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Types of Scheduling

Long-Term Scheduling
• Determines which programs are admitted to the 

system for processing
• Controls the degree of multiprogramming
• More processes, smaller percentage of time 

each process is executed
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Medium-Term Scheduling
• Part of the swapping function
• Based on the need to manage the degree of 

multiprogramming

Short-Term Scheduling
• Known as the dispatcher
• Executes most frequently
• Invoked when an event occurs

– Clock interrupts
– I/O interrupts
– Operating system calls
– Signals

Scheduling
• Maximize CPU utilization 

• Process execution consists of a cycle of CPU 
execution and I/O wait: 

CPU Burst….. I/O Burst Cycle 

- Adapt the Scheduling Algorithm to the type of the 
program.
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Alternating Sequence of CPU And I/O Bursts Histogram of CPU-burst Times

CPU Scheduler
• Selects from among the processes in memory that 

are ready to execute, and allocates the CPU to one 
of them.

• CPU scheduling decisions may take place when a 
process:
1. Switches from running to waiting state.
2. Switches from running to ready state.
3. Switches from waiting to ready.
4. Terminates.

Dispatcher
• Dispatcher module gives control of the CPU to the 

process selected by the short-term scheduler; this 
involves:
– switching context
– switching to user mode
– jumping to the proper location in the user program to restart that 

program

• Dispatch latency – time it takes for the dispatcher 
to stop one process and start another running.
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Preemptive vs Non-Preemptive 

• Non-Preemptive Scheduling: once the CPU is 
allocated to a process, the process keeps the 
CPU until it terminates or it blocks in a I/O 
operations and switches to the waiting state 
(used by Windows 3.1).

• Preemptive Scheduling: when a new process 
arrives it can take the CPU out of the running 
process.

Scheduling Criteria
• CPU utilization – keep the CPU as busy as possible.
• Throughput – # of processes that complete their execution 

per time unit.
• Turnaround time – amount of time to execute a particular 

process.
• Waiting time – amount of time a process has been waiting 

in the ready queue.
• Response time – amount of time it takes from when a 

request was submitted until the first response is produced.

Optimization Criteria

• Max CPU utilization
• Max throughput
• Min turnaround time 
• Min waiting time 
• Min response time

Scheduling Algorithms
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First-Come, First-Served (FCFS)
Process Burst Time

P1 24
P2 3
P3 3

• Suppose that the processes arrive in the order: P1 , P2 , P3

• Arrival time=0,0.1,0.2
• The Gantt Chart for the schedule is:

• Waiting time for P1 = 0; P2 = 24; P3 = 27
• Average waiting time:  (0 + 24 + 27)/3 = 17
• This is a non-preemptive algorithm.

P1 P2 P3

24 27 300

FCFS Scheduling (Cont.)
Suppose that the processes arrive in the order

P2 , P3 , P1 .
• The Gantt chart for the schedule is:

• Waiting time for P1 = 6; P2 = 0; P3 = 3
• Average waiting time:   (6 + 0 + 3)/3 = 3
• Much better than previous case.
• Convoy effect: short process behind long process
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Process

Shortest-Process-Next (SPN)
• Associate with each process the length of its next CPU 

burst.  Use these lengths to schedule the process with the 
shortest time.

• Two schemes: 
– nonpreemptive – once CPU given to the process it 

cannot be preempted until completes its CPU burst.
– preemptive – if a new process arrives with CPU burst 

length less than remaining time of current executing 
process, preempt.  This scheme is know as the 
Shortest-Remaining-Time (SRT).

• SPN is optimal – gives minimum average waiting time for 
a given set of processes. 

• Difficulty: how to know the length of the next CPU request.
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Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

• SPN (non-preemptive)

• Average waiting time = (0 + 6 + 3 + 7)/4 = 4 

Non-Preemptive SPN

P1 P3 P2

73 160

P4

8 12

Example of Preemptive SRT
Process Arrival Time Burst Time

P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

• SRT (preemptive)

• Average waiting time = (9 + 1 + 0 +2)/4 = 3

P1 P3P2

42 110

P4

5 7

P2 P1

16

Determining Length of Next 
CPU Burst

• Can only estimate the length.
• Can be done by using the length of previous CPU bursts, 

using exponential averaging.
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Examples of Exponential 
Averaging

• α =0
– τn+1 = τn

– Recent history does not count.
• α =1

– τn+1 = tn
– Only the actual last CPU burst counts.

• If we expand the formula, we get:
τn+1 = α tn+(1 - α) α tn -1 + …

+(1 - α )j α tn -1 + …
+(1 - α )n=1 tn τ0

• Since both α and (1 - α) are less than or equal to 1, each 
successive term has less weight than its predecessor.

Priority Scheduling
• A priority number (integer) is associated with each 

process.

• The CPU is allocated to the process with the highest 
priority (smallest integer ≡ highest priority).
– Preemptive
– Nonpreemptive

• Problem ≡ Starvation – low priority processes may never 
execute.

• Solution ≡ Aging – as time progresses increase the 
priority of the process.

Priorities
• Scheduler will always choose a process of 

higher priority over one of lower priority.
• Have multiple ready queues to represent each 

level of priority.
• Lower-priority may suffer from starvation

– allow a process to change its priority based 
on its age or execution history
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Starvation: interesting note...
• When the system managers shutdown the IBM 7094 at 

MIT in 1973, they found a low-priority process that had 
been submitted in 1967 and had not yet run....

IBM 7094

Starvation...
• Os adeptos destes dois clubes sabem bem o que é

este fenómeno de starvation...

• Tudo por causa deste “processo” de alta-
prioridade...

Round Robin (RR)
• Each process gets a small unit of CPU time (time 

quantum), usually 10-100 milliseconds.  After this time 
has elapsed, the process is preempted and added to the 
end of the ready queue.

• If there are n processes in the ready queue and the time 
quantum is q, then each process gets 1/n of the CPU 
time in chunks of at most q time units at once.  No 
process waits more than (n-1)q time units.

• Performance
– q large ⇒ FIFO
– q small ⇒ q must be large with respect to context 

switch, otherwise overhead is too high.

Example of RR with Time 
Quantum = 20

Process Burst Time
P1 53
P2 17
P3 68
P4 24

• The Gantt chart is: 

Typically, higher average turnaround than SJF, 
but better response.

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162
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Time Quantum and Context 
Switch Time

Turnaround Time Varies With The 
Time Quantum

Go to quiz#2...

FCFS vs SPN vs RR vs SRT

Highest Response Ratio Next 
(HRRN)

• Choose next process with the highest ratio (R):

R = time spent waiting + expected service time
expected service time

• This algorithm accounts for the age of the process.
• Shorted jobs are favored (smaller denominator)
• But aging without service (waiting time) increases R.
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Multilevel Queue
• Ready queue is partitioned into separate queues:

- foreground (interactive)
- background (batch)

• Each queue has its own scheduling algorithm, 
foreground – RR
background – FCFS

• Scheduling must be done between the queues.
– Fixed priority scheduling; (i.e., serve all processes from 

foreground; then from background).  Possibility of 
starvation.

– Time slice – each queue gets a certain amount of CPU 
time which it can schedule amongst its processes; i.e., 
80% to foreground in RR; 20% to background in FCFS 

Multilevel Queue Scheduling

Multilevel Feedback Queue
• A process can move between the various queues; aging

can be implemented this way.
• Multilevel-feedback-queue scheduler defined by the 

following parameters:
– number of queues
– scheduling algorithms for each queue
– method used to determine when to upgrade a 

process
– method used to determine when to demote a process
– method used to determine which queue a process will 

enter when that process needs service
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Multilevel Feedback Queues Multilevel Feedback Queue
• Three queues: 

– Q0 – time quantum 8 milliseconds
– Q1 – time quantum 16 milliseconds
– Q2 – FCFS

• Scheduling
– A new job enters queue Q0 which is served FCFS. 

When it gains CPU, job receives 8 milliseconds.  If it 
does not finish in 8 milliseconds, job is moved to 
queue Q1.

– At Q1 job is again served FCFS and receives 16 
additional milliseconds.  If it still does not complete, it 
is preempted and moved to queue Q2.

Scheduling Policies Process Scheduling Example
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Escalonamento
• Desenhe o histograma de execução dos 5 processos, usando os 

seguintes algoritmos:
– FCFS
– Round-Robin (q=1)
– Round-Robin (q=4)
– Shortest Process Next (SPN)
– Shortest Remaining Time (SRT)
– Highest Response Ratio (HRRN)
– Feedback (q=1)

• Calcule o Finish-Time, Waiting-Time, Turnaround Time para cada 
processo.

• Apresente os valores médios do Waiting Time e do Turnaround 
Time.

First-Come-First-Served
(FCFS)
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Round-Robin (q=1)
0 5 10 15 20
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5

Shortest Process Next (SPN)

• Non-preemptive policy.
• Process with shortest expected processing time is 

selected next.
• Short process jumps ahead of longer processes.

0 5 10 15 20
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3
4
5
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Shortest Remaining Time (SRT)

• Preemptive version of shortest process next 
policy.

• Must estimate processing time.

0 5 10 15 20
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Highest Response Ratio Next 
(HRRN)

• Choose next process with the highest ratio:

R = time spent waiting + expected service time
expected service time
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4
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Multilevel Feedback

• Penalize jobs that have been running longer.

0 5 10 15 20
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Real-Time Scheduling
• Hard real-time systems – required to complete 

a critical task within a guaranteed amount of 
time.

• Soft real-time computing – requires that critical 
processes receive priority over less fortunate 
ones.

Dispatch Latency

Overview of Scheduling:

- Traditional Unix
- Solaris

- Windows 2000
- Linux
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Traditional 
UNIX Scheduling

• Multilevel feedback using 
Round-Robin within each 
of the priority queues.

• Priorities are recomputed 
once per second.

• Base priority divides all 
processes into fixed 
bands of priority levels.

• Adjustment factor used to 
keep process in its 
assigned band.

Bands
• Decreasing order of priority:

– Swapper
– Block I/O device control
– File manipulation
– Character I/O device control
– User processes

Priority Calculation
• Process Px

• CPUx(i) = CPUx (i-1) / 2

• Px(i) = Basex + (CPUx(i) / 2) + nicex

• The priority of each process is recomputed once 
per second.

Base priority=60

CPU count: 
incremented very 
second
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Solaris 2 Scheduling

Priority 
Scheduling:

4 classes:

- real-time

- system

- interactive

- time-sharing

Windows 2000 Priorities

Priority-based, preemptive scheduling

Priority classes

Relative priority

Linux
• Linux provides two separate process-scheduling 

algorithms:
– Time-Sharing Algorithm (fair preemptive)
– Soft Real-Time Scheduling (priority-based)

• Linux allows only processes running in user-
mode to be preempted.

• If a process is running in kernel-mode it cannot 
be preempted.

Linux: Scheduling
• Linux uses a prioritized credit-based algorithm.

• When a new task must be chosen to run, the process 
with the most credits is selected.

• Every time that a timer interrupt occurs, the running 
process loses one credit. When its credits reaches zero, 
it is suspended and another process is chosen.

• If no runnable process has any credit, Linux performs a 
recrediting operation, adding credits to every process in 
the system:

Credits = Credits/2 + Priority;


