
1

2: Application Layer 81

Chapter 2: Application layer

❒  2.1 Principles of
network applications
  app architectures
  app requirements

❒  2.2 Web and HTTP
❒  2.4 Electronic Mail

  SMTP, POP3, IMAP
❒  2.5 DNS

❒  2.6 P2P file sharing
❒  2.7 Socket programming

with TCP
❒  2.8 Socket programming

with UDP
❒  2.9 Building a Web

server

2: Application Layer 82

P2P file sharing

Example
❒  Alice runs P2P client

application on her
notebook computer

❒  intermittently
connects to Internet;
gets new IP address
for each connection

❒  asks for “Hey Jude”
❒  application displays

other peers that have
copy of Hey Jude.

❒  Alice chooses one of
the peers, Bob.

❒  file is copied from
Bob’s PC to Alice’s
notebook: HTTP

❒  while Alice downloads,
other users uploading
from Alice.

❒  Alice’s peer is both a
Web client and a
transient Web server.

All peers are servers =
highly scalable!

2

2: Application Layer 83

P2P: centralized directory

original “Napster” design
1) when peer connects, it

informs central server:
  IP address
  content

2) Alice queries for “Hey
Jude”

3) Alice requests file from
Bob

centralized
directory server

peers

Alice

Bob

1

1

1

1 2

3

2: Application Layer 84

P2P: problems with centralized directory

❒  single point of failure
❒  performance bottleneck
❒  copyright infringement:

“target” of lawsuit is
obvious

 file transfer is
decentralized, but
locating content is
highly centralized

3

2: Application Layer 85

Query flooding: Gnutella

❒  fully distributed
  no central server

❒  public domain protocol
❒  many Gnutella clients

implementing protocol

overlay network: graph
❒  edge between peer X

and Y if there’s a TCP
connection

❒  all active peers and
edges form overlay net

❒  edge: virtual (not
physical) link

❒  given peer typically
connected with < 10
overlay neighbors

2: Application Layer 86

Gnutella: protocol

Query

QueryHit

Query

QueryHit

File transfer:
HTTP ❒  Query message

sent over existing TCP
connections
❒  peers forward
Query message
❒  QueryHit
sent over
reverse
path

Scalability:
limited scope
flooding

4

2: Application Layer 87

Gnutella: Peer joining

1.  joining peer Alice must find another peer in
Gnutella network: use list of candidate peers

2.  Alice sequentially attempts TCP connections with
candidate peers until connection setup with Bob

3.  Flooding: Alice sends Ping message to Bob; Bob
forwards Ping message to his overlay neighbors
(who then forward to their neighbors….)
❒  peers receiving Ping message respond to Alice

with Pong message
4.  Alice receives many Pong messages, and can then

setup additional TCP connections
Peer leaving: see homework problem!

2: Application Layer 88

Hierarchical Overlay

❒  between centralized
index, query flooding
approaches

❒  each peer is either a
group leader or assigned
to a group leader.
  TCP connection between

peer and its group leader.
  TCP connections between

some pairs of group leaders.
❒  group leader tracks

content in its children

5

2: Application Layer 89

Comparing Client-server, P2P architectures
Question : How much time distribute file

initially at one server to N other computers?

us

u2 d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

File, size F

us: server upload
bandwidth
ui: client/peer i
upload bandwidth

di: client/peer i
download bandwidth

2: Application Layer 90

Client-server: file distribution time

us

u2 d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

F
❒ server sequentially

sends N copies:
 NF/us time

❒ client i takes F/di
time to download

increases linearly in N
(for large N)

= dcs = max { NF/us, F/min(di) } i

Time to distribute F
to N clients using

client/server approach

6

2: Application Layer 91

P2P: file distribution time

us

u2 d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

F
❒  server must send one

copy: F/us time
❒  client i takes F/di time

to download
❒  NF bits must be

downloaded (aggregate)
❒  fastest possible upload rate (assuming

all nodes sending file chunks to same
peer): us + Σui i=1,N

dP2P = max { F/us, F/min(di) , NF/(us + Σui) } i i=1,N

2: Application Layer 92

Comparing Client-server, P2P architectures

7

2: Application Layer 93

P2P Case Study: BitTorrent

tracker: tracks peers
participating in torrent

torrent: group of
peers exchanging
chunks of a file

obtain list
of peers

trading
chunks

peer

❒  P2P file distribution

2: Application Layer 94

BitTorrent (1)
❒  file divided into 256KB chunks.
❒  peer joining torrent:

 has no chunks, but will accumulate them over time
 registers with tracker to get list of peers,

connects to subset of peers (“neighbors”)
❒  while downloading, peer uploads chunks to other

peers.
❒  peers may come and go
❒  once peer has entire file, it may (selfishly) leave or

(altruistically) remain

8

2: Application Layer 95

BitTorrent (2)
Pulling Chunks
❒  at any given time,

different peers have
different subsets of
file chunks

❒  periodically, a peer
(Alice) asks each
neighbor for list of
chunks that they have.

❒  Alice issues requests
for her missing chunks
 rarest first

Sending Chunks: tit-for-tat
❒  Alice sends chunks to

four neighbors currently
sending her chunks at
the highest rate
 re-evaluate top 4

every 10 secs
❒  every 30 secs: randomly

select another peer,
starts sending chunks
 newly chosen peer may

join top 4

2: Application Layer 96

P2P Case study: Skype

❒  P2P (pc-to-pc, pc-to-
phone, phone-to-pc)
Voice-Over-IP (VoIP)
application
 also IM

❒  proprietary
application-layer
protocol (inferred via
reverse engineering)

❒  hierarchical overlay

Skype clients (SC)

Supernode
(SN)

Skype
login server

9

2: Application Layer 97

Skype: making a call

❒  User starts Skype

Skype
login server

❒  SC registers with SN
  list of bootstrap SNs

❒  SC logs in
(authenticate)

❒  Call: SC contacts SN will
callee ID
  SN contacts other SNs

(unknown protocol, maybe
flooding) to find addr of
callee; returns addr to SC

❒  SC directly contacts callee, overTCP

2: Application Layer 98

Chapter 2: Application layer

❒  2.1 Principles of
network applications

❒  2.2 Web and HTTP
❒  2.3 FTP
❒  2.4 Electronic Mail

  SMTP, POP3, IMAP
❒  2.5 DNS

❒  2.6 P2P file sharing
❒  2.7 Socket programming

with TCP
❒  2.8 Socket programming

with UDP

10

2: Application Layer 99

Socket programming

Socket API
❒  introduced in BSD4.1 UNIX,

1981
❒  explicitly created, used,

released by apps
❒  client/server paradigm
❒  two types of transport

service via socket API:
  unreliable datagram
  reliable, byte stream-

oriented

a host-local,
application-created,

OS-controlled interface
(a “door”) into which

application process can
both send and

receive messages to/from
another application

process

socket

Goal: learn how to build client/server application that
communicate using sockets

2: Application Layer 100

Socket-programming using TCP
Socket: a door between application process and end-

end-transport protocol (UCP or TCP)
TCP service: reliable transfer of bytes from one

process to another

process

TCP with
buffers,
variables

socket

controlled by
application
developer

controlled by
operating

system

host or
server

process

TCP with
buffers,
variables

socket

controlled by
application
developer
controlled by
operating
system

host or
server

internet

11

2: Application Layer 101

Socket programming with TCP
Client must contact server
❒  server process must first

be running
❒  server must have created

socket (door) that
welcomes client’s contact

Client contacts server by:
❒  creating client-local TCP

socket
❒  specifying IP address, port

number of server process
❒  When client creates

socket: client TCP
establishes connection to
server TCP

❒  When contacted by client,
server TCP creates new
socket for server process to
communicate with client
  allows server to talk with

multiple clients
  source port numbers

used to distinguish
clients (more in Chap 3)

TCP provides reliable, in-order
 transfer of bytes (“pipe”)
between client and server

application viewpoint

2: Application Layer 102

Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
welcomeSocket.accept()

create socket,
port=x, for
incoming request:
welcomeSocket =

ServerSocket()
create socket,
connect to hostid, port=x
clientSocket =

Socket()

close
connectionSocket

read reply from
clientSocket
close
clientSocket

Server (running on hostid) Client

send request using
clientSocket read request from

connectionSocket
write reply to
connectionSocket

TCP
connection setup

12

2: Application Layer 103

Client
process

client TCP
socket

Stream jargon
❒  A stream is a sequence of

characters that flow into
or out of a process.

❒  An input stream is
attached to some input
source for the process,
e.g., keyboard or socket.

❒  An output stream is
attached to an output
source, e.g., monitor or
socket.

2: Application Layer 104

Socket programming with TCP
Example client-server app:
1) client reads line from

standard input (inFromUser
stream) , sends to server via
socket (outToServer
stream)

2) server reads line from socket
3) server converts line to

uppercase, sends back to
client

4) client reads, prints modified
line from socket
(inFromServer stream)

13

2: Application Layer 105

Example: Java client (TCP)
import java.io.*;
import java.net.*;
class TCPClient {

 public static void main(String argv[]) throws Exception
 {
 String sentence;
 String modifiedSentence;

 BufferedReader inFromUser =
 new BufferedReader(new InputStreamReader(System.in));

 Socket clientSocket = new Socket("hostname", 6789);

 DataOutputStream outToServer =
 new DataOutputStream(clientSocket.getOutputStream());

Create
input stream

Create
client socket,

connect to server
Create

output stream
attached to socket

2: Application Layer 106

Example: Java client (TCP), cont.

 BufferedReader inFromServer =
 new BufferedReader(new
 InputStreamReader(clientSocket.getInputStream()));

 sentence = inFromUser.readLine();

 outToServer.writeBytes(sentence + '\n');

 modifiedSentence = inFromServer.readLine();

 System.out.println("FROM SERVER: " + modifiedSentence);

 clientSocket.close();

 }
}

Create
input stream

attached to socket

Send line
to server

Read line
from server

14

2: Application Layer 107

Example: Java server (TCP)
import java.io.*;
import java.net.*;

class TCPServer {

 public static void main(String argv[]) throws Exception
 {
 String clientSentence;
 String capitalizedSentence;

 ServerSocket welcomeSocket = new ServerSocket(6789);

 while(true) {

 Socket connectionSocket = welcomeSocket.accept();

 BufferedReader inFromClient =
 new BufferedReader(new
 InputStreamReader(connectionSocket.getInputStream()));

Create
welcoming socket

at port 6789

Wait, on welcoming
socket for contact

by client

Create input
stream, attached

to socket

2: Application Layer 108

Example: Java server (TCP), cont

 DataOutputStream outToClient =
 new DataOutputStream(connectionSocket.getOutputStream());

 clientSentence = inFromClient.readLine();

 capitalizedSentence = clientSentence.toUpperCase() + '\n';

 outToClient.writeBytes(capitalizedSentence);
 }
 }
}

Read in line
from socket

Create output
stream, attached

to socket

Write out line
to socket

End of while loop,
loop back and wait for
another client connection

15

2: Application Layer 109

Chapter 2: Application layer

❒  2.1 Principles of
network applications

❒  2.2 Web and HTTP
❒  2.3 FTP
❒  2.4 Electronic Mail

  SMTP, POP3, IMAP
❒  2.5 DNS

❒  2.6 P2P file sharing
❒  2.7 Socket programming

with TCP
❒  2.8 Socket programming

with UDP
❒  2.9 Building a Web

server

2: Application Layer 110

Socket programming with UDP

UDP: no “connection” between
client and server

❒  no handshaking
❒  sender explicitly attaches

IP address and port of
destination to each packet

❒  server must extract IP
address, port of sender
from received packet

UDP: transmitted data may be
received out of order, or
lost

application viewpoint

UDP provides unreliable transfer
 of groups of bytes (“datagrams”)

 between client and server

16

2: Application Layer 111

Client/server socket interaction: UDP

close
clientSocket

Server (running on hostid)

read reply from
clientSocket

create socket, clientSocket =
DatagramSocket()

Client

Create, address (hostid, port=x,
send datagram request
using clientSocket

create socket,
port=x, for
incoming request:
serverSocket =
DatagramSocket()

read request from
serverSocket

write reply to
serverSocket
specifying client
host address,
port number

2: Application Layer 112

Example: Java client (UDP)

Output: sends
packet (recall
that TCP sent
“byte stream”)

Input: receives
packet (recall
thatTCP received
“byte stream”)

Client
process

client UDP
socket

17

2: Application Layer 113

Example: Java client (UDP)
import java.io.*;
import java.net.*;

class UDPClient {
 public static void main(String args[]) throws Exception
 {

 BufferedReader inFromUser =
 new BufferedReader(new InputStreamReader(System.in));

 DatagramSocket clientSocket = new DatagramSocket();

 InetAddress IPAddress = InetAddress.getByName("hostname");

 byte[] sendData = new byte[1024];
 byte[] receiveData = new byte[1024];

 String sentence = inFromUser.readLine();

 sendData = sentence.getBytes();

Create
input stream

Create
client socket

Translate
 hostname to IP

address using DNS

2: Application Layer 114

Example: Java client (UDP), cont.

 DatagramPacket sendPacket =
 new DatagramPacket(sendData, sendData.length, IPAddress, 9876);

 clientSocket.send(sendPacket);

 DatagramPacket receivePacket =
 new DatagramPacket(receiveData, receiveData.length);

 clientSocket.receive(receivePacket);

 String modifiedSentence =
 new String(receivePacket.getData());

 System.out.println("FROM SERVER:" + modifiedSentence);
 clientSocket.close();
 }

}

Create datagram
with data-to-send,

length, IP addr, port
Send datagram

to server

Read datagram
from server

18

2: Application Layer 115

Example: Java server (UDP)

import java.io.*;
import java.net.*;

class UDPServer {
 public static void main(String args[]) throws Exception
 {

 DatagramSocket serverSocket = new DatagramSocket(9876);

 byte[] receiveData = new byte[1024];
 byte[] sendData = new byte[1024];

 while(true)
 {

 DatagramPacket receivePacket =
 new DatagramPacket(receiveData, receiveData.length);

 serverSocket.receive(receivePacket);

Create
datagram socket

at port 9876

Create space for
received datagram

Receive
datagram

2: Application Layer 116

Example: Java server (UDP), cont
 String sentence = new String(receivePacket.getData());

 InetAddress IPAddress = receivePacket.getAddress();

 int port = receivePacket.getPort();

 String capitalizedSentence = sentence.toUpperCase();

 sendData = capitalizedSentence.getBytes();

 DatagramPacket sendPacket =
 new DatagramPacket(sendData, sendData.length, IPAddress,
 port);

 serverSocket.send(sendPacket);
 }
 }

}

Get IP addr
port #, of

sender

Write out
datagram
to socket

End of while loop,
loop back and wait for
another datagram

Create datagram
to send to client

19

2: Application Layer 117

Chapter 2: Summary

❒  application architectures
  client-server
  P2P
  hybrid

❒  application service
requirements:
  reliability, bandwidth,

delay
❒  Internet transport

service model
  connection-oriented,

reliable: TCP
  unreliable, datagrams: UDP

our study of network apps now complete!
❒  specific protocols:

  HTTP
  FTP
  SMTP, POP, IMAP
  DNS
  P2P: BitTorrent, Skype

❒  socket programming

2: Application Layer 118

Chapter 2: Summary

❒  typical request/reply
message exchange:
  client requests info or

service
  server responds with

data, status code
❒  message formats:

  headers: fields giving
info about data

  data: info being
communicated

Most importantly: learned about protocols

Important themes:
❒  control vs. data msgs

 in-band, out-of-band
❒  centralized vs.

decentralized
❒  stateless vs. stateful
❒  reliable vs. unreliable

msg transfer
❒  “complexity at network

edge”

