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Abstract

In this paperwe propose to use learningotor quantization
for the eficient partitioning of a cooccurrence space. A simple
codebook is trained to map the multidimensional cooccurrence,
space into a 1-dimensional cooccurrence histogram. In the classi-
fication phase a nonparametric logelikood statistic is
employed for comparing sample and prototype histograms. The
adwantages of ector quantization are demostrated with &alift
texture classification problemvnlving 32 textures. & also point
out two problems in the use of cooccurrence matrices that should
be talen into account in order to actsethe best possible classifi-
cation accurac Finally, we compare the performance of cooccur-
rence histograms to that of GMRF features and Gabor filtering,

bution of gray leels, which corresponds tovitiing
both feature aas separately into G bins. This results in
a suboptimal eerall partition of the coocurrence space.

Inefficient description of multipigl (>2) cooccur-
rences. If coocurrences ofveeal pidel pairs are accu-
mulated into a single twdimensional matrix, we
erroneously assumexterre information to be thevar-
age of informations in seral directions. Experiments
in Section 3 will shav how costly this assumption can
be.

Both dravbacks hge one thing in common: tiieare

proving that gray leel cooccurrences are avperful approach if
used properly

1 Intr oduction

Second order gray Vel statistics is a widely used con-
cept in tature analysis [2]. Carentionally second order

related to the quantization of the cooccurrence space.
Assuming that we ant to describe the cooccurrences of D
pixels, we will use a D-dimensional cooccurrence space,
i.e. the gray leels of the D piels are presented as D-
dimensional ectors. Hwever, if these D-dimensional
entries are straightfordly stored into matrices, we obtain
matrices of size & These matrices can bery lage, een

statistics are accumulated into a set of 2-dimensional matriwith modest alues of D and G, thus computationally

ces which are computed for displacements iriedsht

expensve and suspect to statistical unreliabilitgonse-

directions and displacements. Prior to the computation of aquently a more dfcient quantization of the D-dimensional

cooccurrence matrix, the number of grayels is normally

reduced for xample with histogram equalization to 16 or

cooccurrence space is needed.
In this paper we demonstratevhan eficient quantiza-

32, in order to &ep the size of the cooccurrence matrix tion improves the performance of coocurrence matrices.

manageable. The number of graydks is also related to

Following the vork of Valkealahti and Oja [6], we propose

the statistical reliability of the matrices, for the number of to use learningector quantization for this purpose. Where

entries per matrix cell should be adequate.

When cooccurrences of vaal piel pairs located in
different directions are considered,\tfage often eeraged
into a single 2-dimensional matrix with thegament that
this single matrix praides rotation-imariant tecture infor-
mation. Another motation for using 2-dimensional matri-
ces is that matrices of higher
impractical.

Two underlying flavs can be pointed out in this ce@m-
tional approach:

dimensionality are

Valkealahti and Oja useaifly complex codebook struc-
ture and learning algorithms, we empla simple code-
book with the basic optimizedQ1 training algorithm by
Kohoneret al. [3]. In addition, we also point out twshort-
comings in the standard cooccurrence matrix methodology
that is normally used inxé&ure analysis.

This paper is @anized as follas. Section 2 describes
the basic idea of quantizing the cooccurrence space using
vector quantization. In Section 3 the performance of the
proposed method ixperimentally compared to that of the
cornventional approach with a €ifult texture classification

« Inefficient partitioning of the cooccurrence space. The problem. Section 4 pwides discussion and concludes the

guantization is straightforadly derved from the distri-

paper



2 From cooccurrence space to cooccur-
rence histograms via gctor quantization

2.1 Cooccurrence space and ‘corentional’

cooccurrence matrices

In this paper we consider cooccurrences within 3x3-

pixel subimages,
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and estimate follwing distritutions:
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Let G; denote the ‘corentional’ 2-dimensional cooc-
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Fig. 1a illustrates the 256x256 cooccurrence space of p
for a particular training seixeracted from the tdure data
used in the xperiments (see Section 3.1 for details ow ho
the image data iswdded into training and testing sets). The
training set contains 1024 64x64 samples which produce
almost 4 million entries into the cooccurrence space. The
intensity reflects the probability of avgn cooccurrence;
the darler a cooccurrence cell is the higher is its probabil-
ity andvice versa. Most of the probability mass is located
around the diagonal of the matrice, which reflects the cor-
relation between adjacent pis.

2.2 Cooccurrence histograms via gctor quanti-
zation

To estimate cooccurrences of D @i, we propose to
partition the D-dimensional cooccurrence space usiug v

currence matrix corresponding to the cooccurrences ofior quantization, instead of using the original multidimen-

gray levels g and g Then the cooccurrence matrix esti-
mating distrilution p, is simply G = Cy;. Usually cooc-

currence matrices are made symmetrical by replicating

entries (gg) as (§.g), i.e. GY™M = Cy; + Cyo However,
we ague a@inst doing this, for replicating entriesfes-
tively means ignoring the fett of texture orientation in
opposite directions which can be costlye will compare
the performance of £and G¥™ quantitatvely in the
experiments.

We hare two alternatves for estimating § ps, and p

sional space or accumulating the cooccurrences into a 2-
dimensional matrix. & this purpose we emploa code-
book of N D-dimensional couerds, which hee indeces
n=0,1,...,N-1. The codebook is trained with the optimized
LVQ1 training algorithm (l&honenet al. 1992), by select-

ing R random &ctors from each of the 1024 samples in the
training set. The R*1024 randoneators are presented to
the codebook T times. The small white rectangles in Fig.
la correspond to the locations of the cwdiels, when a
codebook of 96 codeords was trained with 100 random

with 2-dimensional cooccurrence matrices. First, the ‘con- Vectors from each sample in the training set (T=1).

ventional’ approach of accumulating cooccurrences into a

single matrix (9. As an alternatie approach we pro-
pose to concatenate the cooccurrence matricesfefetit
pixel pairs into one lge matrix (€°"). Consequentlywe
have the follaving cooccurrence matrices estimating distri-
butions g, ps, and p:

acc
C3 = CptCpp

®)

acc
C5 = Cpy+ Cppt C3t Cyy

(6)

We describe the cooccurrence information ofxdute
sample with a cooccurrence histogram. The mapping from
the cooccurrence space to the cooccurrence histogram is
straightforvard. Given a particular cooccurrencesctor
the index of the nearest codmrd corresponds to the bin
index in the cooccurrence histogram. In otheords, a
codebook of N codeords produces a histogram of N bins.
The cooccurrence histogram of attee sample is obtained
by searching the nearest caaed to each ector present in
the sample, and incrementing the bin denoted by the inde
of this nearest coard. The cooccurrence histogram of a
64x64 tecture sample is illustrated in Fig..1b



3 Experiments

3.1 Texture data

The 32 Brodatz [1] tdures used in thexperiments are
shavn in Fig. 2. The images are 256x256gdsin size and
they have 256 gray leels. Each image has beerided
into 16 disjoint 64x64 samples, which are independently
histogram-equalized to rew® luminance dferences
between tetures. D male the classification problem more
challenging and generic, three additional samplege ha
been generated from each sample: a sample rotated by 90
degrees, a 64x64 scaled sample obtained from the 45x45
pixels in the middle of the ‘original’ sample, and a sample
that is both rotated and scaled. Consequegthityclassifica-
tion problem irolved a total of 2048 samples, 64 samples
in each of the 32 xture catgories [6].

The performance of a particular classifie@swaluated
with ten diferent randomly chosen training and test sets.
The texture classifier s trained by randomly choosing, in
each tature class, eight ‘original’ samples, together with
the corresponding 24 transformed samples, as models. The
other half of the data, eight ‘original’ samples and the cor-
responding 24 transformed samples in eaglute class,
was used for testing the classifién the classification
phase a test samfavas assigned to the class of the model
M that maximized the log-li&dihood measure:

N
LSM) = 5 §inM, (11)

n=1

where§, andM,, correspond to the sample and model prob-
abilities of binn, respectiely.

0 bin inde 95
(b)

3.2 Experimental results

Figure 1: The cooccurrence space apd its quantization

with a codebook of 96 coderds (a) and the cooccurrence
histogram of a 64x64 xture sample (b). The indeces of the
96 codevords correspond to the 96 bins in the histogram.

First, we estimated the distution p, with cooccur-
rence matrices £and G, to analyze the &dct of dis-
missing the information of ¥ture orientation in opposite
directions. Prior to the xéraction of the cooccurrence
matrices the number of graywkds was reduced from 256
to G with histogram equalization. Fig. 3 slwthe &erage
classification accuraciever ten &periments as a function
D=2,3,5,9, corresponding to the distiilon we are esti- of G. V\e see that asymmetric?QIearly outperforms its
mating. In the gperiments we used codebooks of four dif- Symmetrical counterpart, until itsverage number  of
ferent sizes, N=96,192,288,384. These codebooksENties per bin drops to 15 (G=16). Sincg*C produces
correspond to cooccurrence histograms with roughly 40,IWiCe as may entries, it manages better withdar matrix
20, 13, and 10 entries per bin, respadfi which leeps dlmer_15|ons. _@ peaks at 71.1%m(G:7, stdwlef the 10
them statistically reliable. Walvays picled R=100 ran-  &Periments is 1.3%), while & reaches 68.1% (G=11,
dom \ectors from each of the 1024 training samples, i.e. Std-de. 0.9%).

102400 ectors were used in training, and presented them 1he corresponding  cooccurrence —  histogram
T=1-4 times to the codebook. H,(N=96,T=1) preides a comparable result to, @vith

70.8% (std.de 1.5%), which is sitched for reference in
Fig. 3.

In the followving, we denote the cooccurrence histo-
grams obtained usingeetor quantization as g where
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Figure 3: The asymmetric;®utperforms its symmetrical
counterpart, while the cooccurrence histogram
H,(N=96,T=1) preides comparable performance.

An interesting obseation is that increasing the number
of codavords slightly decreases the performanceneif
the training 'ectors are presented to the codeboalerse
times. This has to do with the statistical reliability of the
histograms, for the higher is the number of eealels, the

smaller is theaerage number of entries per bin. The bene-

that gven our log-likelihood statistic L €°" equals sum-
ming up the indiidual log-likelihood statistics wer the
submatrices, i.e. forxample L(G®°") = L(Cqyy) + L(Cpy)-
Effectively this means that we assumg; @nd G, to be
independent, ignoring their possible correlation.

Fig. 4 shavs the aerage accuracies of°®' and ¢&°¢
matrices as a function of the number of gragle V& see
that it is clearly more beneficial to concatenateviidial
2-dimensional matrices instead of summing them up into a
single matrix. G°°" peaks at 87.5% (G=8, stdwdd.3%),
Cs°" at 89.3% (G=7, std.de1.2%) and ¢°" at 89.4%
(G=7, std.de. 1.1%). Respeately, C;?°° reaches 81.2%
(G=11, std.de 1.4%), G€80.1% (G=11, std.de 1.3%)
and G*€77.9% (G=11, std.de 1.5%). The wrse results
of C5® and G°“with respect to €*°“underline the obser-
vation that inserting additional cooccurrences into a single
matrix only blurs the information. Therefore, it is advisable
to use accumulated matrices only if the rotatiofatimnce
is a real concern. The reason for tH@8Gnatrices peaking
with smaller alues of G is due to thadt that thg have a
smaller number of entries per bin than tfé&“@natrices.

Again, we @amined the dééct of using symmetrical
matrices instead of asymmetric ones, repeating the best
classification gperiment for each of the six cooccurrence
matrices. The performance o{€" (G=8) decreased by
3.7% to 83.8% (std.de 1.0%), G*°" (G=7) by 2.1% to
87.2% (std.de 0.8%), and ¢°" (G=7) by 1.7% to 87.7%

fits of vector quantization will become more apparent when (std.de. 0.9%). Similarly the accurag of C32°¢ (G=11)

we consider the joint cooccurrences of more tham ix-
els.
Next, we estimated distriliions @, ps, and [ with the

deteriorated by 7.9% to 73.3% (stdidé.4%), GZ°¢ by
9.2% to 70.9% (std.ge 0.5%), and ¢*°° by 1.9% to
76.0% (std.de 0.9%).

corresponding cooccurrence matrices and histograms. Note
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Figure 4: The adntages of &ctor quantization become
apparent in the case of multipixcooccurrences. Also, it

Gaussian winde was set to wavelength/2, and all odd
mask sizes between 7x7 and 17x17efsxvere attempted.
Again, the features obtained withfdifent mask sizes were
combined into one lge set of 72 Gabor erpr features.

Both the multvariate Gaussian discriminant and the 3-
NN classifier were used for classification. When the 3-NN
classifier vas used, the features were normalized {e tza
unit variance. W report the results for the classifier which
provided the better performance; the Gaussian discriminant
in the case of GMRF features and the 3-NN classifier in the
case of Gabor engy features. Because the GMRF and
Gabor enayy features dracted with a particular model or
mask size areafrly correlated, the best classification accu-
ragy is not necessarily obtained by using all features simul-
taneously due to the curse of dimensionalitifor this
purpose a stepwise search for best feature combinations
was performed during classification. The search included
both forward and backard selection of features.

When features xracted with an indidual GMRF

seems to be more beneficial to concatenate matrices instegfiask were used, the best classification acgusas 68.2%

of summing them.

(6th order mask, std.del1.5%). When feature selection
was done from the set of 48 GMRF features, result of
87.7% (std.de 1.2%) vas obtained. Similarjywhen fea-

The aerage accuracies of corresponding cooccurrencetures computed with a single Gabor filter bank were used,

histograms H, Hg and H, are also masd in Fig. 4.
H3(N=192,T=2) reaches 91.2% (stdvde 0.9%),
H5(N=384,T=1) 93.8% (std.de  0.6%) and
Ho(N=288,T=3) 94.5% (std.de 0.7%). This clear
improvement @er C°°" can be attribted to the more &f

cient approximation of the joint multidimensional cooccur-

the best result as 87.6% (mask size 15x15, std.dk3%).
When all 72 Gabor engy features were utilized, awex-
age accuracof 90.2% (std.de 1.4%) was achieed.

4 Discussion and conclusions

rence space, i.e. cooccurrence histograms address the We shaved that an ditient approximation of a high

correlation between péts (pixel pairs).

3.3 Results br GMRF and Gabor enemyy fea-
tures

Gray level cooccurrences are avperful method, if thg
are emplged eficiently. For comparison purposes, the
classification problem as also tackled with the Gaussian
Markov Random Field (GMRF) and Gabor egerfea-
tures, which are widely garded as the state-of-the-art
methods in teture analysis. The implementations of
GMRF and Gabor engy features were obtained from the
MeasEx site, which is a franveork for measuring the per-
formance of teture classification algorithms, piding

dimensional cooccurrence space can be aediavith a
simple codebook and an fethe-shelf vector quantization
algorithm. Olviously, the performance of the proposed
approach could still be impved with a more thorough
study on the &ctor quantization procedureor~example,
we picked just 100 randomectors from each training sam-
ple, thus using less than 3% of thaitable training data.

We also pointed out twproblems in the coentional
use of cooccurrence matrices that should be addressed in
order to achiee the best possible classification accurac
First, asymmetric cooccurrence matrices are preferable
over symmetrical ones in this type of xttee classifica-
tion problem, for the contain information about x&ure
orientation in opposite directions. Second, it is more bene-

large image databases and source codes of standard parﬁpia| to concatenate 2-dimensional matrices computed for

digms [5].

pixel pairs in diferent directions than to sum them up into

The GMRF features were computed using the standarc single matri.x, if the rotation\'v.arignce is not an issue.
symmetric masks, and all models from the 1st order to the Our eperimental results indicate that cooccurrence

6th were attempted. Additionallfhe features of all six
models were combined into onedarset of 48 GMRF fea-
tures. The Gabor erggr measures werexgacted with a
filter bank of three diérent wavelengths (2, 4, and 8 pix-

matrices are a peerful texture description method, if the
are used properly The performance can be further
enhanced by utilizing the high correlation between gray
levels of adjacent pids, and using distriiions of signed

els) and four dferent orientations (0, 45, 90, and 135 gray level differences instead of grayvkd cooccurrences
degrees), resulting in a set of 12 features. The width of the[4].
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