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Abstract. Morphological covariance, one of the most frequently em-
ployed texture analysis tools offered by mathematical morphology, ma-
kes use of the sum of pixel values, i.e. “volume” of its input. In this
paper, we investigate the potential of alternative measures to volume,
and extend the work of Wilkinson (ICPR’02) in order to obtain a new
covariance operator, more sensitive to spatial details, namely the spatial

covariance. The classification experiments are conducted on the publicly
available Outex 14 texture database, where the proposed operator leads
not only to higher classification scores than standard covariance, but also
to the best results reported so far for this database when combined with
an adequate illumination invariance model.

Keywords. Morphological covariance, spatial moments, colour texture
classification.

1 Introduction

Since the early days of digital image processing, several methods have been
proposed with the end of obtaining a discriminant description of the plethora
of available texture types. Mathematical morphology in particular has provided
a variety of efficient operators, and notably covariance and granulometry, that
have been employed successfully in a number of texture analysis applications
[1, 2]. Indeed, morphological covariance is a powerful tool, capable of extracting
information on the coarseness, anisotropy as well as periodicity of texture based
data. From an implementational point of view, erosions by a pair of points form
the basis of this operator. The image “volume”, i.e. sum of pixel values, for
increasing distances between the points, provides the sought feature vector.

The efficiency of morphological covariance as a feature extraction tool, un-
less the spatial arrangement of a pattern is random, depends strongly on the
orientation of the chosen pair of points. To illustrate this idea, figure 1 presents
three spatially distinct but otherwise identical texture images. Since the three
textures differ only along their vertical axis, the covariance plot obtained with
the classical definition of the operator using a pair of horizontal points provides
the same result for all three of them. The conventional way of countering this
problem is to either employ a suitable orientation for the structuring elements

ha
l-0

05
16

08
5,

 v
er

si
on

 1
 - 

8 
Se

p 
20

10
Author manuscript, published in "International Workshop on Multimedia Content Representation, Classification and Security

(IWMRCS), Turkey (2006)"
 DOI : 10.1007/11848035_69

http://dx.doi.org/10.1007/11848035_69
http://hal.archives-ouvertes.fr/hal-00516085/fr/
http://hal.archives-ouvertes.fr


1) 2) 3)
 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50

N
or

m
al

is
ed

 c
ov

ar
ia

nc
e

Vector length (pixels)

Texture 1
Texture 2
Texture 3

Fig. 1. From left to right, three texture images differing only in the spatial distribution
of their content, and their identical normalised covariance plot obtained with a pair of
horizontal points for varying distances.

(e.g. vertical or diagonal for the textures of fig. 1), in which case a priori knowl-
edge is required, or to employ multiple orientations, thus resulting in possibly
excessively long feature vectors, without even the guarantee of having employed
the required orientation.

In this paper, we investigate the use of spatial moments, as an alternative
to volume, with the end of resolving the problem of spatial sensitivity. And we
show that the resulting operator, namely the spatial covariance is capable of
capturing spatial nuances from its input, even with an inadequate structuring
element choice (Section 2). Furthermore, the proposed operator is tested on the
publicly available Outex 14 texture database on both greyscale and colour data,
where it leads to an improvement in classification scores compared to standard
covariance, as well as to the best results reported for this database in combination
with an illumination invariance model (Section 3).

2 Definitions

In this section, after briefly reviewing the definition of morphological covariance,
we introduce the notion of spatial covariance and discuss its extension to colour
texture images. The notations adopted in [2] are employed.

2.1 Morphological Covariance

The morphological covariance K ′ of an image f , is defined as the volume Vol of
the image, eroded by a pair of points P2,v separated by a vector v:

K ′(f ;P2,v) = Vol
(

εP2,v
(f)

)

(1)

where ε designates the erosion operator. In practice, K ′ is computed for varying
lengths of v, and most often the normalised version K is used for measurements:

K(f) = Vol
(

εP2,v
(f)

)

/Vol (f) (2)

Given the resulting series one can gain insight into the structure of a given
texture [2]. In particular, the periodic nature of covariance is strongly related
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to that of its input. Furthermore, the period of periodic textures can easily be
determined by the distance between the repeated peaks that appear at multiples
of the sought period, whereas the size of the periodic pattern can be quantified
by means of the width of the peaks. In other words, their sharpness is directly
proportional to the thinness of the texture patterns appearing in the input image.
Likewise, the initial slope at the origin provides an indication of the coarseness,
with quick drop-off corresponding to coarse textures. Additional information
concerning the anisotropy of f can be obtained by plotting against not only
different lengths of v, but orientations as well.

2.2 Spatial Covariance

As illustrated in figure 1, the efficiency of morphological covariance in retaining
information of spatial nature, depends strongly on the properties of the chosen
pair of points. However, additionally to the structuring element choice, the fi-
nal characterization of the intermediate eroded images is realized through their
volume, in other words the unscaled spatial moment of order (0,0). Spatial mo-
ments constitute well known pattern recognition tools, employed especially in
shape analysis [3]. Consequently, given their proven sensitivity to spatial details,
they can effectively replace the volume as alternative characterization measures.
As a remark, the use of alternative measures to the volume first appeared in [4],
where unscaled spatial moments of higher order were considered in combination
with binary granulometries.

The unscaled moment mij of order (i, j) of a greyscale image f of size M ×N
pixels is given by:

mij(f) =

M
∑

x=1

N
∑

y=1

xiyjf(x, y) (3)

Thus, we can define an initial version of normalised spatial covariance of
order (i, j) based on unscaled moments:

S′Kij(f ;P2,v) = mij(εP2,v
(f))/mij(f) (4)

It becomes now clear, that the volume corresponds to the use of m00, or mean
in the case of normalised operators. Hence, depending on the order and type of
the chosen moments, different kinds of information may be extracted from the
input, while the exact effect of these choices on the computed features remains
to be investigated. For instance, further refinement is possible through the use
of unscaled central moments:

µij(f) =

M
∑

x=1

N
∑

y=1

(x − x)i(y − y)jf(x, y) (5)

where x = m10(f)/m00(f) and y = m01(f)/m00(f), that lead to translation
invariant measurements.
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In order to quantify the effect of the measure chosen in place of Vol, on
the efficiency of covariance as a feature extraction tool, several moment order
combinations were implemented, and the resulting operators were tested in terms
of classification performance. As far as the moments are concerned, we decided
to employ the normalised unscaled central moments, as defined by Hu in [3]:

ηij(f) =
µij(f)

[m00(f)]
α , with α =

i + j

2
+ 1, ∀ (i + j) ≥ 2 (6)

thus achieving scale and translation invariance. The resulting normalised spatial
covariance equation becomes:

SKij(f ;P2,v) = ηij(εP2,v
(f))/ηij(f) (7)

An application example of SK30 is given in figure 2. The three spatially
different textures of figure 1 are once more processed with a horizontal pair of
points. The results this time are clearly distinct, the spatial covariance having
successfully captured the differences of the textures.
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Fig. 2. Spatial covariance of the textures in figure 1, computed with translation and
scale invariant moments of order (3,0), by means of a pair of horizontal points at
varying distances.

2.3 Covariance for Colour Textures

Undoubtedly, colour constitutes a fundamental property of most textures, and
its potential as a descriptive feature of the underlying data has been thoroughly
studied in the literature. Hence different processing approaches have appeared,
concentrating particularly on the question whether colour and texture should be
processed jointly or separately [5].

Specifically, the extension of morphological operators to colour data is still in
development, and numerous possibilities have been proposed, while none of them
has yet been widely adopted. As far as covariance is concerned, it all depends on
the implementation of erosion within equation (7): either marginally in which
case all channels are processed independently and any eventual correlation is
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Fig. 3. Examples of the 68 textures of Outex 14 [5].

ignored, or vectorially, where all channels are processed simultaneously. From
a practical point of view, vectorial processing is implemented with the help of
a vector ordering scheme [6]. Nevertheless, in this case the choice of ordering
method is of vital importance and can influence strongly the end result. During
our experiments we chose to use the Euclidean norm (‖·‖) based ordering:

∀v1,v2 ∈ IRn, v1 ≤ v2 ⇔ ‖v1‖ ≤ ‖v2‖ (8)

This type of ordering is considered suitable for operations on RGB space, as all
channels are equally important, and the norm calculation does not privilege any
of them during comparison.

3 Application

In this section we test the spatial covariance with the publicly available Outex 14
texture database on both colour and greyscale images [7]. In particular, Outex 14
contains 68 textures, examples of which are given in figure 3. Each image, of size
746×538 pixels at 100dpi, has been acquired under three different illumination
sources. The training set consists of those illuminated with 2856K incandescent
CIE A light source (reference illumination). Next, every image was divided into
20 non-overlapping sub images of 128×128 pixels, thus providing 1360 training
images. As far as the test sets are concerned, two differently illuminated samples
of the very same textures were employed. The illumination sources are 2300K
horizon sunlight and 4000K fluorescent TL84. Consequently, with 1360 images
for each illumination source, a total of 2720 test images were used. Although
the rotation of the textures is identical under each light source (0◦), the three
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illumination sources slightly differ in positions, thus producing varying local
shadowing. The choice of Outex 14 for our experiments is due mainly to its
popularity and the challenge that it presents.

The previous best classification result for this database appears in [8] with
a score of 78.09%. Specifically, this value was obtained using features computed
with a variogram applied on the L component of the textures in the CIELAB
colour space, in combination with a preprocessing step, aiming to provide illu-
mination invariance.

3.1 Feature Sets and Classification

Given the negative influence of illumination changes on the classification rates
[5], a preprocessing step aiming to produce illumination invariant data was con-
sidered necessary. The topic of illumination variance has received attention par-
ticularly during the last few years and some models have been proposed with
varying performances to counter its effect. In the present case we chose to em-
ploy the approach proposed by Finlayson et al. in [9], which consists in applying
a histogram equalisation independently to each channel of the input image. It
should be noted that a different invariance model, namely the minvariance, was
employed in [8].

The covariance based feature vectors were calculated according to equation
(7). Several combinations of the first three moment orders were implemented.
Moreover, four directions were used for the point pairs (0◦, 45◦, 90◦, 135◦), each
along with distances ranging from 1 to 49 pixels in steps of size two. Consequently
25 values were available for each direction, making a total of 100 values for every
channel and moment order after concatenation. In cases where multiple moment
orders are combined, each 100-pack was concatenated.

The colour textures were processed in their native RGB colour space, where
the features were computed both marginally and vectorially, by means of a norm
based vector ordering as described in section 2.3. In the case of greyscale images,
the L component of CIELAB was employed. As far as the conversion from RGB
to CIELAB is concerned, special care is required since the proper transformation
matrix calibrated to the CIE A white point must be used [5].

For the sake of objectivity, we have also tested the variogram, with the exact
same formulation and arguments as those given in [8], in combination with the
present illumination invariance model, so as to better quantify the effect of the
preprocessing step on the end classification scores. The classification was realized
by means of a kNN classifier using only the nearest neighbour (k = 1), contrarily
to [8] where k = 3. In addition, after experimenting with different metrics it was
decided to use the standard Euclidean distance as similarity measure during
classification.

3.2 Results

The resulting classification rates of the experiments are given in table 1. Ap-
parently, the histogram equalisation that preceded has effectively reduced the
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Table 1. Classification rates (%) for the Outex 14 textures, obtained with spatial
normalised covariance based features.

Features
RGB L

TL84 Horizon Average TL84 Horizon Average

volume 96.10 90.96 93.53 92.57 93.46 93.01
vectorial volume 94.63 76.62 85.62 - - -

η11 96.10 90.51 93.30 93.53 92.87 93.20
η00 η11 97.21 93.16 95.18 95.44 94.71 95.07

η00 η01 η10 97.28 94.26 95.77 96.32 94.49 95.40
η00 η02 η20 97.50 94.72 96.11 96.76 95.44 96.10
η00 η03 η30 97.65 94.78 96.21 96.91 95.44 96.17

Variogram [8] 96.84 90.96 93.90 95.59 71.25 83.42
Best result of [8] - - - 77.35 78.82 78.09

variations due to the three light sources, and both the covariance and variogram
appear to make the most of it, as they produce respectively 93.53% and 93.9% in
RGB, while a far greater difference (≈10%) is in favor of covariance in L. The use
of vectorially computed feature vectors however did not result in a worthwhile
increase.

Moreover, the use of η11 further improves the end result for greyscale images
while having only a slight effect on RGB. Since with each moment, the covariance
provides a description of another statistical property of the input, it was decided
to combine these features. As a first attempt, η00 and η11 were concatenated, thus
resulting in an improvement of 2% on both types of images. Several tests followed
in order to determine through empirical evaluation the optimal combination, and
the best performance was obtained with concatenations of type η00, η0i, ηj0. In
particular, the best classification scores were obtained for i = 3 and j = 3, with
96.21% in RGB and 96.17% in greyscale; in other words an improvement of ≈3%
(from ≈93% to ≈96%) compared to standard covariance, and overall of 18.12%,
compared to the previous best result of 78.09%.

Additionally, as far as colour is concerned, one can easily observe the sys-
tematic, though only marginal superiority of RGB over L. A fact which asserts
the availability of some further discriminating information in the colour compo-
nents. Nevertheless, it should also be pointed out that the length of the feature
vectors computed for colour images is the triple of that on greyscale, while their
performance differences are relatively negligible.

4 Conclusion

We have tested several alternatives to the volume in the context of morphological
covariance as applied to texture classification. Higher order spatial moments, and
particularly their combinations have rendered morphological covariance capable
of retaining spatial information from its input, even in combination with unsuit-
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able structuring elements, thus improving its feature extraction capabilities in
cases where the spatial distribution of image details is essential.

The alternative statistical measures were tested with a texture database of
varying illumination, the effect of which was countered with the use of a chan-
nelwise histogram equalisation. Consequently, an initial improvement of ≈15%
was obtained, compared to the previous best result for this database. A fur-
ther increase of ≈3% of the classification scores was due to the use of spatial
covariance, thus resulting in an overall improvement of 18.12%.

Nevertheless, the choice of moment orders was realized mainly through em-
pirical evaluation and their exact effect on the behaviour of morphological covari-
ance remains to be investigated. The potential of this combination can be further
refined with additional post-processing. A first example was given with the use
of translation and scale invariant moments. Another path of future development
consists in employing alternative operators to erosion during the calculation of
covariance. Preliminary tests based on top-hat have given promising results.

As far as colour textures are concerned, we adopted the integrative approach.
However, the extension of covariance to colour data has been rather cumbersome,
as even with a three times larger feature set, RGB has produced only slightly
better results than L. Whereas the use of the selected vectorial processing scheme
did not result in an improvement. Nevertheless, considering the vast variety of
ways for implementing vectorial morphological operators, several combinations
of ordering schemes and colour spaces remain to be tested.
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