
1

Signals in Unix

Sistemas Operativos, 2004-2005 2

Sending signals using the
keyboard

Ctrl-C
Pressing this key causes the system to send an INT signal
(SIGINT) to the running process. By default, this signal causes
the process to immediately terminate.

Ctrl-Z
Pressing this key causes the system to send a TSTP signal
(SIGTSTP) to the running process. By default, this signal causes
the process to suspend execution.

fg
On most shells, using the 'fg' command will resume execution of
the process (that was suspended with Ctrl-Z), by sending it a
SIGCONT signal.

3

Sending Signals using kill
kill

kill -<signal> <PID>

For example, in order to send the INT signal to process
with PID 5342, type:

kill -INT 5342

This has the same affect as pressing Ctrl-C in the shell that runs
that process.

If no signal name or number is specified, the default is to send a
SIGTERM signal to the process, which normally causes its
termination, and hence the name of the kill command.

4

Sending Signals with System
Calls

int kill(pid_t pid, int sig);

#include <unistd.h>
#include <sys/types.h>
#include <signal.h>
//..................................
/*first, find my own process ID */
pid_t my_pid = getpid();
/* now that i got my PID, send myself the STOP
signal. */
kill(my_pid, SIGSTOP);

2

5

The signal() System Call
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <signal.h>

/* first, here is the signal handler */
void catch_int(int sig_num) {

/* re-set the signal handler again to catch_int, for next time */
signal(SIGINT, catch_int);
/* and print the message */
printf(“Pf nao vale a pena fazer Ctrl-C…");
fflush(stdout);

}
//. . .
/* and somewhere later in the code.... */
/* set the INT (Ctrl-C) signal handler to 'catch_int' */
signal(SIGINT, catch_int);
/* now, lets get into an infinite loop of doing nothing. */

for (;;)
pause();

6

Another Example
#include <stdio.h>
#include <signal.h>
void handler_alarm();
int main()
{
signal(SIGALRM,handler_alarm);
alarm(10);
printf(“Vou dormir por algum tempo ...\n”);
pause();
printf(“…vou ficar na sorna mais 5 segundos\n”);
sleep(5);
exit(1);
}
void handler_alarm()
{
printf("ALARM !!!! \n");
fflush(stdout);
}

7

Another Example
int signal_ocorreu=0;
main(){

Signal(SIGUSR1, rotina_excepcao);
while(true)

//... Quando é que posso saber que ocorreu um SIGUSR1?...
if(signal_ocorreu)

// vai para ali
else

// vai para acoli
pause();

}

Void rotina_excepcao(){
Signal_ocorreu=1;
}

8

Another example
#include <stdio.h>
#include <signal.h>
void al_handler();
int main()
{

int id_proc,status,id_term;
signal(SIGALRM,al_handler);
id_proc = fork();
if(id_proc == 0){

printf("[filho]: pid = %d \n",getpid());
pause();
exit(1);
}

else if(id_proc > 0){
printf("[pai]: pid = %d \n",getpid());
sleep(15);
printf("[pai]: Acorda Meu !!!\n");
kill(id_proc,SIGALRM);
id_term=wait(&status);
}

else{
printf("Erro no fork !!! \n");
exit(-1);
}

}
void al_handler()
{
printf("[filho]: OK, OK ja' acordei\n");
fflush(stdout);
}

3

9

Table of Signals
SIGHUP 1 Hangup detected on controlling terminal or death of controlling process
SIGINT 2 Interrupt from keyboard
SIGQUIT 3 Quit from keyboard
SIGILL 4 Illegal Instruction
SIGABRT 6 Abort signal from abort(3)
SIGFPE 8 Floating point exception
SIGKILL 9 Kill signal
SIGSEGV 11 Invalid memory reference
SIGPIPE 13 Broken pipe: write to pipe with no readers
SIGALRM 14 Timer signal from alarm(2)
SIGTERM 15 Termination signal
SIGUSR1 30,10,16 User-defined signal 1
SIGUSR2 31,12,17 User-defined signal 2
SIGCHLD 20,17,18 Child stopped or terminated
SIGCONT 19,18,25 Continue if stopped
SIGSTOP 17,19,23 Stop process
SIGTSTP 18,20,24 Stop typed at tty
SIGTTIN 21,21,26 tty input for background process
SIGTTOU 22,22,27 D tty output for background process

man 7 signal 10

Pre-defined Signal Handlers
SIG_IGN:

Causes the process to ignore the specified signal. For example, in order to ignore
Ctrl-C completely (useful for programs that must NOT be interrupted in the
middle, or in critical sections), write this:

signal(SIGINT, SIG_IGN);

SIG_DFL:
Causes the system to set the default signal handler for the given signal (i.e. the
same handler the system would have assigned for the signal when the process
started running):

signal(SIGTSTP, SIG_DFL);

Saving/Restoring Signal Handlers:

old_routine = signal(SIGQUIT,new_routine);
...................
signal(SIGQUIT,old_routine);

11

"Do" and "Don't" inside A
Signal Handler

Make it short - the signal handler should be a short function that returns
quickly. Instead of doing complex operations inside the signal handler, it is
better that the function will raise a flag (e.g. a global variable) and have the
main program check that flag occasionally.
Proper Signal Masking - don't be too lazy to define proper signal masking
for a signal handler, preferably using the sigaction() system call.
Careful with "fault" signals - If you catch signals that indicate a program
bug (SIGBUS, SIGSEGV, SIGFPE), don't try to be too smart and let the
program continue - just do the minimal required cleanup, and exit,
preferably with a core dump (using the abort() function). Such signals
usually indicate a bug in the program, that if ignored will most likely cause
it to crush sooner or later, making you think the problem is somewhere else
in the code.
Careful with timers - when you use timers, remember that you can only use
one timer at a time.
Signals are NOT an event driven framework - it is easy to get carried away
and try turning the signals system into an event-driven driver for a
program, but signal handling functions were not meant for that.

