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Chapter 3: Transport Layer

Our goals:

7 understand principles O learn about transport

behind transport layer protocols in the

layer services: Internet:

O multiplexing/ O UDP: connectionless
demultiplexing transport

O reliable data transfer O TCP: connection-oriented

o flow control fransport

o congestion control O TCP congestion control
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Chapter 3 outline

3 3.1 Transport-layer
services

7 3.2 Multiplexing and
demultiplexing

3 3.3 Connectionless
transport: UDP

A 3.4 Principles of
reliable data transfer

7 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management
A 3.6 Principles of
congestion control
3 3.7 TCP congestion
control

Transport Layer  3-3

Transport services and protocols

3 provide logical
communication between app
processes running on
different hosts

3 transport protocols run in end

systems
O send side: breaks app
messages into segments,
passes to network layer
O rcv side: reassembles
segments into messages,
passes to app layer

7 more than one transport
protocol available to apps

O Internet: TCP and UDP

trans~ort
netwdiml

data |i

| ication|

transport
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Transport vs. network layer

3 network layer: logical
communication
between hosts

3 transport layer:
logical communication
between processes

O relies on, enhances,
network layer services

Household analo

gy:

12 kids sending letters

to 12 kids
7 processes = k

7 app messages = letters

in envelopes
7 hosts = house

7 transport protocol =

Ann and Bill

3 network-layer protocol

ids

S

= postal service
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Internet transport-layer protocols

3 reliable, in-order
delivery (TCP)
O congestion control
O flow control
O cohnhection setup

7 unreliable, unordered
delivery: UDP
O no-frills extension of
"best-effort" IP
7 services hot available:
O delay guarantees
O bandwidth guarantees

application
ansp @™
networ!

data link
physical

Z

O network
PhY= <IN data link 3‘c
Mhysical

:’é networkNg
&7 | datalink

physical

WOl

N,
data linkN

physical

networl

data link

physical

network

apPplication
anspo

7T
.

(
g
o7 Qﬁ

data link

networ!

physical

data link

+8

physical
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Chapter 3 outline

3 3.1 Transport-layer 3 3.5 Connection-oriented
services transport: TCP

A 3.2 Multiplexing and © segment sfructure
demultiplexing o reliable data transfer

7 3.3 Connectionless O flow C°"ﬁ“"°'
Tr'qnspor--r; UDP O connection management

7 3.4 Principles of 7 3.6 Principles of

reliable data transfer congestion control
3 3.7 TCP congestion

control
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Multiplexing/demultiplexing

Demultiplexing at rcv host: Multiplexing at send host:
gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

delivering received segments
to correct socket

[ =socket O = process

application g 0 application @ g application
[ [ ]
transport ‘%tms»pﬁ' transport
network nefwork network
link link link
physical phystcal physical
host 1 host 2 host 3
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How demultiplexing works

O3 host receives IP datagrams
O each datagram has source
IP address, destination IP
address
O each datagram carries 1
transport-layer segment
O each segment has source,
destination port number
3 host uses IP addresses & port
numbers to direct segment to
appropriate socket

+— 32 bits

source port #| dest port #

other header fields

application
data
(message)

TCP/UDP segment format
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Connectionless demultiplexing

7 Create sockets with port
numbers:

DatagramSocket mySocketl = new

DatagramSocket (12534) ;

DatagramSocket mySocket2 = new

DatagramSocket (12535) ;

7 UDP socket identified by
two-tuple:
(dest IP address, dest port number)

7 When host receives UDP
segment:
O checks destination port
number in segment
O directs UDP segment to
socket with that port
number
3 IP datagrams with
different source IP
addresses and/or source
port numbers directed
to same socket
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Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket (6428);

SP: 6428 SP: 6428
DP: 9157 DP: 5775

SP: 9157 SP: 5775

client |DP: 6428 server DP: 6428 Client

IP: A IP: C IP:B

SP provides "return address”
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Connection-oriented demux

7 TCP socket identified 7 Server host may support

by 4-tuple: many simultaneous TCP
o source IP address sockets:
O source port number O each socket identified by
o dest IP address its own 4-tuple
o dest port number 7 Web servers have
7 recv host uses all four different sockets for
values to direct each connecting client
segment to appropriate O non-persistent HTTP will
socket have different socket for

each request
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Connection-oriented demux

(cont)

P4O(P5OCP6

SP: 9157

SP: 5775

DP: 80
S-IP: B

D-IP:C

4

client | DP: 80

IP: A S-IP: A

D-IP:C

server
IP: C

SP: 9157

DP: 80

S-IP: B

D-IP:C

Client
IP:B
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Connection-oriented demux:

Threaded Web Server

SP: 9157

client | DP:80
IP: A S-IP: A
D-IP:C

Z
SP: 5775
DP: 80
S-IP: B
D-IP:C
A
SP: 9157
server OP: 80 Client
IP: C S-IP: B IP:B
D-IP:C
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Chapter 3 outline

3 3.1 Transport-layer 3 3.5 Connection-oriented
services transport: TCP

A 3.2 Multiplexing and © segment sfructure
demultiplexing o reliable data transfer

A 3.3 Connectionless o flow control
transport: UDP O connection management

A 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

A 3.4 Principles of
reliable data transfer
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UDP: User Datagram Protocol [RFC 768]

7 “no frills," “bare bones"
Internet transport Why is there a UDP?
‘;‘;rofocol o 7 no connection
7 “best effort” service, UDP establishment (which can
segments may be: add delay)
O lost 7 simple: no connection state
O delivered out of order at sender, receiver
to app 7 small segment header
3 connectionless: 7 no congestion control: UDP
O no handshaking between can blast away as fast as
UDP sender, receiver desired
O each UDP segment

handled independently
of others
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UDP: more

7 often used for streaming
multimedia apps

O loss folerant Length, in | Source port #| dest port #

O rate sensitive bytes of UDP [ length checksum
segment,
3 other UDP uses including
o DNS header

O SNMP

3 reliable transfer over UDP:
add reliability at
application layer

O application-specific
error recovery!

+— 32 bits

Application
data
(message)

UDP segment format
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UDP checksum

Goal: detect "errors” (e.g., flipped bits) in transmitted

segment

Sender: Receiver:

O treat segment contents as m
sequence of 16-bit
integers 0
1 checksum: addition (1's
complement sum) of
segment contents
7 sender puts checksum

value into UDP checksum
field

compute checksum of
received segment

check if computed checksum
equals checksum field value:
O NO - error detected
O YES - no error detected.

But maybe errors
nonetheless? More later
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Internet Checksum Example

7 Note

O When adding numbers, a carryout from the
most significant bit needs to be added to the

result

3 Example: add two 16-bit integers

11100110011 00110
110101010101 0101

wraparound @ 101110111011 1011
sum 1011101110111 100
checksum 0100010001 000O011
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Chapter 3 outline

A 3.1 Transport-layer
services

7 3.2 Multiplexing and
demultiplexing

3 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

0

3.5 Connection-oriented
transport: TCP

O segment structure

O reliable data transfer

o flow control

O connection management
3.6 Principles of
congestion control

3.7 TCP congestion
control
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Principles of Reliable data transfer

3 important in app., transport, link layers
3 top-10 list of important networking topics!

c
O

=

g 0

oD
8 = rocess process
S [cata] [data]

15 (Jreliable channel

G 2

=

(a) provided service

3 characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)
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Principles of Reliable data transfer

3 important in app., fransport, link layers
3 top-10 list of important networking topics!

c

O

-

[ORNO)

5 ED
% == rocess process
¢
-6 (Jreliable channel
Qe

C O

G 2

=

L{ Eunreliqble chonnel’i

(a) provided service (b) service implementation

O characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)
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Principles of Reliable data transfer

3 important in app., transport, link layers
3 top-10 list of important networking topics!

c

O

=

g 0

oD
8 = rocess process
o}

15 (Jreliable channel

G 2

=

(a) provided service

rdt_send() '

relioble data
II

transfer protoco
(sending side)

deliver datal()

reliable data
fransfer protocol
(receiving side)

udt_send 0} rdt_rev()

L{ iunrelioble chonnel’i

(b) service implementation

3 characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-23

Reliable data transfer: getting started

rdt_send() : called from above,
(e.g.. by app.). Passed data to
deliver to receiver upper layer

deliver data() : called by
rdt to deliver data to upper

rdt_send()

|dc|k:| |

reliable data
fransfer protocol
(sending side)

send
side

[gata |Tdel iver data()

relicble data receive
transfer protocol
(receiving side)

side

udt_send ()] [pockel]

[ packet | Irdt rev(

T—u()unrelicible channel )J

udt_send () : called by rdt,
to transfer packet over

rdt_rcv () : called when packet
arrives on rcv-side of channel

unreliable channel to receiver

Transport Layer 3-24

12



Reliable data transfer: getting started

we'll:

3 incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

7 consider only unidirectional data transfer
O but control info will flow on both directions!

7 use finite state machines (FSM) to specify

sender, receiver
event causing state transition

actions taken on state transition

state: when in this
"state” next state
uniquely determined
by next event

Transport Layer 3-25

Rdt1.0: reliable transfer over a reliable channel

3 underlying channel perfectly reliable
O no bit errors
O no loss of packets
7 separate FSMs for sender, receiver:
O sender sends data into underlying channel
O receiver read data from underlying channel

rdt_rcv(packet)

extract (packet,data)
deliver_data(data)

rdt_send(data)

packet = make_pkt(data)
udt_send(packet)

sender receiver

Transport Layer 3-26
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rdt3.0: channels with errors and loss

New assumption:
underlying channel can
also lose packets (data
or ACKs)

O checksum, seq. #, ACKs,
retransmissions will be
of help, but not enough

Approach: sender waits

“reasonable” amount of
time for ACK

retransmits if no ACK
received in this time
if pkt (or ACK) just delayed
(hot lost):
O retransmission will be
duplicate, but use of seq.
#'s already handles this

O receiver must specify seq
# of pkt being ACKed

requires countdown timer

Transport Layer 3-37

19



rd+3.0 in action

sender receiver
pkt
send pki0 0 v pkio
send ACKO

ACK
rcv ACKO
send pkt1 \@m\‘
rcv pktl
ACK send ACK1
rcVvACK

send pkt0 kg
rcv pkto
}’ send ACKO

sender receiver
pkt
send pki0 0 v pKiO
ACK send ACKO

rcv ACKO

send pki] \%
(loss)
fimeout
resend pkt1 %’
rcy pkil
send ACK1

ACK
rcvACK1 W
send pktO
() operation with no loss ACK rev pkiQ
/e/ send ACKO
(b) lost packet
Transport Layer 3-39
sender receiver sender receiver
pkt Kt
AP0 T——0 | rovpKo send Pk ——0_ | rev pkio
ACK send ACKO ACK send ACKO
rcv ACKO rcv ACKO
send pkil kT] send pkil
rcv pkﬂC rcv pktl
ACK send ACK1 send ACK1
(Ioss) X/
fimeout
fimeout okt 1 resend pki1
resend pktl \rcv okt ) rcv pktl ‘
ACK (defect duplicate) rcvACK1 (detfect duplicate)
ACKI send ACK1 send pkio send ACKI
o oki0 Kt rcv pkio
rev pkio send ACKO
ACK V Pl ACK 0
send ACKO
(c) lost ACK (d) premature timeout
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Performance of rdt3.0

7 rdt3.0 works, but performance stinks
3 example: 1 Gbps link, 15 ms e-e prop. delay, 1KB packef:

T - L (packet length in bits) _ 8kb/pkt
transmit ™ R (transmission rate, bps) ~ 10**9 b/sec

= 8 microsec

O U gondert Utilization - fraction of time sender busy sending

= L/R 008 = 0.00027

sender DT 4L /R ~ 30008

O 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link
O network protocol limits use of physical resources!
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rdt3.0: stop-and-wait operation

sender receiver

first packet bit transmitted, t = 0
last packet bit transmitted, t = L / R7

— first packet bit arrives
—last packet bit arrives, send ACK

RTT

ACK arrives, send next] |
packet, t=RTT+L/R

= L/R = 008 = 0.00027

sender DT, L /R 30008

Transport Layer 3-42
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Pipelined protocols

Pipelining: sender allows multiple, “in-flight", yet-to-
be-acknowledged pkts
O range of sequence numbers must be increased
O buffering at sender and/or receiver

data packet—»

<+— ACK packets

(a) a stop-and-wait protocol in operation (b) a pipelined profocol in operation

7 Two generic forms of pipelined protocols: go-Back-N,
selective repeat
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Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0 —fe------ - ooooooe
last bit transmitted, t=L/R

first packet bit arrives

last packet bit arrives, send ACK

last bit of 2" packet arrives, send ACK
last bit of 3™ packet arrives, send ACK

Increase utilization
/ by a factor of 3!

__3*L/R__ 024
sender  prTT.L /R " 30008

= 0.0008

Transport Layer 3-44
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nextseqnu

¢
[l

4+ window size—4

already
ack’'ed

sent, not
yet ack’'ed

yet sent

not usable !
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~p

send pktO
send ki

send pkt?2 \(Bc%ss

send pkt3
(waif)

'

rcv ACKO
send pkf4

rcv ACKI1

send pkt5s \

kt2 timeout
send pkt2
send pkt3
send pkt4
send pkth

rcv pkio
send ACKO

rev pktl
send ACKI1

send

rcv pktd, discards '

send ACK]1

rev pkt2, deliver

send ACK2
rcv pkt3, deliver

send ACK3

24



Selective Repeat

3 receiver individually acknowledges all correctly
received pkts

O buffers pkts, as needed, for eventual in-order delivery
to upper layer

7 sender only resends pkts for which ACK not
received
O sender timer for each unACKed pkt
3 sender window
O N consecutive seq #'s
O again limits seq #s of sent, unACKed pkts

Transport Layer 3-49

Selective repeat: sender, receiver windows

send_base  nextsegnum alreadly Usable. not
¢ i ack’ed yet sent
JODADLEARTRNETTITLOONONND | sovccts oo
t _ window size —2
N

(a) sender view of sequence numbers

out of order acceptable
(buffered) but — § (\yithin window)

ady ack’ed

T e

window size—4
N

rcev_base

(b) receiver view of sequence numbers

Transport Layer 3-50
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Selective repeat: sender, receiver windows

Experiment Applet in
http://media.pearsoncmg.com/aw/
aw_kurose_network_4/applets/SR/index.html
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Selective repeat

—sender — receiver

data from above : ka nin [rcvbase, rcvbase+N-1]
7 if next available seq # in 7 send ACK(n)

window, send pkt 7 out-of-order: buffer
timeout(n): 7 in-order: deliver (also
7 resend pkt n, restart timer deliver buffer‘ed‘, in-order

) pkts), advance window to

ACK(H) In [sendbase,sendbase+N]: next not-yet-received pkt

3 mark pkt n as received

) pk"' nin [revbase-N,rcvbase-1]
A if n smallest unACKed pkt,

advance window base to . ACK(".)
next unACKed seq # otherwise:
7 ighore

Transport Layer 3-52
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Selective repeat in action

pktl sent

0123/456789 Epktﬂ rcvd, delivered, ACKO sent

pktl sent
01234567883

pkt2 sent

0123456789 —mX
(loss)
pkt3 sent, window full

0123456789

ACKO rcvd, pktd sent
0f1 23 4|56 7889

ACK1l rcvd, pktS sent

01(2 3465|6789

— pkt2 TIMEOUT, pkt2 resent

01(2 3465|6789

ACK3 rcvd, nothing sent

01|23465|6789

0[1 23 4(56 789
pktl rcvd, delivered, ACKl1 sent

01[23 456789

pkt3 rcvd, buffered, ACK3 sent

01|23465|6789

pktd4 rcvd, buffered, ACK4 sent
01|23 456 789

pktS rcvd, buffered, ACKS sent

oi[z23 4586789

pkt2 rcvd, pkt2,pkt3, pktd, pkts
delivered, ACK2 sent

0123457889
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Selective repeat:

sender window

(after receipt )

receiver window

(after receipt)

dilemma

Example:
0 seq#'s:0,1,2,3
0 window size=3

O receiver sees ho
difference in two
scenarios!

3 incorrectly passes

duplicate data as new
in (a)

Q: what relationship
between seq # size
and window size?

|O12|301 0-123012
CKO

012301 o1[230]12
CK1

0123012 01213012

timeout
retransmit pktQ,

301 fkto ~———P receive packet

with seq number 0

@

sender window

(after receipt )

012|301

receiver window

(after receipt)

012|301

o123 0] %

receive packet
with seq number O

(b)

Transport Layer 3-54
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Chapter 3 outline

7 3.1 Transport-layer
services

7 3.2 Multiplexing and
demultiplexing

7 3.3 Connectionless
transport: UDP

A 3.4 Principles of
reliable data transfer

A 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management
A 3.6 Principles of
congestion control
3 3.7 TCP congestion
control
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socket
door

TCP: Overview

3 point-to-point:

O ohe sender', one receiver
3 reliable, in-order byte

steam:

O no “message boundaries”
A pipelined:

O TCP congestion and flow

control set window size

7 send & receive buffers

socket
door

RFCs: 793, 1122, 1323, 2018, 2581

3 full duplex data:

O bi-directional data flow
in same connection

O MSS: maximum segment
size
O connection-oriented:

O handshaking (exchange
of control msgs) init's
sender, receiver state
before data exchange

a3 flow controlled:

o sender will not
overwhelm receiver

Transport Layer 3-56
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TCP segment structure

URG: urgent data
(generally not used)™_| source

port #

32 bits

dest port # counting

sequence number

by bytes
of data

ACK: ACK #

owledgement number

val id\\ﬂ\C\kﬂ
head| not
PSH: push data now on tsed

oppRIsE

Receive window

(generally not used)— | ¢

sum

Urg data pnter # bytes

RST, SYN, FIN:— |

Op‘r)'eé (variable length)

connection estab
(setup, teardown
commands)

Internet
checksum
(as in UDP)

application
data
(variable length)

(not segmentsl)

rcvr willing
to accept

Transport Layer 3-57

TCP seq. #'s and ACKs

Seq. #'s:

O byte stream
"number” of first
byte in segment’s
data

ACKs:

O seq # of next byte
expected from
other side

O cumulative ACK

Q: how receiver handles
out-of-order segments
O A: TCP spec doesn't
say, - up to
implementor

Se

host ACKs

receipt

of echoed

c

Se

simple telnet scenario

Transport Layer

9%42, Ack-
K§79’ dal‘a =c
host ACKs

receipt of

i, 332557 €, echoes
o193 A ack 'C
se

time

3-58
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TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?
3 longer than RTT
O but RTT varies
7 too short: premature
timeout
O uhnecessary
retransmissions
A too long: slow reaction
to segment loss

Q: how to estimate RTT?

0 SampleRTT: measured time from
segment transmission until ACK
receipt

O ignore retransmissions

7 SampleRTT will vary, want
estimated RTT "smoother”

O average several recent
measurements, not just
current SampleRTT

Transport Layer 3-59

TCP Round Trip Time and Timeout

EstimatedRTT = (1- a)*EstimatedRTT + a*SampleRTT

 Exponential weighted moving average
3 influence of past sample decreases exponentially fast
3 typical value: a =0.125

Transport Layer 3-60
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Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

350

200 Il 1

——

N
a
S

RTT (milliseconds)

N
o
5}

150

100 T T T T T T T T T T T T T T T
1 8 15 22 29 36 43 50 57 64 7 78 85 92 99 106
time (seconnds)

—&—SampleRTT —=— Estimated RTT

Transport Layer 3-61

TCP Round Trip Time and Timeout

Setting the timeout

7 EstimtedRTT plus "safety margin”
O large variation in EstimatedRTT -> larger safety margin

7 first estimate of how much SampleRTT deviates from
EstimatedRTT:

DevRTT = (1-B)*DevRTT +
p*|SampleRTT-EstimatedRTT |

(typically, B = 0.25)

Then set timeout interval:

TimeoutInterval = EstimatedRTT + 4*DevRTT

Transport Layer 3-62
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Chapter 3 outline

7 3.1 Transport-layer
services

7 3.2 Multiplexing and
demultiplexing

7 3.3 Connectionless
transport: UDP

A 3.4 Principles of
reliable data transfer

3 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
O flow control
O connection management
A 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

Transport Layer 3-63

TCP reliable data transfer

A TCP creates rdt
service on top of IP's
unreliable service

A Pipelined segments
7 Cumulative acks

7 TCP uses single
retransmission timer

7 Retransmissions are
triggered by:
O timeout events
O duplicate acks
3 Initially consider
simplified TCP sender:
O ignore duplicate acks

O ignore flow control,
congestion control

Transport Layer 3-64
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TCP sender events:

data rcvd from app:

3 Create segment with
seq #

7 seq # is byte-stream
number of first data
byte in segment

7 start timer if not
already running (think
of timer as for oldest
unacked segment)

A expiration interval:
TimeOutInterval

timeout:

I retransmit segment
that caused timeout

A restart timer

Ack rcvd:

7 If acknowledges
previously unacked

segments
O update what is known to
be acked
O start timer if there are
outstanding segments

Transport Layer 3-65
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TCP: retransmission scenarios

I
o
7%
—+
>

+«~—— timeout———

Seg=
92, 8 byteg data
_400
poxet®
X

loss
Seg=g
W
_\00
poKS
SendBase
=100
time

lost ACK scenario

Host B@

5

5

£

o

[e)}

%_

v

Sendbase lr

=100 5

SendBase g

=120 =

PN

g

(7]

SendBase n
=120 ;

premature timeout
time
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TCP retransmission scenarios (more)

@ Host A Host B

SendBase
=120

Seq=9
2, 8 bytes data

S24=100, 29

time

~— timeout——
> o
5\ &
\
N
k=)

g

Cumulative ACK scenario
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TCP ACK generation [RFc 1122, RFC 2581]

Event at Receiver

TCP Receiver action

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Immediately send single cumulative
ACK, ACKing both in-order segments

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Arrival of segment that
partially or completely fills gap

Immediate send ACK, provided that
segment startsat lower end of gap

Transport Layer 3-69
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Chapter 3 outline

3 3.1 Transport-layer 3 3.5 Connection-oriented

services

3 3.2 Multiplexing and
demultiplexing

7 3.3 Connectionless
transport: UDP

A 3.4 Principles of
reliable data transfer

transport: TCP

O segment structure

O reliable data transfer
o flow control

O connection management

A 3.6 Principles of

congestion control

3 3.7 TCP congestion

control

Transport Layer 3-72
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TCP Flow Control

flow control
. ) sender won't overflow
7 receive side of TCP receiver's buffer by
connection has a transmitting too much,
receive buffer: too fast

#— RevWindow —|+

0 speed-matching
application . .
— s Service: matching the
, send rate to the
f——— RevBuffer ——— receiving app's drain
rate

data from
P

7 app process may be
slow at reading from
buffer
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TCP Flow control: how it works

JF_ RevWindow —4-

3 Rcvr advertises spare
application - "OOM by including value

data from

¥ e preses of RevWindow in
segments
e 7 Sender limits unACKed
(Suppose TCP receiver data to RevWindow
discards out-of-order o guarantees receive
segments) buffer doesn't overflow
7 spare room in buffer
= RcvWindow
= RcvBuffer-[LastByteRcvd -
LastByteRead]
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Chapter 3 outline

7 3.1 Transport-layer
services

7 3.2 Multiplexing and
demultiplexing

7 3.3 Connectionless
transport: UDP

A 3.4 Principles of
reliable data transfer

7 3.5 Connection-oriented

transport: TCP

O segment structure

O reliable data transfer

o flow control

O connection management
A 3.6 Principles of

congestion control
3 3.7 TCP congestion

control
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TCP Connection Management

Recall: TCP sender, receiver
establish “connection”
before exchanging data
segments

0 initialize TCP variables:

O seq. #s
O buffers, flow control
info (e.g. ReviWindow)

O client: connection initiator

Socket clientSocket = new
Socket ("hostname", "port

number") ;

7 server: contacted by client

Socket connectionSocket =
welcomeSocket.accept() ;

Three way handshake:

Step 1: client host sends TCP
SYN segment to server

O specifies initial seq #
O no data
Step 2: server host receives
SYN, replies with SYNACK
segment
O server allocates buffers

O specifies server initial seq.
#

Step 3: client receives SYNACK,
replies with ACK segment,
which may contain data
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TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close() ;

Step 1: client end system
sends TCP FIN control

segment to server

Step 2: server receives
FIN, replies with ACK.

Closes connection, sends
FIN.

@gkchaﬂ

server@

close
FIN
cK
£ close
e
+
'S ACk
2
o
Q
£
-
closed ™
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TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

o Enters “timed wait" -
will respond with ACK
to received FINs

Step 4: server, receives
ACK. Connection closed.

Note: with small
modification, can handle
simultaneous FINs.

closing

close

ﬂgkchaﬁ

d wait

2 time

pCY

FW

ACk

Fin

\

server@

closing

closed
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. A
client application

initiates a TCP connection
wait 30 seconds

TIME_WAIT SYN_SENT

receive FIN receive SYN & ACK
send ACK send ACK

FIN_WAIT_2 ESTABLISHED

client application

receive ACK initiates close connection

send nothing
receive ACK
send nothing

N
- s

CLOSED server application
creates a listen socket

LAST_ACK

send FIN

receive SYN
send SYN & ACK

v

CLOSE_WAIT SYN_RCVD

receive ACK
send nothing

receive FIN
send ACK

Chapter 3 outline

A 3.1 Transport-layer m)
services

7 3.2 Multiplexing and
demultiplexing

3 3.3 Connectionless
transport: UDP

A 3.4 Principles of
reliable data transfer

O

m

3.5 Connection-oriented
transport: TCP

O segment structure

O reliable data transfer

o flow control

O connection management
3.6 Principles of
congestion control

3.7 TCP congestion
control
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Principles of Congestion Control

Congestion:
3 informally: “too many sources sending oo much
data too fast for network to handle”

7 different from flow control!

7 manifestations:
O lost packets (buffer overflow at routers)

O long delays (queueing in router buffers)
7 a top-10 problem!
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Causes/costs of congestion: scenario 1

HostA Iy
out

/),in . original data
3 two ;ender's, two -~ Y.
receivers

O one router,
infinite buffers

7 no retransmission

unlimited shared
output link buffers

C/2 — - , 7 large delays
. 3 i when congested
©
< 3 maximum
i achievable
C/2 cl2 throughput
7\'ln 7\'in

Transport Layer 3-82

41



Causes/costs of congestion: scenario 2

7 one router, finite buffers
7 sender retransmission of lost packet

Host A A, - original data Aout

I‘, -\, original data, plus
retransmitted data

Host B finite shared output
ry S link buffers
N |
L] (
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Causes/costs of congestion: scenario 2

7 always: A = 7\’out (goodput)
in ,
7 “perfect” retransmission only when loss: ) > A

in ~out,
3 retransmission of delayed (not lost) packet makes xin larger

(than perfect case) for same 7\0u

t

Aout

R/2 R/2

X
a. b. c.
"costs" of congestion:
3 more work (retrans) for given “goodput”

T unneeded retfransmissions: link carries multiple copies of pkt
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Causes/costs of congestion: scenario 3

3 four senders .
: what happens as A\
7 multihop paths @& PP In

and X;nincr'ease ?

O timeout/retransmit

HostA
[ «— N}, : original data, plus
retransmitted data [

_ N, : original data Pou

finite shared output
lipk buffers

Host B

e
I [
!? = [

Transport Layer 3-85

Causes/costs of congestion: scenario 3

C/2-

)\'ouf

;\’I
in
Another “cost"” of congestion:

7 when packet dropped, any “upstream transmission
capacity used for that packet was wasted!
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Approaches towards congestion control

Two broad approaches towards congestion control:

End-end congestion
control:

7 no explicit feedback from
network

7 congestion inferred from
end-system observed loss,
delay

3 approach taken by TCP

Network-assisted
congestion control:

3 routers provide feedback
to end systems

O single bit indicating
congestion (SNA,
DECbit, TCP/IP ECN,
ATM)

O explicit rate sender
should send at
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Chapter 3 outline

A 3.1 Transport-layer
services

7 3.2 Multiplexing and
demultiplexing

3 3.3 Connectionless
transport: UDP

A 3.4 Principles of
reliable data transfer

7 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management
A 3.6 Principles of
congestion control

3 3.7 TCP congestion
control
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TCP congestion control: additive increase,

multiplicative decrease

7 Approach:_increase transmission rate (window size),
probing for usable bandwidth, until loss occurs

O additive increase: increase CongWin by 1 MSS
every RTT until loss detected

O multiplicative decrease: cut CongWin in half after

loss

24 Kbytes —

Saw tooth
behavior: probing
for bandwidth

16 Kbytes —{

8 Kbytes

congestion window size

time

time
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TCP Congestion Control: details

7 sender limits transmission:
LastByteSent-LastByteAcked
= CongWin

3 Roughly,
rate = C—g‘.‘@y Bytes/sec

7 CongWin is dynamic, function
of perceived network
congestion

How does sender
perceive congestion?

A loss event = timeout or
3 duplicate acks

A TCP sender reduces
rate (CongWin) after
loss event

three mechanisms:

o AIMD

O slow start

O conservative after
timeout events
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TCP Slow Start

3 When connection begins, 3 When connection begins,

CongWin = 1 MSS

O Example: MSS = 500
bytes & RTT = 200 msec

O initial rate = 20 kbps
7 available bandwidth may

be >> MSS/RTT

O desirable to quickly ramp
up to respectable rate

increase rate
exponentially fast until
first loss event
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TCP Slow Start (more)

7 When connection
begins, increase rate
exponentially until
first loss event:

O double CongWin every
RTT

O done by incrementing
CongWin for every ACK
received

7 Summary: initial rate
is slow but ramps up
exponentially fast

time
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Refinement

Q: When should the
exponential
increase switch to
linear?

A: When CongWin
gets to 1/2 of its
value before

Transmission round

———————— \

104 / \
_| Threshold f

A

TCP Series 2 Reno

_Eﬁr - Threshold
-
TimeOUT - /TCP Series 1 Tahoe \

Implementation:
3 Variable Threshold

O At loss event, Threshold is
set to 1/2 of CongWin just
before loss event

T T 1 17 1T 17 17 T 1
56 7 8 910111213 1415

Transrrission round
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Refinement: inferring loss

3 After 3 dup ACKs:
O CongWin is cut in half
O window then grows
linearly
7 But after timeout event:
O CongWin instead set to
1 MSS;
O window then grows
exponentially

O to a threshold, then
grows linearly

— Philosophy:

0 3 dup ACKs indicates
network capable of
delivering some segments
Q timeout indicates a
"more alarming”
congestion scenario

Transport Layer 3-96

48



Summary: TCP Congestion Control

7 When CongWin is below Threshold, sender in
slow-start phase, window grows exponentially.

7 When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

7 When a triple duplicate ACK occurs, Threshold
set to CongWin/2 and CongWin set to
Threshold.

7 When timeout occurs, Threshold set to
CongWin/2 and CongWin is set to 1 MSS.
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TCP sender congestion control

State Event TCP Sender Action Commentary
Slow Start ACK receipt | CongWin = CongWin + MSS, Resulting in a doubling of
(SS) for previously | If (CongWin > Threshold) CongWin every RTT
unacked set state to “Congestion
data Avoidance”
Congestion ACK receipt | CongWin = CongWin+MSS * Additive increase, resulting
Avoidance for previously | (MSS/CongWin) in increase of CongWin by
(CA) unacked 1 MSS every RTT
data
SSor CA Loss event Threshold = CongWin/2, Fast recovery,
detected by | CongWin = Threshold, implementing multiplicative
triple Set state to “Congestion decrease. CongWin will not
duplicate Avoidance” drop below 1 MSS.
ACK
SSor CA Timeout Threshold = CongWin/2, Enter slow start
CongWin = 1 MSS,
Set state to “Slow Start”
SSor CA Duplicate Increment duplicate ACK count | CongWin and Threshold not
ACK for segment being acked changed
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TCP throughput

7 What's the average throughout of TCP as a
function of window size and RTT?
O Ignore slow start

A Let W be the window size when loss occurs.
3 When window is W, throughput is W/RTT

7 Just after loss, window drops to W/2,
throughput fo W/2RTT.

7 Average throughout: .75 W/RTT
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