frame number is retrieved and the real
address is formed.

• If page table entry is not found in the TLB
(a miss), the page number is used to
index the process page table.

Translation Lookaside Buffer

• First checks if page is already in main
memory:
– if not in main memory a page fault is issued

• The TLB is updated to include the new
page entry.

12

TLB and the Principle of Locality

• By the principle of locality most virtual
memory references will be to locations in
recently used pages.

• Hopefully...

Design Decision: Page Size

• Smaller page size � less amount of internal
fragmentation.

• Smaller page size � more pages required per
process.

• More pages per process � means larger page
tables.

• Larger page tables � means large portion of
page tables in virtual memory.

• Secondary memory is designed to efficiently
transfer large blocks of data so a large page size
is better.

Page Size

• Small page size � large number of pages
will be found in main memory.

• As time goes on during execution, the
pages in memory will all contain portions
of the process near recent references �
low number of page faults.

• Increased page size causes pages to
contain locations further from any recent
reference � rise in page faults.

13

Page Size

• Multiple page sizes provide the flexibility
needed to effectively use a TLB.

• Large pages can be used for program
instructions.

• Small pages can be used for threads.
• Most operating system support only one

page size.

Example Page Sizes Shared Pages

14

Segmentation

Segmentation

• May be unequal, dynamic size.
• Simplifies handling of growing data

structures.
• Allows programs to be altered and

recompiled independently.
• Lends itself to sharing data among

processes.
• Lends itself to protection.

Addressing in Segmentation

• Logical address consists of a two tuple:
<segment-number, offset>,

• Segment table – maps two-dimensional
physical addresses; each table entry has:
– base – contains the starting physical address

where the segments reside in memory.
– limit – specifies the length of the segment.

Segment Tables

• Corresponding segment in main memory.
• Each entry contains the length of the

segment.
• A bit is needed to determine if segment is

already in main memory.
• Another bit is needed to determine if the

segment has been modified since it was
loaded in main memory.

15

Segmentation Hardware Example of Segmentation

Segmentation: Sharing

16

Segment Table Entries Address Translation in a
Segmentation System

Paging and Segmentation

Combined Paging and
Segmentation

• Paging is transparent to the programmer.
• Paging eliminates external fragmentation.
• Segmentation is visible to the programmer.
• Segmentation allows for growing data

structures, modularity, and support for
sharing and protection.

• Hybrid scheme: each segment is broken
into fixed-size pages.

17

Combined Segmentation and
Paging

Address Translation in a
Segmentation/Paging System

Intel 80386 Address Translation

� The Intel 386 uses segmentation with paging for memory management with a two-level paging scheme.

