What is a Process?

Introducéo aos Processos

Chapter 3, Livro do William Stallings

Sistemas Operativos, 2004-2005

A process is a program in execution.

A process needs certain resources, including CPU time, memory,
files, and I/O devices, to accomplish its task.

A process includes:
— Code section

— Program counter
— Stack

— Data section

The operating system is responsible for the following activities:
— Process creation and deletion.
— Process suspension and resumption.
— Process synchronization
— Process communication

Addres hain Memory Program Counter
o
[=y |
100
Dispuitcher
S000
Process A
]
Process B
1 20000
Process C
Figure 3.1 Snapshot of E le | it

at Instruction Cyele 13

5000 8000 12000
5001 8001 12001
5002 8002 12002
5003 8003 12003
5004 12004
5005 12005
5006 12006
5007 12007
5008 12008
5009 12009
5010 12010
5011 12011
(a) Trace of Process A (b) Trace of Process B (¢) Trace of Process C

5000 = Starting address of program of Process A
8000 = Starting address of program of Process B
12000 = Starting address of program of Process C

Figure 3.2 Traces of Processes of Figure 3.1

Two-State Process Model

» Process may be in one of two states:

— Running
— Not-running

Dispateh

T T
4‘('“"'”- N‘:',w) (’ulmllu B -

V

Pause

(a) Stale transdthon dingram

Not-Running Process in a
Queue

Quene

Enter Dispatch Exit
e T el

—

b} Quenlng diagram

Process Creation

Submission of a batch job.

User logs on.

Provide a service such as printing.
Process creates another process.

Process Termination

Reasons for Process
Termination

Batch job issues Halt instruction.
User logs off.

Quit an application.

Error and fault conditions.

« Normal completion
* Time limit exceeded
« Memory unavailable
* Bounds violation
» Protection error
— example write to read-only file
* Arithmetic error

* Time overrun

— process waited longer than a specified maximum for
an event

Reasons for Process
Termination

Processes

I/O failure

Invalid instruction

— happens when try to execute data

Privileged instruction

Data misuse

Operating system intervention

— such as when deadlock occurs

Parent terminates so child processes terminate
Parent request

 Not-running
—ready to execute

 Blocked
— waiting for 1/0

« Dispatcher cannot just select the process
that has been in the queue the longest
because it may be blocked.

A Five-State Model

* Running
* Ready
* Blocked
* New

» Exit

1€~

Dispatch
Admit (——-‘
—_— Ready Running

Release
— Exit

Timeout

Event
Occurs

o

Event
Wait

Figure 3.5 Five-State Process Model

S

Process B

— — _—

- I I N
|IIII|JJJ]II[ll|IIII|IIII|IIII|IIII]JJ]II[llI|IIII|II
L] 5 0 15 0 13 k) s E.U 45 S0

- Running I Ready m Bhocked

Figure 3.6 Process States for ‘Trace of Figure 3.3

Using Two Queues

Ready Queue Release
Admit Dispatch
- TTTIToe e
Timeout
Blocked Queue
Event Event Walt
‘Occurs

(a) Single blocked cuene

Ready Queue Release

Admit Dispatch
,m. Processor
|

i Timeout
Event 1 Queue .
Event 1 Event 1 Walt
Oceurs il
Event 2 Queue
Event 2 Event 2 Walt
Oceurs o
¥
¥
¥
Event n Queue
Event n _ Event n Walt
Oceurs -

(b) Multiple blocked queues

Suspended Processes

Processor is faster than 1/0 so all
processes could be waiting for I/O.
Swap these processes to disk to free up
more memory.

Blocked state becomes suspend state
when swapped to disk.

Two new states:

— Blocked, suspend

— Ready, suspend

One Suspend State

Two Suspend States

1 Suspend
‘uspend locked

(a) With One Suspend State

(b) With Two Suspend States

Reasons for Process

Suspension

Virtual
[Swapping The operating system needs to relesse sufficsent mam
mensory to being in a process that is ready to execute Memory
(Other OF reasen The opezating syitem say suipend a background oc ulility Computer
pracess or a pracers that iz suspected of causing a problem Rt
Interactive uits sequet A uier may wigh to suspend exscution of a program for
pexposes of debugging or in connection with the use of a
Timing A process may be executed pericdically (e.g. an
ACCounting of Fyrtem monitoring precesr) and may be
suspended while waiting for the nest tume interval
[Farent process request A parest process may wish to suspend execulion of a
sendent to examans or modify the suspended process, or
nate the activity of vanous desc endents Figure 3.9 Processes and R (resource all at one hot in time)
Process
sy
,—b Memory Tabks e
Process.
Memory 1
. ~ i n [o |
Que informacéo deve ser mantida Devies
H H Flles.
pelo Sistema Operativo para “
. L [remaie |
controlar os processos e gerir 0s
recursos usados?
Primary Process Table
Process |
Prowess 2
Process
Process 3 Ty
¥ T | rocess
¥ "
¥

Restart here...

Figure 3.10 General Structure of Operating System Contraol Tahles

Memory Tables

Allocation of main memory to processes.
Allocation of secondary memory to
processes.

Protection attributes for access to shared
memory regions.

Information needed to manage virtual
memory.

/O Tables

* 1/O device is available or assigned.
« Status of I/O operation.

 Location in main memory being used as
the source or destination of the 1/O
transfer.

File Tables

Existence of files

Location on secondary memory
Current Status

Attributes

Sometimes this information is maintained
by a file-management system

Process Table

e Process location.

« Attributes necessary for its management:
—Process ID
— Process state
— Location in memory

Process Location

Process includes set of programs to be
executed

— Data locations for local and global variables

— Any defined constants

— Stack

Process control block

— Collection of attributes

Process image

— Collection of program, data, stack, and attributes

Process Control Block (PCB)

process

EONSY state

process number

program counter

registers

memory limits

list of open files

Process Control Block

Process identifiers (pid, ppid, uid)
Process state

Program counter

CPU registers

CPU scheduling information
Memory-management information
Resource ownership

Accounting information

I/O status information

Stack pointers

Process
Tnnge

Memory Tabks
Process
Memury
—

Primary Frocess Table

Process |

Prowess 2
Process
Frocess 3 Trmge

Process Identifier (PID): ; rm:m
Index to that table ¥
Process o

Figure 3.10 General Structure of Operating System Control Tahles

Process Control Block

* |s the most important data structure in an
operating system.

* Set of “Process Control Blocks” defines
the state of the operating system.

Process Process Process
lentificat b IelentiNentkon Mlentifcation
Processor State Processor State Processo State
Tndformmad lon Information Information
Process Control Process Control Process Control
Informat lon Informeation Information
User Stack User Stack User Stack
Private User Private User Private User
Adkdress Space Adkdress Space Adddress Space
{ Proggrames, Daln) {Prograns, Dala) { Proggrams, Data)
¥¥¥
Shared Address Shared Adkdress Shared Address
Spce Spoce Sper
Process | Process 2 Process i

Figure 3.12 User Processes in Virtual Memory

Prowess
Control
Block

Modes of Execution

User-mode vs Kernel-mode

Modes of Execution

e User mode
— Less-privileged mode
— User programs execute in this mode
e System mode, control mode, or kernel
mode
— More-privileged mode
— Kernel of the operating system

Modes of Execution

- Kernel Mode: it is necessary to protect the
operating system data structures and tables
from interference by user programs.

- There is a bit in the Program Status Word
that indicates the mode of execution.

- When a user makes a call to an operating
system service the mode is set to kernel
mode.

Typical Functions of an
Operating System Kernel

Process Creation

When to Switch a Process

« Assign a unique process identifier.
Allocate space for the process.

« Initialize process control block.
 Set up appropriate linkages

— Ex: add new process to linked list used for
scheduling queue

Create of expand other data structures
— Ex: maintain an accounting file

Clock interrupt

— process has executed for the maximum
allowable time slice

I/O interrupt

Memory fault

—memory address is in virtual memory so it
must be brought into main memory

10

When to Switch a Process

e Trap

—error occurred

— may cause process to be moved to Exit state
* Supervisor call

— such as file open; this call results in a transfer
to a routine that is part of the operating
system code.

Process Switching

» The processor checks if there is any
interrupt signal. If an interrupt is pending the
processor does the following:

— Save the context of the current program.

— Set the PC to the address of the interrupt-
handler routine.

— Switch from user-mode to kernel-mode (the
interrupt routine can execute privileged
instructions).

@ Context Switch

» When a process is running some of the
information context is in the registers.

» When a process is interrupted all of this
register information must be saved so
that it can be restored when the process
resumes execution.

Process Switch |= Mode Switch

Context Switch

opaTaLng Systom process P

INIOFTURA oF SyStem cal

exocutng |r
g e
redoad state rom PCB,

inferrupt or system cal amecuting

= [
relond state from PCE,,
axocuting ‘“

Context-switch time is overhead.

11

Change of Process State

Change of Process State

. Save context of processor including
program counter and other registers.

. Update the process control block of the
process that is currently running.

. Move process control block to
appropriate queue - ready, blocked.

. Select another process for execution.

5. Update the process control block of the
process selected.

6. Update memory-management data
structures.

7. Restore context of the selected process.

Representation of Process
Scheduling

I/0 and CPU Bound

@)
@ VO queus H 1O request l‘—
time slice
expired
child fork a
execules child

interrupt wait for an
OCCUrs interrupt

» Processes can be described as either:
—1/0O-bound process — spends more time
doing I/O than computations, many short CPU
bursts.
— CPU-bound process — spends more time
doing computations; few very long CPU
bursts.

12

Process Creation

« Parent process create children processes,
which, in turn create other processes,
forming a tree of processes.

* Resource sharing:

— Children share subset of parent’s resources.

« Execution
— Parent and children execute concurrently.

— Parent waits until children terminate.

Process Creation (Cont.)

» Address space:
— Child duplicate of parent (unix).

— Child has a program loaded into it (windows).

« UNIX examples
—fork system call creates new process.

—exec system call used after a fork to replace
the process’ memory space with a new
program.

¢ Microsoft: CreateProcess()

Processes Tree on a UNIX
System

Process Termination

» Process executes last statement and asks
the operating system to decide it (exit).

« Parent may terminate execution of
children processes (abort).
— Parent is exiting.

« Operating system does not allow child to continue
if its parent terminates.

« If parent exits: temporary parent (init process)

13

UNIX Process States

User Running Executing in user mode.
Kermel Running Executing in kernel mode.
Ready to Run, in Memory Ready to run as soon as the kernel schedules it

Asleep in Memory Unable to execute uatil an event occurs; process is in main
memory (a blocked stat).

Ready to Run, Swapped Process is ready to run, but the swapper must swap the process into
‘main memory before the kernel can schedule it to execute.

Sleeping, Swapped ‘The process is awaiting an event and has been swapped to
secondary storage (a blocked state)

Preempted Process is returning from kernel to user mode, but the kernel
preempts it and does a process switch to schedule another process

Created Process is newly created and not yet ready to run

Zombie Process no longer exists, but it leaves a record for its parent
process to collect.

fork

[a—
mot cmoagh memary
vapple sysbem oalyy

return -,

precupt

feaay 1o

reschedule
M -
Kiermel

slocp wakeup wakewp

Interrupt

ke rrup
Interrupt return et

Askerp i e Sheep,
- &-’ 4’({-#-’

igure 3,16 UNIX Process State Transition Disgram

14

