
1

Escalonamento
de Processos
Chapter 9, Livro do William Stallings

Chapter 6, Livro do Silberschatz

Sistemas Operativos, 2004-2005

Types of Scheduling

Long-Term Scheduling
• Determines which programs are admitted to the

system for processing
• Controls the degree of multiprogramming
• More processes, smaller percentage of time

each process is executed

2

Medium-Term Scheduling
• Part of the swapping function
• Based on the need to manage the degree of

multiprogramming

Short-Term Scheduling
• Known as the dispatcher
• Executes most frequently
• Invoked when an event occurs

– Clock interrupts
– I/O interrupts
– Operating system calls
– Signals

Scheduling
• Maximize CPU utilization

• Process execution consists of a cycle of CPU
execution and I/O wait:

CPU Burst….. I/O Burst Cycle

- Adapt the Scheduling Algorithm to the type of the
program.

3

Alternating Sequence of CPU And I/O Bursts Histogram of CPU-burst Times

CPU Scheduler
• Selects from among the processes in memory that

are ready to execute, and allocates the CPU to one
of them.

• CPU scheduling decisions may take place when a
process:
1. Switches from running to waiting state.
2. Switches from running to ready state.
3. Switches from waiting to ready.
4. Terminates.

Dispatcher
• Dispatcher module gives control of the CPU to the

process selected by the short-term scheduler; this
involves:
– switching context
– switching to user mode
– jumping to the proper location in the user program to restart that

program

• Dispatch latency – time it takes for the dispatcher
to stop one process and start another running.

4

Preemptive vs Non-Preemptive

• Non-Preemptive Scheduling: once the CPU is
allocated to a process, the process keeps the
CPU until it terminates or it blocks in a I/O
operations and switches to the waiting state
(used by Windows 3.1).

• Preemptive Scheduling: when a new process
arrives it can take the CPU out of the running
process.

Scheduling Criteria
• CPU utilization – keep the CPU as busy as possible.
• Throughput – # of processes that complete their execution

per time unit.
• Turnaround time – amount of time to execute a particular

process.
• Waiting time – amount of time a process has been waiting

in the ready queue.
• Response time – amount of time it takes from when a

request was submitted until the first response is produced.

Optimization Criteria

• Max CPU utilization
• Max throughput
• Min turnaround time
• Min waiting time
• Min response time

Scheduling Algorithms

5

First-Come, First-Served (FCFS)
Process Burst Time

P1 24
P2 3
P3 3

• Suppose that the processes arrive in the order: P1 , P2 , P3

• Arrival time=0,0.1,0.2
• The Gantt Chart for the schedule is:

• Waiting time for P1 = 0; P2 = 24; P3 = 27
• Average waiting time: (0 + 24 + 27)/3 = 17
• This is a non-preemptive algorithm.

P1 P2 P3

24 27 300

FCFS Scheduling (Cont.)
Suppose that the processes arrive in the order

P2 , P3 , P1 .
• The Gantt chart for the schedule is:

• Waiting time for P1 = 6; P2 = 0; P3 = 3
• Average waiting time: (6 + 0 + 3)/3 = 3
• Much better than previous case.
• Convoy effect: short process behind long process

P1P3P2

63 300

First-Come-First-Served

26100mean

1.991992021021003Z

10010010210112Y

110010111001X

111010W

Ts / TrTurnaround
Time (Tr)

Finish
Time

Start
Time

Service
Time (Ts)

Arrival
Time

Process

Shortest-Process-Next (SPN)
• Associate with each process the length of its next CPU

burst. Use these lengths to schedule the process with the
shortest time.

• Two schemes:
– nonpreemptive – once CPU given to the process it

cannot be preempted until completes its CPU burst.
– preemptive – if a new process arrives with CPU burst

length less than remaining time of current executing
process, preempt. This scheme is know as the
Shortest-Remaining-Time (SRT).

• SPN is optimal – gives minimum average waiting time for
a given set of processes.

• Difficulty: how to know the length of the next CPU request.

6

Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

• SPN (non-preemptive)

• Average waiting time = (0 + 6 + 3 + 7)/4 = 4

Non-Preemptive SPN

P1 P3 P2

73 160

P4

8 12

Example of Preemptive SRT
Process Arrival Time Burst Time

P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

• SRT (preemptive)

• Average waiting time = (9 + 1 + 0 +2)/4 = 3

P1 P3P2

42 110

P4

5 7

P2 P1

16

Determining Length of Next
CPU Burst

• Can only estimate the length.
• Can be done by using the length of previous CPU bursts,

using exponential averaging.

:Define 4.
10 , 3.

burst CPU next the for value predicted 2.
burst CPU of lenght actual 1.

≤≤
=

=

+

αα
τ 1n

th
n nt

() .t nnn ταατ −+== 11

Prediction of the Length of the
Next CPU Burst

7

Examples of Exponential
Averaging

• α =0
– τn+1 = τn

– Recent history does not count.
• α =1

– τn+1 = tn
– Only the actual last CPU burst counts.

• If we expand the formula, we get:
τn+1 = α tn+(1 - α) α tn -1 + …

+(1 - α)j α tn -1 + …
+(1 - α)n=1 tn τ0

• Since both α and (1 - α) are less than or equal to 1, each
successive term has less weight than its predecessor.

Priority Scheduling
• A priority number (integer) is associated with each

process.

• The CPU is allocated to the process with the highest
priority (smallest integer ≡ highest priority).
– Preemptive
– Nonpreemptive

• Problem ≡ Starvation – low priority processes may never
execute.

• Solution ≡ Aging – as time progresses increase the
priority of the process.

Priorities
• Scheduler will always choose a process of

higher priority over one of lower priority.
• Have multiple ready queues to represent each

level of priority.
• Lower-priority may suffer from starvation

– allow a process to change its priority based
on its age or execution history

8

Starvation: interesting note...
• When the system managers shutdown the IBM 7094 at

MIT in 1973, they found a low-priority process that had
been submitted in 1967 and had not yet run....

IBM 7094

Starvation...
• Os adeptos destes dois clubes sabem bem o que é

este fenómeno de starvation...

• Tudo por causa deste “processo” de alta-
prioridade...

Round Robin (RR)
• Each process gets a small unit of CPU time (time

quantum), usually 10-100 milliseconds. After this time
has elapsed, the process is preempted and added to the
end of the ready queue.

• If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU
time in chunks of at most q time units at once. No
process waits more than (n-1)q time units.

• Performance
– q large ⇒ FIFO
– q small ⇒ q must be large with respect to context

switch, otherwise overhead is too high.

Example of RR with Time
Quantum = 20

Process Burst Time
P1 53
P2 17
P3 68
P4 24

• The Gantt chart is:

Typically, higher average turnaround than SJF,
but better response.

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

9

Time Quantum and Context
Switch Time

Turnaround Time Varies With The
Time Quantum

Go to quiz#2...

FCFS vs SPN vs RR vs SRT

Highest Response Ratio Next
(HRRN)

• Choose next process with the highest ratio (R):

R = time spent waiting + expected service time
expected service time

• This algorithm accounts for the age of the process.
• Shorted jobs are favored (smaller denominator)
• But aging without service (waiting time) increases R.

10

Multilevel Queue
• Ready queue is partitioned into separate queues:

- foreground (interactive)
- background (batch)

• Each queue has its own scheduling algorithm,
foreground – RR
background – FCFS

• Scheduling must be done between the queues.
– Fixed priority scheduling; (i.e., serve all processes from

foreground; then from background). Possibility of
starvation.

– Time slice – each queue gets a certain amount of CPU
time which it can schedule amongst its processes; i.e.,
80% to foreground in RR; 20% to background in FCFS

Multilevel Queue Scheduling

Multilevel Feedback Queue
• A process can move between the various queues; aging

can be implemented this way.
• Multilevel-feedback-queue scheduler defined by the

following parameters:
– number of queues
– scheduling algorithms for each queue
– method used to determine when to upgrade a

process
– method used to determine when to demote a process
– method used to determine which queue a process will

enter when that process needs service

11

Multilevel Feedback Queues Multilevel Feedback Queue
• Three queues:

– Q0 – time quantum 8 milliseconds
– Q1 – time quantum 16 milliseconds
– Q2 – FCFS

• Scheduling
– A new job enters queue Q0 which is served FCFS.

When it gains CPU, job receives 8 milliseconds. If it
does not finish in 8 milliseconds, job is moved to
queue Q1.

– At Q1 job is again served FCFS and receives 16
additional milliseconds. If it still does not complete, it
is preempted and moved to queue Q2.

Scheduling Policies Process Scheduling Example

12

Escalonamento
• Desenhe o histograma de execução dos 5 processos, usando os

seguintes algoritmos:
– FCFS
– Round-Robin (q=1)
– Round-Robin (q=4)
– Shortest Process Next (SPN)
– Shortest Remaining Time (SRT)
– Highest Response Ratio (HRRN)
– Feedback (q=1)

• Calcule o Finish-Time, Waiting-Time, Turnaround Time para cada
processo.

• Apresente os valores médios do Waiting Time e do Turnaround
Time.

First-Come-First-Served
(FCFS)

0 5 10 15 20

1

2
3
4
5

Round-Robin (q=1)
0 5 10 15 20

1

2
3
4
5

Shortest Process Next (SPN)

• Non-preemptive policy.
• Process with shortest expected processing time is

selected next.
• Short process jumps ahead of longer processes.

0 5 10 15 20

1

2
3
4
5

13

Shortest Remaining Time (SRT)

• Preemptive version of shortest process next
policy.

• Must estimate processing time.

0 5 10 15 20

1

2
3
4
5

Highest Response Ratio Next
(HRRN)

• Choose next process with the highest ratio:

R = time spent waiting + expected service time
expected service time

1

2
3
4
5

0 5 10 15 20

Multilevel Feedback

• Penalize jobs that have been running longer.

0 5 10 15 20

1

2
3
4
5

14

Real-Time Scheduling
• Hard real-time systems – required to complete

a critical task within a guaranteed amount of
time.

• Soft real-time computing – requires that critical
processes receive priority over less fortunate
ones.

Dispatch Latency

Overview of Scheduling:

- Traditional Unix
- Solaris

- Windows 2000
- Linux

15

Traditional
UNIX Scheduling

• Multilevel feedback using
Round-Robin within each
of the priority queues.

• Priorities are recomputed
once per second.

• Base priority divides all
processes into fixed
bands of priority levels.

• Adjustment factor used to
keep process in its
assigned band.

Bands
• Decreasing order of priority:

– Swapper
– Block I/O device control
– File manipulation
– Character I/O device control
– User processes

Priority Calculation
• Process Px

• CPUx(i) = CPUx (i-1) / 2

• Px(i) = Basex + (CPUx(i) / 2) + nicex

• The priority of each process is recomputed once
per second.

Base priority=60

CPU count:
incremented very
second

16

Solaris 2 Scheduling

Priority
Scheduling:

4 classes:

- real-time

- system

- interactive

- time-sharing

Windows 2000 Priorities

Priority-based, preemptive scheduling

Priority classes

Relative priority

Linux
• Linux provides two separate process-scheduling

algorithms:
– Time-Sharing Algorithm (fair preemptive)
– Soft Real-Time Scheduling (priority-based)

• Linux allows only processes running in user-
mode to be preempted.

• If a process is running in kernel-mode it cannot
be preempted.

Linux: Scheduling
• Linux uses a prioritized credit-based algorithm.

• When a new task must be chosen to run, the process
with the most credits is selected.

• Every time that a timer interrupt occurs, the running
process loses one credit. When its credits reaches zero,
it is suspended and another process is chosen.

• If no runnable process has any credit, Linux performs a
recrediting operation, adding credits to every process in
the system:

Credits = Credits/2 + Priority;

