Chapter 3
Transport Layer

A note on the use of these ppt slides:

We’re making these slides freely available to all (faculty, students, readers).
They're in PowerPoint form so you can add, modify, and delete slides
(including this one) and slide content to suit your needs. They obviously
represent a /ot of work on our part. In return for use, we only ask the
following:

O If you use these slides (e.g., in a class) in substantially unaltered form,
that you mention their source (after all, we’d like people to use our book!)
0 If you post any slides in substantially unaltered form on a www site, that
you note that they are adapted from (or perhaps identical to) our slides, and
note our copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2007
J.F Kurose and K.W. Ross, All Rights Reserved

James F. Kurose ¢ Keith W. Ross

Computer Networking:
A Top Down Approach
4th edition.

Jim Kurose, Keith Ross
Addison-Wesley, July
2007.

Transport Layer 3-1

Chapter 3: Transport Layer

Our goals:

7 understand principles O learn about transport

behind transport layer protocols in the

layer services: Internet:

O multiplexing/ O UDP: connectionless
demultiplexing transport

O reliable data transfer O TCP: connection-oriented

o flow control fransport

o congestion control O TCP congestion control

Transport Layer 3-2

Chapter 3 outline

3 3.1 Transport-layer
services

7 3.2 Multiplexing and
demultiplexing

3 3.3 Connectionless
transport: UDP

A 3.4 Principles of
reliable data transfer

7 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management
A 3.6 Principles of
congestion control
3 3.7 TCP congestion
control

Transport Layer 3-3

Transport services and protocols

3 provide logical
communication between app
processes running on
different hosts

3 transport protocols run in end

systems
O send side: breaks app
messages into segments,
passes to network layer
O rcv side: reassembles
segments into messages,
passes to app layer

7 more than one transport
protocol available to apps

O Internet: TCP and UDP

trans~ort
netwdiml

data |i

| ication|

transport

Transport Layer 3-4

Transport vs. network layer

3 network layer: logical
communication
between hosts

3 transport layer:
logical communication
between processes

O relies on, enhances,
network layer services

Household analo

gy:

12 kids sending letters

to 12 kids
7 processes = k

7 app messages = letters

in envelopes
7 hosts = house

7 transport protocol =

Ann and Bill

3 network-layer protocol

ids

S

= postal service

Transport Layer 3-5

Internet transport-layer protocols

3 reliable, in-order
delivery (TCP)
O congestion control
O flow control
O cohnhection setup

7 unreliable, unordered
delivery: UDP
O no-frills extension of
"best-effort" IP
7 services hot available:
O delay guarantees
O bandwidth guarantees

application
ansp @™
networ!

data link
physical

Z

O network
PhY= <IN data link 3‘c
Mhysical

:’é networkNg
&7 | datalink

physical

WOl

N,
data linkN

physical

networl

data link

physical

network

apPplication
anspo

7T
.

(
g
o7 Qﬁ

data link

networ!

physical

data link

+8

physical

Transport Layer 3-6

Chapter 3 outline

3 3.1 Transport-layer 3 3.5 Connection-oriented
services transport: TCP

A 3.2 Multiplexing and © segment sfructure
demultiplexing o reliable data transfer

7 3.3 Connectionless O flow C°"ﬁ“"°'
Tr'qnspor--r; UDP O connection management

7 3.4 Principles of 7 3.6 Principles of

reliable data transfer congestion control
3 3.7 TCP congestion

control

Transport Layer 3-7

Multiplexing/demultiplexing

Demultiplexing at rcv host: Multiplexing at send host:
gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

delivering received segments
to correct socket

[=socket O = process

application g 0 application @ g application
[[]
transport ‘%tms»pﬁ' transport
network nefwork network
link link link
physical phystcal physical
host 1 host 2 host 3

Transport Layer 3-8

How demultiplexing works

O3 host receives IP datagrams
O each datagram has source
IP address, destination IP
address
O each datagram carries 1
transport-layer segment
O each segment has source,
destination port number
3 host uses IP addresses & port
numbers to direct segment to
appropriate socket

+— 32 bits

source port #| dest port #

other header fields

application
data
(message)

TCP/UDP segment format

Transport Layer 3-9

Connectionless demultiplexing

7 Create sockets with port
numbers:

DatagramSocket mySocketl = new

DatagramSocket (12534) ;

DatagramSocket mySocket2 = new

DatagramSocket (12535) ;

7 UDP socket identified by
two-tuple:
(dest IP address, dest port number)

7 When host receives UDP
segment:
O checks destination port
number in segment
O directs UDP segment to
socket with that port
number
3 IP datagrams with
different source IP
addresses and/or source
port numbers directed
to same socket

Transport Layer 3-10

Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket (6428);

SP: 6428 SP: 6428
DP: 9157 DP: 5775

SP: 9157 SP: 5775

client |DP: 6428 server DP: 6428 Client

IP: A IP: C IP:B

SP provides "return address”

Transport Layer 3-11

Connection-oriented demux

7 TCP socket identified 7 Server host may support

by 4-tuple: many simultaneous TCP
o source IP address sockets:
O source port number O each socket identified by
o dest IP address its own 4-tuple
o dest port number 7 Web servers have
7 recv host uses all four different sockets for
values to direct each connecting client
segment to appropriate O non-persistent HTTP will
socket have different socket for

each request

Transport Layer 3-12

Connection-oriented demux

(cont)

P4O(P5OCP6

SP: 9157

SP: 5775

DP: 80
S-IP: B

D-IP:C

4

client | DP: 80

IP: A S-IP: A

D-IP:C

server
IP: C

SP: 9157

DP: 80

S-IP: B

D-IP:C

Client
IP:B

Transport Layer 3-13

Connection-oriented demux:

Threaded Web Server

SP: 9157

client | DP:80
IP: A S-IP: A
D-IP:C

Z
SP: 5775
DP: 80
S-IP: B
D-IP:C
A
SP: 9157
server OP: 80 Client
IP: C S-IP: B IP:B
D-IP:C

Transport Layer 3-14

Chapter 3 outline

3 3.1 Transport-layer 3 3.5 Connection-oriented
services transport: TCP

A 3.2 Multiplexing and © segment sfructure
demultiplexing o reliable data transfer

A 3.3 Connectionless o flow control
transport: UDP O connection management

A 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

A 3.4 Principles of
reliable data transfer

Transport Layer 3-15

UDP: User Datagram Protocol [RFC 768]

7 “no frills," “bare bones"
Internet transport Why is there a UDP?
‘;‘;rofocol o 7 no connection
7 “best effort” service, UDP establishment (which can
segments may be: add delay)
O lost 7 simple: no connection state
O delivered out of order at sender, receiver
to app 7 small segment header
3 connectionless: 7 no congestion control: UDP
O no handshaking between can blast away as fast as
UDP sender, receiver desired
O each UDP segment

handled independently
of others

Transport Layer 3-16

UDP: more

7 often used for streaming
multimedia apps

O loss folerant Length, in | Source port #| dest port #

O rate sensitive bytes of UDP [length checksum
segment,
3 other UDP uses including
o DNS header

O SNMP

3 reliable transfer over UDP:
add reliability at
application layer

O application-specific
error recovery!

+— 32 bits

Application
data
(message)

UDP segment format

Transport Layer 3-17

UDP checksum

Goal: detect "errors” (e.g., flipped bits) in transmitted

segment

Sender: Receiver:

O treat segment contents as m
sequence of 16-bit
integers 0
1 checksum: addition (1's
complement sum) of
segment contents
7 sender puts checksum

value into UDP checksum
field

compute checksum of
received segment

check if computed checksum
equals checksum field value:
O NO - error detected
O YES - no error detected.

But maybe errors
nonetheless? More later

Transport Layer 3-18

Internet Checksum Example

7 Note

O When adding numbers, a carryout from the
most significant bit needs to be added to the

result

3 Example: add two 16-bit integers

11100110011 00110
110101010101 0101

wraparound @ 101110111011 1011
sum 1011101110111 100
checksum 0100010001 000O011

Transport Layer 3-19

Chapter 3 outline

A 3.1 Transport-layer
services

7 3.2 Multiplexing and
demultiplexing

3 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

0

3.5 Connection-oriented
transport: TCP

O segment structure

O reliable data transfer

o flow control

O connection management
3.6 Principles of
congestion control

3.7 TCP congestion
control

Transport Layer 3-20

Principles of Reliable data transfer

3 important in app., transport, link layers
3 top-10 list of important networking topics!

c
O

=

g 0

oD
8 = rocess process
S [cata] [data]

15 (Jreliable channel

G 2

=

(a) provided service

3 characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-21

Principles of Reliable data transfer

3 important in app., fransport, link layers
3 top-10 list of important networking topics!

c

O

-

[ORNO)

5 ED
% == rocess process
¢
-6 (Jreliable channel
Qe

C O

G 2

=

L{ Eunreliqble chonnel’i

(a) provided service (b) service implementation

O characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-22

11

Principles of Reliable data transfer

3 important in app., transport, link layers
3 top-10 list of important networking topics!

c

O

=

g 0

oD
8 = rocess process
o}

15 (Jreliable channel

G 2

=

(a) provided service

rdt_send() '

relioble data
II

transfer protoco
(sending side)

deliver datal()

reliable data
fransfer protocol
(receiving side)

udt_send 0} rdt_rev()

L{ iunrelioble chonnel’i

(b) service implementation

3 characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-23

Reliable data transfer: getting started

rdt_send() : called from above,
(e.g.. by app.). Passed data to
deliver to receiver upper layer

deliver data() : called by
rdt to deliver data to upper

rdt_send()

|dc|k:| |

reliable data
fransfer protocol
(sending side)

send
side

[gata |Tdel iver data()

relicble data receive
transfer protocol
(receiving side)

side

udt_send ()] [pockel]

[packet | Irdt rev(

T—u()unrelicible channel)J

udt_send () : called by rdt,
to transfer packet over

rdt_rcv () : called when packet
arrives on rcv-side of channel

unreliable channel to receiver

Transport Layer 3-24

12

Reliable data transfer: getting started

we'll:

3 incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

7 consider only unidirectional data transfer
O but control info will flow on both directions!

7 use finite state machines (FSM) to specify

sender, receiver
event causing state transition

actions taken on state transition

state: when in this
"state” next state
uniquely determined
by next event

Transport Layer 3-25

Rdt1.0: reliable transfer over a reliable channel

3 underlying channel perfectly reliable
O no bit errors
O no loss of packets
7 separate FSMs for sender, receiver:
O sender sends data into underlying channel
O receiver read data from underlying channel

rdt_rcv(packet)

extract (packet,data)
deliver_data(data)

rdt_send(data)

packet = make_pkt(data)
udt_send(packet)

sender receiver

Transport Layer 3-26

13

14

15

16

17

18

rdt3.0: channels with errors and loss

New assumption:
underlying channel can
also lose packets (data
or ACKs)

O checksum, seq. #, ACKs,
retransmissions will be
of help, but not enough

Approach: sender waits

“reasonable” amount of
time for ACK

retransmits if no ACK
received in this time
if pkt (or ACK) just delayed
(hot lost):
O retransmission will be
duplicate, but use of seq.
#'s already handles this

O receiver must specify seq
of pkt being ACKed

requires countdown timer

Transport Layer 3-37

19

rd+3.0 in action

sender receiver
pkt
send pki0 0 v pkio
send ACKO

ACK
rcv ACKO
send pkt1 \@m\‘
rcv pktl
ACK send ACK1
rcVvACK

send pkt0 kg
rcv pkto
}’ send ACKO

sender receiver
pkt
send pki0 0 v pKiO
ACK send ACKO

rcv ACKO

send pki] \%
(loss)
fimeout
resend pkt1 %’
rcy pkil
send ACK1

ACK
rcvACK1 W
send pktO
() operation with no loss ACK rev pkiQ
/e/ send ACKO
(b) lost packet
Transport Layer 3-39
sender receiver sender receiver
pkt Kt
AP0 T——0 | rovpKo send Pk ——0_ | rev pkio
ACK send ACKO ACK send ACKO
rcv ACKO rcv ACKO
send pkil kT] send pkil
rcv pkﬂC rcv pktl
ACK send ACK1 send ACK1
(Ioss) X/
fimeout
fimeout okt 1 resend pki1
resend pktl \rcv okt) rcv pktl ‘
ACK (defect duplicate) rcvACK1 (detfect duplicate)
ACKI send ACK1 send pkio send ACKI
o oki0 Kt rcv pkio
rev pkio send ACKO
ACK V Pl ACK 0
send ACKO
(c) lost ACK (d) premature timeout

Transport Layer 3-40

20

Performance of rdt3.0

7 rdt3.0 works, but performance stinks
3 example: 1 Gbps link, 15 ms e-e prop. delay, 1KB packef:

T - L (packet length in bits) _ 8kb/pkt
transmit ™ R (transmission rate, bps) ~ 10**9 b/sec

= 8 microsec

O U gondert Utilization - fraction of time sender busy sending

= L/R 008 = 0.00027

sender DT 4L /R ~ 30008

O 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link
O network protocol limits use of physical resources!

Transport Layer 3-41

rdt3.0: stop-and-wait operation

sender receiver

first packet bit transmitted, t = 0
last packet bit transmitted, t = L / R7

— first packet bit arrives
—last packet bit arrives, send ACK

RTT

ACK arrives, send next] |
packet, t=RTT+L/R

= L/R = 008 = 0.00027

sender DT, L /R 30008

Transport Layer 3-42

21

Pipelined protocols

Pipelining: sender allows multiple, “in-flight", yet-to-
be-acknowledged pkts
O range of sequence numbers must be increased
O buffering at sender and/or receiver

data packet—»

<+— ACK packets

(a) a stop-and-wait protocol in operation (b) a pipelined profocol in operation

7 Two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-43

Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0 —fe------ - ooooooe
last bit transmitted, t=L/R

first packet bit arrives

last packet bit arrives, send ACK

last bit of 2" packet arrives, send ACK
last bit of 3™ packet arrives, send ACK

Increase utilization
/ by a factor of 3!

__3*L/R__ 024
sender prTT.L /R " 30008

= 0.0008

Transport Layer 3-44

22

nextseqnu

¢
[l

4+ window size—4

already
ack’'ed

sent, not
yet ack’'ed

yet sent

not usable !

23

~p

send pktO
send ki

send pkt?2 \(Bc%ss

send pkt3
(waif)

'

rcv ACKO
send pkf4

rcv ACKI1

send pkt5s \

kt2 timeout
send pkt2
send pkt3
send pkt4
send pkth

rcv pkio
send ACKO

rev pktl
send ACKI1

send

rcv pktd, discards '

send ACK]1

rev pkt2, deliver

send ACK2
rcv pkt3, deliver

send ACK3

24

Selective Repeat

3 receiver individually acknowledges all correctly
received pkts

O buffers pkts, as needed, for eventual in-order delivery
to upper layer

7 sender only resends pkts for which ACK not
received
O sender timer for each unACKed pkt
3 sender window
O N consecutive seq #'s
O again limits seq #s of sent, unACKed pkts

Transport Layer 3-49

Selective repeat: sender, receiver windows

send_base nextsegnum alreadly Usable. not
¢ i ack’ed yet sent
JODADLEARTRNETTITLOONONND | sovccts oo
t _ window size —2
N

(a) sender view of sequence numbers

out of order acceptable
(buffered) but — § (\yithin window)

ady ack’ed

T e

window size—4
N

rcev_base

(b) receiver view of sequence numbers

Transport Layer 3-50

25

Selective repeat: sender, receiver windows

Experiment Applet in
http://media.pearsoncmg.com/aw/
aw_kurose_network_4/applets/SR/index.html

Transport Layer 3-51

Selective repeat

—sender — receiver

data from above : ka nin [rcvbase, rcvbase+N-1]
7 if next available seq # in 7 send ACK(n)

window, send pkt 7 out-of-order: buffer
timeout(n): 7 in-order: deliver (also
7 resend pkt n, restart timer deliver buffer‘ed‘, in-order

) pkts), advance window to

ACK(H) In [sendbase,sendbase+N]: next not-yet-received pkt

3 mark pkt n as received

) pk"' nin [revbase-N,rcvbase-1]
A if n smallest unACKed pkt,

advance window base to . ACK(".)
next unACKed seq # otherwise:
7 ighore

Transport Layer 3-52

26

Selective repeat in action

pktl sent

0123/456789 Epktﬂ rcvd, delivered, ACKO sent

pktl sent
01234567883

pkt2 sent

0123456789 —mX
(loss)
pkt3 sent, window full

0123456789

ACKO rcvd, pktd sent
0f1 23 4|56 7889

ACK1l rcvd, pktS sent

01(2 3465|6789

— pkt2 TIMEOUT, pkt2 resent

01(2 3465|6789

ACK3 rcvd, nothing sent

01|23465|6789

0[1 23 4(56 789
pktl rcvd, delivered, ACKl1 sent

01[23 456789

pkt3 rcvd, buffered, ACK3 sent

01|23465|6789

pktd4 rcvd, buffered, ACK4 sent
01|23 456 789

pktS rcvd, buffered, ACKS sent

oi[z23 4586789

pkt2 rcvd, pkt2,pkt3, pktd, pkts
delivered, ACK2 sent

0123457889

rt Layer 3-53

Selective repeat:

sender window

(after receipt)

receiver window

(after receipt)

dilemma

Example:
0 seq#'s:0,1,2,3
0 window size=3

O receiver sees ho
difference in two
scenarios!

3 incorrectly passes

duplicate data as new
in (a)

Q: what relationship
between seq # size
and window size?

|O12|301 0-123012
CKO

012301 o1[230]12
CK1

0123012 01213012

timeout
retransmit pktQ,

301 fkto ~———P receive packet

with seq number 0

@

sender window

(after receipt)

012|301

receiver window

(after receipt)

012|301

o123 0] %

receive packet
with seq number O

(b)

Transport Layer 3-54

27

Chapter 3 outline

7 3.1 Transport-layer
services

7 3.2 Multiplexing and
demultiplexing

7 3.3 Connectionless
transport: UDP

A 3.4 Principles of
reliable data transfer

A 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management
A 3.6 Principles of
congestion control
3 3.7 TCP congestion
control

Transport Layer 3-55

socket
door

TCP: Overview

3 point-to-point:

O ohe sender', one receiver
3 reliable, in-order byte

steam:

O no “message boundaries”
A pipelined:

O TCP congestion and flow

control set window size

7 send & receive buffers

socket
door

RFCs: 793, 1122, 1323, 2018, 2581

3 full duplex data:

O bi-directional data flow
in same connection

O MSS: maximum segment
size
O connection-oriented:

O handshaking (exchange
of control msgs) init's
sender, receiver state
before data exchange

a3 flow controlled:

o sender will not
overwhelm receiver

Transport Layer 3-56

28

TCP segment structure

URG: urgent data
(generally not used)™_| source

port #

32 bits

dest port # counting

sequence number

by bytes
of data

ACK: ACK #

owledgement number

val id\\ﬂ\C\kﬂ
head| not
PSH: push data now on tsed

oppRIsE

Receive window

(generally not used)— | ¢

sum

Urg data pnter # bytes

RST, SYN, FIN:— |

Op‘r)'eé (variable length)

connection estab
(setup, teardown
commands)

Internet
checksum
(as in UDP)

application
data
(variable length)

(not segmentsl)

rcvr willing
to accept

Transport Layer 3-57

TCP seq. #'s and ACKs

Seq. #'s:

O byte stream
"number” of first
byte in segment’s
data

ACKs:

O seq # of next byte
expected from
other side

O cumulative ACK

Q: how receiver handles
out-of-order segments
O A: TCP spec doesn't
say, - up to
implementor

Se

host ACKs

receipt

of echoed

c

Se

simple telnet scenario

Transport Layer

9%42, Ack-
K§79’ dal‘a =c
host ACKs

receipt of

i, 332557 €, echoes
o193 A ack 'C
se

time

3-58

29

TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?
3 longer than RTT
O but RTT varies
7 too short: premature
timeout
O uhnecessary
retransmissions
A too long: slow reaction
to segment loss

Q: how to estimate RTT?

0 SampleRTT: measured time from
segment transmission until ACK
receipt

O ignore retransmissions

7 SampleRTT will vary, want
estimated RTT "smoother”

O average several recent
measurements, not just
current SampleRTT

Transport Layer 3-59

TCP Round Trip Time and Timeout

EstimatedRTT = (1- a)*EstimatedRTT + a*SampleRTT

 Exponential weighted moving average
3 influence of past sample decreases exponentially fast
3 typical value: a =0.125

Transport Layer 3-60

30

Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

350

200 Il 1

——

N
a
S

RTT (milliseconds)

N
o
5}

150

100 T T T T T T T T T T T T T T T
1 8 15 22 29 36 43 50 57 64 7 78 85 92 99 106
time (seconnds)

—&—SampleRTT —=— Estimated RTT

Transport Layer 3-61

TCP Round Trip Time and Timeout

Setting the timeout

7 EstimtedRTT plus "safety margin”
O large variation in EstimatedRTT -> larger safety margin

7 first estimate of how much SampleRTT deviates from
EstimatedRTT:

DevRTT = (1-B)*DevRTT +
p*|SampleRTT-EstimatedRTT |

(typically, B = 0.25)

Then set timeout interval:

TimeoutInterval = EstimatedRTT + 4*DevRTT

Transport Layer 3-62

31

Chapter 3 outline

7 3.1 Transport-layer
services

7 3.2 Multiplexing and
demultiplexing

7 3.3 Connectionless
transport: UDP

A 3.4 Principles of
reliable data transfer

3 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
O flow control
O connection management
A 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

Transport Layer 3-63

TCP reliable data transfer

A TCP creates rdt
service on top of IP's
unreliable service

A Pipelined segments
7 Cumulative acks

7 TCP uses single
retransmission timer

7 Retransmissions are
triggered by:
O timeout events
O duplicate acks
3 Initially consider
simplified TCP sender:
O ignore duplicate acks

O ignore flow control,
congestion control

Transport Layer 3-64

32

TCP sender events:

data rcvd from app:

3 Create segment with
seq #

7 seq # is byte-stream
number of first data
byte in segment

7 start timer if not
already running (think
of timer as for oldest
unacked segment)

A expiration interval:
TimeOutInterval

timeout:

I retransmit segment
that caused timeout

A restart timer

Ack rcvd:

7 If acknowledges
previously unacked

segments
O update what is known to
be acked
O start timer if there are
outstanding segments

Transport Layer 3-65

33

TCP: retransmission scenarios

I
o
7%
—+
>

+«~—— timeout———

Seg=
92, 8 byteg data
_400
poxet®
X

loss
Seg=g
W
_\00
poKS
SendBase
=100
time

lost ACK scenario

Host B@

5

5

£

o

[e)}

%_

v

Sendbase lr

=100 5

SendBase g

=120 =

PN

g

(7]

SendBase n
=120 ;

premature timeout
time

Transport Layer 3-67

TCP retransmission scenarios (more)

@ Host A Host B

SendBase
=120

Seq=9
2, 8 bytes data

S24=100, 29

time

~— timeout——
> o
5\ &
\
N
k=)

g

Cumulative ACK scenario

Transport Layer 3-68

34

TCP ACK generation [RFc 1122, RFC 2581]

Event at Receiver

TCP Receiver action

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Immediately send single cumulative
ACK, ACKing both in-order segments

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Arrival of segment that
partially or completely fills gap

Immediate send ACK, provided that
segment startsat lower end of gap

Transport Layer 3-69

35

Chapter 3 outline

3 3.1 Transport-layer 3 3.5 Connection-oriented

services

3 3.2 Multiplexing and
demultiplexing

7 3.3 Connectionless
transport: UDP

A 3.4 Principles of
reliable data transfer

transport: TCP

O segment structure

O reliable data transfer
o flow control

O connection management

A 3.6 Principles of

congestion control

3 3.7 TCP congestion

control

Transport Layer 3-72

36

TCP Flow Control

flow control
.) sender won't overflow
7 receive side of TCP receiver's buffer by
connection has a transmitting too much,
receive buffer: too fast

#— RevWindow —|+

0 speed-matching
application . .
— s Service: matching the
, send rate to the
f——— RevBuffer ——— receiving app's drain
rate

data from
P

7 app process may be
slow at reading from
buffer

Transport Layer 3-73

TCP Flow control: how it works

JF_ RevWindow —4-

3 Rcvr advertises spare
application - "OOM by including value

data from

¥ e preses of RevWindow in
segments
e 7 Sender limits unACKed
(Suppose TCP receiver data to RevWindow
discards out-of-order o guarantees receive
segments) buffer doesn't overflow
7 spare room in buffer
= RcvWindow
= RcvBuffer-[LastByteRcvd -
LastByteRead]

Transport Layer 3-74

37

Chapter 3 outline

7 3.1 Transport-layer
services

7 3.2 Multiplexing and
demultiplexing

7 3.3 Connectionless
transport: UDP

A 3.4 Principles of
reliable data transfer

7 3.5 Connection-oriented

transport: TCP

O segment structure

O reliable data transfer

o flow control

O connection management
A 3.6 Principles of

congestion control
3 3.7 TCP congestion

control

Transport Layer 3-75

TCP Connection Management

Recall: TCP sender, receiver
establish “connection”
before exchanging data
segments

0 initialize TCP variables:

O seq. #s
O buffers, flow control
info (e.g. ReviWindow)

O client: connection initiator

Socket clientSocket = new
Socket ("hostname", "port

number") ;

7 server: contacted by client

Socket connectionSocket =
welcomeSocket.accept() ;

Three way handshake:

Step 1: client host sends TCP
SYN segment to server

O specifies initial seq #
O no data
Step 2: server host receives
SYN, replies with SYNACK
segment
O server allocates buffers

O specifies server initial seq.
#

Step 3: client receives SYNACK,
replies with ACK segment,
which may contain data

Transport Layer 3-76

38

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close() ;

Step 1: client end system
sends TCP FIN control

segment to server

Step 2: server receives
FIN, replies with ACK.

Closes connection, sends
FIN.

@gkchaﬂ

server@

close
FIN
cK
£ close
e
+
'S ACk
2
o
Q
£
-
closed ™

Transport Layer 3-77

TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

o Enters “timed wait" -
will respond with ACK
to received FINs

Step 4: server, receives
ACK. Connection closed.

Note: with small
modification, can handle
simultaneous FINs.

closing

close

ﬂgkchaﬁ

d wait

2 time

pCY

FW

ACk

Fin

\

server@

closing

closed

Transport Layer 3-78

39

. A
client application

initiates a TCP connection
wait 30 seconds

TIME_WAIT SYN_SENT

receive FIN receive SYN & ACK
send ACK send ACK

FIN_WAIT_2 ESTABLISHED

client application

receive ACK initiates close connection

send nothing
receive ACK
send nothing

N
- s

CLOSED server application
creates a listen socket

LAST_ACK

send FIN

receive SYN
send SYN & ACK

v

CLOSE_WAIT SYN_RCVD

receive ACK
send nothing

receive FIN
send ACK

Chapter 3 outline

A 3.1 Transport-layer m)
services

7 3.2 Multiplexing and
demultiplexing

3 3.3 Connectionless
transport: UDP

A 3.4 Principles of
reliable data transfer

O

m

3.5 Connection-oriented
transport: TCP

O segment structure

O reliable data transfer

o flow control

O connection management
3.6 Principles of
congestion control

3.7 TCP congestion
control

Transport Layer 3-80

40

Principles of Congestion Control

Congestion:
3 informally: “too many sources sending oo much
data too fast for network to handle”

7 different from flow control!

7 manifestations:
O lost packets (buffer overflow at routers)

O long delays (queueing in router buffers)
7 a top-10 problem!

Transport Layer 3-81

Causes/costs of congestion: scenario 1

HostA Iy
out

/),in . original data
3 two ;ender's, two -~ Y.
receivers

O one router,
infinite buffers

7 no retransmission

unlimited shared
output link buffers

C/2 — - , 7 large delays
. 3 i when congested
©
< 3 maximum
i achievable
C/2 cl2 throughput
7\'ln 7\'in

Transport Layer 3-82

41

Causes/costs of congestion: scenario 2

7 one router, finite buffers
7 sender retransmission of lost packet

Host A A, - original data Aout

I‘, -\, original data, plus
retransmitted data

Host B finite shared output
ry S link buffers
N |
L] (

Transport Layer 3-83

Causes/costs of congestion: scenario 2

7 always: A = 7\’out (goodput)
in ,
7 “perfect” retransmission only when loss:) > A

in ~out,
3 retransmission of delayed (not lost) packet makes xin larger

(than perfect case) for same 7\0u

t

Aout

R/2 R/2

X
a. b. c.
"costs" of congestion:
3 more work (retrans) for given “goodput”

T unneeded retfransmissions: link carries multiple copies of pkt
Transport Layer 3-84

42

Causes/costs of congestion: scenario 3

3 four senders .
: what happens as A\
7 multihop paths @& PP In

and X;nincr'ease ?

O timeout/retransmit

HostA
[«— N}, : original data, plus
retransmitted data [

_ N, : original data Pou

finite shared output
lipk buffers

Host B

e
I [
!? = [

Transport Layer 3-85

Causes/costs of congestion: scenario 3

C/2-

)\'ouf

;\’I
in
Another “cost"” of congestion:

7 when packet dropped, any “upstream transmission
capacity used for that packet was wasted!

Transport Layer 3-86

43

Approaches towards congestion control

Two broad approaches towards congestion control:

End-end congestion
control:

7 no explicit feedback from
network

7 congestion inferred from
end-system observed loss,
delay

3 approach taken by TCP

Network-assisted
congestion control:

3 routers provide feedback
to end systems

O single bit indicating
congestion (SNA,
DECbit, TCP/IP ECN,
ATM)

O explicit rate sender
should send at

Transport Layer 3-87

44

\\‘l

\ - \\"l
) A S \'\-{i‘?g“ \., M ,.u. \.-w.
o

\iﬁ’g\""' B ‘1\
X NG
v e,

RM cells

,,\5‘}‘*

I] data cells

Switch

Switch

T A

AL Bl o q(\< g = S
B Bt ‘*\'{“ &e“‘!'{“ -a'* 3‘1“\'{“ o
“v “ - I Y [1€

e
.s\g
'\ég 'g*‘: .\\

r’@-’&‘\‘ﬁ‘ »

'\\
SLRROLS
r’@-’&“

Chapter 3 outline

A 3.1 Transport-layer
services

7 3.2 Multiplexing and
demultiplexing

3 3.3 Connectionless
transport: UDP

A 3.4 Principles of
reliable data transfer

7 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management
A 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

Transport Layer 3-90

45

TCP congestion control: additive increase,

multiplicative decrease

7 Approach:_increase transmission rate (window size),
probing for usable bandwidth, until loss occurs

O additive increase: increase CongWin by 1 MSS
every RTT until loss detected

O multiplicative decrease: cut CongWin in half after

loss

24 Kbytes —

Saw tooth
behavior: probing
for bandwidth

16 Kbytes —{

8 Kbytes

congestion window size

time

time

Transport Layer 3-91

TCP Congestion Control: details

7 sender limits transmission:
LastByteSent-LastByteAcked
= CongWin

3 Roughly,
rate = C—g‘.‘@y Bytes/sec

7 CongWin is dynamic, function
of perceived network
congestion

How does sender
perceive congestion?

A loss event = timeout or
3 duplicate acks

A TCP sender reduces
rate (CongWin) after
loss event

three mechanisms:

o AIMD

O slow start

O conservative after
timeout events

Transport Layer 3-92

46

TCP Slow Start

3 When connection begins, 3 When connection begins,

CongWin = 1 MSS

O Example: MSS = 500
bytes & RTT = 200 msec

O initial rate = 20 kbps
7 available bandwidth may

be >> MSS/RTT

O desirable to quickly ramp
up to respectable rate

increase rate
exponentially fast until
first loss event

Transport Layer 3-93

TCP Slow Start (more)

7 When connection
begins, increase rate
exponentially until
first loss event:

O double CongWin every
RTT

O done by incrementing
CongWin for every ACK
received

7 Summary: initial rate
is slow but ramps up
exponentially fast

time

Transport Layer 3-94

47

Refinement

Q: When should the
exponential
increase switch to
linear?

A: When CongWin
gets to 1/2 of its
value before

Transmission round

———————— \

104 / \
_| Threshold f

A

TCP Series 2 Reno

_Eﬁr - Threshold
-
TimeOUT - /TCP Series 1 Tahoe \

Implementation:
3 Variable Threshold

O At loss event, Threshold is
set to 1/2 of CongWin just
before loss event

T T 1 17 1T 17 17 T 1
56 7 8 910111213 1415

Transrrission round

Transport Layer 3-95

Refinement: inferring loss

3 After 3 dup ACKs:
O CongWin is cut in half
O window then grows
linearly
7 But after timeout event:
O CongWin instead set to
1 MSS;
O window then grows
exponentially

O to a threshold, then
grows linearly

— Philosophy:

0 3 dup ACKs indicates
network capable of
delivering some segments
Q timeout indicates a
"more alarming”
congestion scenario

Transport Layer 3-96

48

Summary: TCP Congestion Control

7 When CongWin is below Threshold, sender in
slow-start phase, window grows exponentially.

7 When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

7 When a triple duplicate ACK occurs, Threshold
set to CongWin/2 and CongWin set to
Threshold.

7 When timeout occurs, Threshold set to
CongWin/2 and CongWin is set to 1 MSS.

Transport Layer 3-97

TCP sender congestion control

State Event TCP Sender Action Commentary
Slow Start ACK receipt | CongWin = CongWin + MSS, Resulting in a doubling of
(SS) for previously | If (CongWin > Threshold) CongWin every RTT
unacked set state to “Congestion
data Avoidance”
Congestion ACK receipt | CongWin = CongWin+MSS * Additive increase, resulting
Avoidance for previously | (MSS/CongWin) in increase of CongWin by
(CA) unacked 1 MSS every RTT
data
SSor CA Loss event Threshold = CongWin/2, Fast recovery,
detected by | CongWin = Threshold, implementing multiplicative
triple Set state to “Congestion decrease. CongWin will not
duplicate Avoidance” drop below 1 MSS.
ACK
SSor CA Timeout Threshold = CongWin/2, Enter slow start
CongWin = 1 MSS,
Set state to “Slow Start”
SSor CA Duplicate Increment duplicate ACK count | CongWin and Threshold not
ACK for segment being acked changed

Transport Layer 3-98

49

TCP throughput

7 What's the average throughout of TCP as a
function of window size and RTT?
O Ignore slow start

A Let W be the window size when loss occurs.
3 When window is W, throughput is W/RTT

7 Just after loss, window drops to W/2,
throughput fo W/2RTT.

7 Average throughout: .75 W/RTT

Transport Layer 3-99

50

51

52

