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Abstract

In the current healthcare panorama, clinical solid waste management is a poorly
regarded matter both in developed and underdeveloped countries, in the sense
that some serious gaps are still in need of amendment. Due to the potencial haz-
ards arising from the adoption of inadequate strategies, there is an urgent need
to develop tools capable of improving the performance of the clinical solid waste
classification process in particular. An artificial intelligence-driven approach
for dealing with this issue is analysed and developed based on the portuguese
clinical solid waste classification system.
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1. Introduction

As defined by the Medical Waste Tracking Act of 1988, clinical solid waste consist of
solid waste materials which are generated during diagnosis, treatment, vaccination, research
or in the production or testing of biological products for humans and animals, including
syringes, live vaccines, blood and other waste contaminated with bodily fluids and removed
body organs, among others. This class of waste is now recognized as a potencially hazardous
agent affecting both the environment and the human being, due to the labor intensive op-
erations entailed in its collection, segregation and disposal, which involve many possibilities
of direct contact with the waste and therefore increase the risk of infections for healthcare
workers, the general public and waste handlers in particular [1, 2]. Focusing on the lat-
ter, poor management practices and improper precautions taken by clinical waste workers
during these operations are quoted as being the main reason of the spread of infectious
diseases among clinical waste handlers [3, 4], which raises the additional need for adequate
risk management strategies ensuring assessment, control, review and identification of risk.
Nevertheless, several studies [5, 3, 6, 4] indicate that the clinical solid waste management at
healthcare facilities is still inadequate in developed countries and that, in many situations,
this class of waste is handled and disposed together with non-clinical waste. Given this sce-
nario, the development of strategies for the definition of the best appropriate clinical waste
management practice towards the minimization of occupational incidents and environmental



contamination is of great importance. One of the main concerns still requiring addressing
is the lack of awareness of both healthcare and clinical waste workers in what regards waste
differential classification [1].

Taking into consideration the urgent need to bridge and amend these gaps, the present
study aims at analysing and developing an artificial intelligence-driven approach for dealing
with the judgement difficulties that arise from the waste classification process, especially in
environments with defective information, based on the approach presented by Neves et. al
in [7] and selectively focusing on the clinical waste management situation in Portugal.

2. Case Study

In Portugal, the management of clinical solid waste is regulated by law, and its legal
constraints are defined within the Portuguese Legislative Decree no. 178/2006 - September
5th [8]. Particularly, this document provides a classification system for clinical solid waste
based on four distinct criteria – typology, danger, production site and treatment required
[9] –, which allow for a clear assortment of waste samples in four main classes (Figure 1),
based on their specific combination of criteria specifications.

Figure 1: Portuguese classification system for clinical solid waste.

According to the classification criteria aforementioned, a database model was constructed
(Figure 3), comprising a primary table and three secondary tables which refer to the analysed
cases (Figure 2) and each of the considered criteria, respectively.

Figure 2: Description of the cases analysed in the study.
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Figure 3: Database model (vide Appendix A for an extensive description of each acronym used.
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2.1. Knowledge Representation and Reasoning

In regular Logic Programming (LP), the negative information is implicit – in other
words, it is not possible to explicity state falsity and propositions are assumed false if
there is no reason to believe otherwise. However, explicit negative information plays an
important role in natural discourse and commonsense reasoning, and so, for use in deductive
databases, knowledge representation and non-monotonic reasoning, a second kind of negation
is included, giving rise to the Extended Logic Programming (ELP) paradigm [10]. An
extended logic program is a finite set of clauses in the form:

q Ð q1^ pn not q1 ^ . . .^ not qm

?p1 ^ . . .^ pn^ not q1 ^ . . .^ not pm (n,m ě 0)

where ? is a domain denoting falsity, pi, qj and q represent classical ground literals
– either positive atoms or atoms preceeded by the classical negation sign [11]. In this
representation formalism, every program is associated with a set of abducibles [12, 13],
given here in the form of exceptions to the extensions of the predicates that compose the
program.

In order to reason about the body of knowledge presented through the analysed cases,
the relations defined in the database model were first rewritten in terms of the following
predicates:

waste: ID_WS x Class x ID_SR x ID_TY x ID_CT

source: ID_SR x GS x SS x WS x HS x LS x MS

type: ID_TY x GP x FW x CP x OM x DP x OM x IP x MW x NB x SW x IB x MD x CH x AC x CO

contamination: ID_CT x BL x OF x IA x CA

Subsequently, the extension of the predicates was set in the form of four programs.
Program 1 encloses the closure of the predicate waste and the declaration of each of the
analysed cases, three of which refer to incomplete knowledge. With regard to the latter,
different rules where created in order to address not only the unknown knowledge represented
by the null value (K), but also the imprecise knowledge for both disjoint and not disjoint sets
of abducibles, since in this particular universe of discourse an instance of waste can have
multiple values for contamination but can only be associated with one value of source.
Programs 2 through 4 are of less complex construction and define exclusively the closure of
the predicates and the declaration of the possible combination of criteria specification, as
the respective predicates do not contemplate any cases of incompleteness.
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Program 1 Extended logic program for the predicate waste.

{
 waste (ID WS, CL, ID SR, ID TY, ID CT) Ð

not(waste (ID WS, CL, ID SR, ID TY, ID CT)),

not(abduciblewaste (ID WS, CL, ID SR, ID TY, ID CT)).

waste(1,C,6,1,1).

waste(2,C,4,2,5).

waste(3,C,6,4,5).

waste(4,C,3,6,{2,3}).
waste(5,C,{5,6},3,4).
waste(6,C,K,1,5).

abduciblewaste (4, C, 3, 6, 2).

abduciblewaste (4, C, 3, 6, 3).

abduciblewaste (5, C, 5, 3, 4).

abduciblewaste (5, C, 6, 3, 4).

?((abduciblewaste (ID WS, CL, ID SR1, ID TY, ID CT)

_

abduciblewaste (ID WS, CL, ID SR2, ID TY, ID CT))

^

 (abduciblewaste (ID WS, CL, ID SR1, ID TY, ID CT)

^

abduciblewaste (ID WS, CL, ID SR2, ID TY, ID CT)))

abduciblewaste (6, C, K, 1, 5).

abduciblewaste (ID WS, CL, ID SR, ID TY, ID CT) Ð waste (ID WS, CL, K, ID TY, ID CT).

}

Program 2 Extended logic program for the predicate source.

{
 source (ID SR, GS, SS, WS, HS, LS, MS) Ð

not(source (ID SR, GS, SS, WS, HS, LS, MS)),

not(abduciblesource (ID SR, GS, SS, WS, HS, LS, MS)).

source(1,1,0,0,0,0,0).

source(2,0,1,0,0,0,0).

source(3,0,0,1,0,0,0).

source(4,0,0,0,1,0,0).

source(5,0,0,0,0,1,0).

source(6,0,0,0,0,0,1).

}

Program 3 Extended logic program for the predicate type.

{
 type (ID TY, GP,FW, CP, OM, DP, IP, MW, NB, SW, IB, MD, CH, AC, CO) Ð
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not(type (ID TY, GP,OM, DP, FW, IP, CP, MW, IB, NB, SW, MD, CH, AC, CO)),

not(abducibletype (ID TY, GP,OM, DP, FW, IP, CP, MW, IB, NB, SW, MD, CH, AC, CO)).

type(1,1,0,0,0,0,0,0,0,0,0,0,0,0,0).

type(2,0,1,0,0,0,0,0,0,0,0,0,0,0,0).

type(3,0,0,1,0,0,0,0,0,0,0,0,0,0,0).

type(4,0,0,0,1,0,0,0,0,0,0,0,0,0,0).

type(5,0,0,0,0,1,0,0,0,0,0,0,0,0,0).

. . .
type(10,0,0,0,0,0,0,0,0,0,1,0,0,0,0).

type(11,0,0,0,0,0,0,0,0,0,0,1,0,0,0).

type(12,0,0,0,0,0,0,0,0,0,0,0,1,0,0).

type(13,0,0,0,0,0,0,0,0,0,0,0,0,1,0).

type(14,0,0,0,0,0,0,0,0,0,0,0,0,0,1).

}

Program 4 Extended logic program for the predicate contamination.

{
 contamination (ID CT , BL, OF, IA, CA) Ð

not(contamination (ID CT , BL, OF, IA, CA),

not(abduciblecontamination (ID CT , BL, OF, IA, CA)).

contamination(1,1,0,0,0).

contamination(2,0,1,0,0).

contamination(3,0,0,1,0).

contamination(4,0,0,0,1).

contamination(5,0,0,0,0).

. . .
contamination(12,1,1,1,0).

contamination(13,1,0,1,1).

contamination(14,0,1,1,1).

contamination(15,1,1,0,1).

contamination(16,1,1,1,1).

}

The following step consisted of defining the set of rules and actions that support the
framework of the classification process, considering the specific combinations of criteria that
characterize each of the four classes of waste.

Class 1

[waste (ID, Class, SR, TY, CT), SR ă 3, TY ă 3, CT “ 5]

Ó

[retract(waste(ID, Class, SR, TY, CT)), assert(waste(ID, C1, SR, TY, CT))].
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Class 2

[waste (ID, Class, SR, TY, CT), SR “ 6, 2 ă TY ă 7, CT “ 5]

Ó

[retract(waste(ID, Class, SR, TY, CT)), assert(waste(ID, C2, SR, TY, CT))].

Class 3

[waste (ID, Class, SR, TY, CT), SR ą 2, 3 ă TY ă 10, CT ă 4]

Ó

[retract(waste(ID, Class, SR, TY, CT)), assert(waste(ID, C3, SR, TY, CT))].

Class 4

[waste (ID, Class, SR, TY, CT), SR ą 4, TY ą 9, CT “ 4]

Ó

[retract(waste(ID, Class, SR, TY, CT)), assert(waste(ID, C4, SR, TY, CT))].

Stopping Condition

[waste (ID, Class, SR, TY, CT)] Ñ [print(Class),stop].

After running the analysed cases through the aforepresented set, the resulting knowledge
resembles that represented in Figure 4.

Figure 4: Analysed cases after the classification process.
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2.2. Quality-of-Information and Degree-of-Confidence

Since the present study aims at developing an approach which could ultimately offer
user support in decision-making processes, it is important not only to address the choice
of an adequate knowledge representation and reasoning paradigm but also to consider a
means to assess the qualitative aspects of the information, especially when dealing with
cases of incomplete knowledge. A measure of these qualitative aspects – the quality-of-
information (QoI) – within logic programs has been object of some work with promising
results [14, 15, 16]. With respect to the extension of a predicate i, the QoI [13] is given
by a truth-value in the interval [0,1], depending on the extent to which the information is
available: if it is known, regardless of being positive or negative, the truth value is 1; if it is
unknown, the truth value is 0, according to the formula presented in (1), where N denotes
the cardinality of the set of terms or clauses of the extension of predicate i that stand for
the incompleteness considered.

QoIi “ lim
NÑ8

1

N
“ 0 (1)

For situations where the extension of predicate i is unknown but can be taken from a
set of values, the QoI calculation method depends upon the characteristics of the abducible
set under consideration. Thus, formulas (2) and (3) are alternatively used for disjoint and
not disjoint abducible sets, respectively, where X denotes the cardinality of the abducible
set for i whereas CX

X stands for a card-combination subset with X elements.

QoIi “
1

X
(2)

QoIi “
1

CX
1 ` CX

2 ` . . .` CX
X

(3)

Taking this new variable into consideration, and including an additional variable which
denotes one’s confidence in a particular term of the extension of predicate i – the degree-
of-confidence (DoC) –, the closures of predicates previously declared in the extended logic
programs were rewritten as follows:

Program 1 Rewritten closure of the predicate waste.

 waste(QoI, ID, CL, SR, TY, CT, DoC) Ð

not(waste(QoI, ID, CL, SR, TY, CT, DoC)),

not(abduciblewaste(QoI, ID, CL, SR, TY, CT, DoC)).

Program 2 Rewritten closure of the predicate source.

 source(QoI, ID, GS, SS, WS, HS, LS, MS, DoC) Ð
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not(source(QoI, ID, GS, SS, WS, HS, LS, MS, DoC)),

not(abduciblesource(QoI, ID, GS, SS, WS, HS, LS, MS, DoC)).

Program 3 Rewritten closure of the predicate type.

 type(QoI, ID, GP, FW, CP, OM, DP, IP, MW, NB, SW, IB, MD, CH, AC, CO, DoC) Ð

not(type(QoI, ID, GP, FW, CP, OM, DP, IP, MW, NB, SW, IB, MD, CH, AC, CO, DoC)),

not(abducibletype(QoI, ID, GP, FW, CP, OM, DP, IP, MW, NB, SW, IB, MD, CH, AC, CO,

DoC)).

Program 4 Rewritten closure of the predicate contamination.

 contamination(QoI, ID, BL, OF, IA, CA, DoC) Ð

not(contamination(QoI, ID, BL, OF, IA, CA, DoC)),

not(abduciblecontamination(QoI, ID, BL, OF, IA, CA, DoC)).

Considering that the values of all the criteria specifications are known, the values of
both QoI and DoC for every possible combination of the predicates source, type and
contamination amount to 1. However, since the case study presented encloses situations
of incomplete knowledge, the resulting six scenarios have, in some cases, a value for the
mentioned parameters inferior to 1 or equal to 0, whenever the information is imprecise or
unknown, respectively.

Scenario 1
waste(1, 1, C4, 6, 1, 1, 1).

waste(1, 2, C1, 4, 2, 5, 1).

waste(1, 3, C2, 6, 4, 5, 1).

abduciblewaste(0.33, 4, C3, 3, 6, 2, 0.87).

abduciblewaste(0.5, 5, C4, 5, 3, 4, 0.9).

abduciblewaste(0, 6, C1, K, 1, 5, 0.8).

Scenario 2
waste(1, 1, C4, 6, 1, 1, 1).

waste(1, 2, C1, 4, 2, 5, 1).

waste(1, 3, C2, 6, 4, 5, 1).

abduciblewaste(0.33, 4, C3, 3, 6, 3, 0.87).

abduciblewaste(0.5, 5, C4, 5, 3, 4, 0.9).

abduciblewaste(0, 6, C1, K, 1, 5, 0.8).
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Scenario 3
waste(1, 1, C4, 6, 1, 1, 1).

waste(1, 2, C1, 4, 2, 5, 1).

waste(1, 3, C2, 6, 4, 5, 1).

abduciblewaste(0.17, 4, C3, 3, 6, 2, 0.834).

abduciblewaste(0.17, 4, C3, 3, 6, 3, 0.834).

abduciblewaste(0.5, 5, C4, 5, 3, 4, 0.9).

abduciblewaste(0, 6, C1, K, 1, 5, 0.8).

Scenario 4
waste(1, 1, C4, 6, 1, 1, 1).

waste(1, 2, C1, 4, 2, 5, 1).

waste(1, 3, C2, 6, 4, 5, 1).

abduciblewaste(0.33, 4, C3, 3, 6, 2, 0.834).

abduciblewaste(0.5, 5, C4, 6, 3, 4, 0.9).

abduciblewaste(0, 6, C1, K, 1, 5, 0.8).

Scenario 5
waste(1, 1, C4, 6, 1, 1, 1).

waste(1, 2, C1, 4, 2, 5, 1).

waste(1, 3, C2, 6, 4, 5, 1).

abduciblewaste(0.33, 4, C3, 3, 6, 3, 0.834).

abduciblewaste(0.5, 5, C4, 6, 3, 4, 0.9).

abduciblewaste(0, 6, C1, K, 1, 5, 0.8).

Scenario 6
waste(1, 1, C4, 6, 1, 1, 1).

waste(1, 2, C1, 4, 2, 5, 1).

waste(1, 3, C2, 6, 4, 5, 1).

abduciblewaste(0.17, 4, C3, 3, 6, 2, 0.834).

abduciblewaste(0.17, 4, C3, 3, 6, 3, 0.834).

abduciblewaste(0.5, 5, C4, 6, 3, 4, 0.9).

abduciblewaste(0, 6, C1, K, 1, 5, 0.8).

Based on the values of QoI obtained, two charts were constructed (Figure 5) in order to
depict the qualitative characterization of each of the criteria specifications associated with
incompleteness, namely the source of waste sample ID WS=5 and the contamination of waste
sample ID WS=4.
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Figure 5: Charts depicting the quality-of-information for A) the source of waste sample ID=5 and B) the
contamination of waste sample ID=4.

Thus far, the value of the DoC was computed considering that all of the criteria were
equally weighted, according to the formula presented in (4).

DoC “
Σ QoIpxiq

i terms
(4)

DoC “
Σ pwi ˆQoIpxiqq

i terms
(5)

However, in a more realistic scenario, each of the different criteria may influence the
classification in a comparatively distinctive way, in which case the weights will not be equally
distributed. Regardless of not having any proof that some criteria may overpower the
remainder, in this particular case study, contamination was ascribed a weight of 0.4, in the
alternative approach to the computation of the DoC described in (5), due to the fact that,
during the process of classification, classes C1 and C2 are instantly ruled out in case a waste
sample is associated with some degree of contamination. As a result, the scenarios where
rewritten using the newly computed DoC as follows:

Scenario 1 Rewritten scenario for the normalized weighting approach.

waste(1, 1, C4, 6, 1, 1, 1).

waste(1, 2, C1, 4, 2, 5, 1).

waste(1, 3, C2, 6, 4, 5, 1).
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abduciblewaste(0.33, 4, C3, 3, 6, 2, 0.732).

abduciblewaste(0.5, 5, C4, 5, 3, 4, 0.925).

abduciblewaste(0, 6, C1, K, 1, 5, 0.85).

Scenario 2 Rewritten scenario for the normalized weighting approach.

waste(1, 1, C4, 6, 1, 1, 1).

waste(1, 2, C1, 4, 2, 5, 1).

waste(1, 3, C2, 6, 4, 5, 1).

abduciblewaste(0.33, 4, C3, 3, 6, 3, 0.732).

abduciblewaste(0.5, 5, C4, 5, 3, 4, 0.925).

abduciblewaste(0, 6, C1, K, 1, 5, 0.85).

Scenario 3 Rewritten scenario for the normalized weighting approach.

waste(1, 1, C4, 6, 1, 1, 1).

waste(1, 2, C1, 4, 2, 5, 1).

waste(1, 3, C2, 6, 4, 5, 1).

abduciblewaste(0.17, 4, C3, 3, 6, 2, 0.668).

abduciblewaste(0.17, 4, C3, 3, 6, 3, 0.668).

abduciblewaste(0.5, 5, C4, 5, 3, 4, 0.925).

abduciblewaste(0, 6, C1, K, 1, 5, 0.85).

Scenario 4 Rewritten scenario for the normalized weighting approach.

waste(1, 1, C4, 6, 1, 1, 1).

waste(1, 2, C1, 4, 2, 5, 1).

waste(1, 3, C2, 6, 4, 5, 1).

abduciblewaste(0.33, 4, C3, 3, 6, 2, 0.732).

abduciblewaste(0.5, 5, C4, 6, 3, 4, 0.925).

abduciblewaste(0, 6, C1, K, 1, 5, 0.85).

Scenario 5 Rewritten scenario for the normalized weighting approach.

waste(1, 1, C4, 6, 1, 1, 1).

waste(1, 2, C1, 4, 2, 5, 1).

waste(1, 3, C2, 6, 4, 5, 1).

abduciblewaste(0.33, 4, C3, 3, 6, 3, 0.732).
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abduciblewaste(0.5, 5, C4, 6, 3, 4, 0.925).

abduciblewaste(0, 6, C1, K, 1, 5, 0.85).

Scenario 6 Rewritten scenario for the normalized weighting approach.

waste(1, 1, C4, 6, 1, 1, 1).

waste(1, 2, C1, 4, 2, 5, 1).

waste(1, 3, C2, 6, 4, 5, 1).

abduciblewaste(0.17, 4, C3, 3, 6, 2, 0.668).

abduciblewaste(0.17, 4, C3, 3, 6, 3, 0.668).

abduciblewaste(0.5, 5, C4, 6, 3, 4, 0.925).

abduciblewaste(0, 6, C1, K, 1, 5, 0.85).

The differences between both computation approaches are illustrated in Figure 6, which
reports solely to Scenario 1 as a means of exemplification. There is a significant disparity
in the values of DoC obtained for the waste sample ID WS=4 – a pair of medical gloves used
in waste handling associated with a set of not disjoint abducibles. When the contamination
value is imprecise, as is the case, the DoC value drops comparatively to the unweighted
computation due to the fact that this criterion has the heaviest weight and a QoI value
inferior to 1.

Figure 6: Chart depicting the DoC value for both the situations when the criteria are equally weighted and
when the contamination criterion is given a comparatively heavier weight of 0.4. The considered values
refer to the two different versions obtained for Scenario 1.
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3. Conclusions

Despite being of fundamental importance, clinical solid waste management is a poorly
regarded matter within healthcare organizations, nowadays, in the sense that some seri-
ous gaps – mainly associated with a generalized lack of awareness – are still in need of
amendment. Due to the potencial hazards arising from the adoption of inadequate strate-
gies, there is an urgent need to develop tools capable of improving the performance of the
clinical solid waste classification process and, as a consequence, reducing the human error
associated with judgement difficulties in differential classification. In this study, an artifi-
cial intelligence-driven approach for dealing with this problem was analysed and developed
based on the portuguese classification system. Concerning the fitting of the descriptive rep-
resentation of the aforementioned system to a database model, some specificity had to be
compromised in order to get a clear and objective representation.

In what regards knowledge representation and reasoning, the selected paradigm allows for
an adequate treatment of cases enclosing incomplete knowledge and can easily be combined
with both quality-of-information and degree-of-confidence quantification, which provide a
means to assess qualitative aspects of the information under consideration. The computation
of the degree-of-confidence was addressed in two distinctive ways, considering the initially
formulated situation of equally weighted criteria and a more realistic situation in which the
one of the criteria was given a comparatively heavier weight. The values obtained suggest
that the normalized wheighting approach provides a more reliable depiction of the degree-
of-confidence. Ultimately, this approach results in a set of possible classification scenarios
strengthened with a measure of the confidence with which each one is associated, providing
an hypothetic user with a solid decision making auxiliary support, and is intended to serve
as a base for future work, namely the adaptation of the proposed model to a neural network
representation modeling a decision support system, for instance. However, some additional
regard would have to be considered concerning the criteria specifications, since there is a
considerably large amount of plausible situations that are not envisioned in the current
portuguese clinical solid waste classification system.
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Appendix A.

The complete description of each of the acronyms used to describe the terms involved
in the specifications of the clinical solid waste classification criteria is given below (Figure
A.7).

Figure A.7: Acronyms used to describe each of the terms involved in the specifications of the clinical solid
waste classification criteria.


