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Abstract

In this paper, we propose to use learning vector quantization
for the efficient partitioning of a cooccurrence space. A simple
codebook is trained to map the multidimensional cooccurrence
space into a 1-dimensional cooccurrence histogram. In the classi-
fication phase a nonparametric log-likelihood statistic is
employed for comparing sample and prototype histograms. The
advantages of vector quantization are demostrated with a difficult
texture classification problem involving 32 textures. We also point
out two problems in the use of cooccurrence matrices that should
be taken into account in order to achieve the best possible classifi-
cation accuracy. Finally, we compare the performance of cooccur-
rence histograms to that of GMRF features and Gabor filtering,
proving that gray level cooccurrences are a powerful approach if
used properly.

1 Intr oduction

Second order gray level statistics is a widely used con-
cept in texture analysis [2]. Conventionally, second order
statistics are accumulated into a set of 2-dimensional matri-
ces which are computed for displacements in different
directions and displacements. Prior to the computation of a
cooccurrence matrix, the number of gray levels is normally
reduced for example with histogram equalization to 16 or
32, in order to keep the size of the cooccurrence matrix
manageable. The number of gray levels is also related to
the statistical reliability of the matrices, for the number of
entries per matrix cell should be adequate.

When cooccurrences of several pixel pairs located in
different directions are considered, they are often averaged
into a single 2-dimensional matrix with the argument that
this single matrix provides rotation-invariant texture infor-
mation. Another motivation for using 2-dimensional matri-
ces is that matrices of higher dimensionality are
impractical.

Two underlying flaws can be pointed out in this conven-
tional approach:

• Inefficient partitioning of the cooccurrence space. The
quantization is straightforwadly derived from the distri-

bution of gray levels, which corresponds to dividing
both feature axes separately into G bins. This results in
a suboptimal overall partition of the coocurrence space.

• Inefficient description of multipixel (>2) cooccur-
rences. If coocurrences of several pixel pairs are accu-
mulated into a single two-dimensional matrix, we
erroneously assume texture information to be the aver-
age of informations in several directions. Experiments
in Section 3 will show how costly this assumption can
be.

Both drawbacks have one thing in common: they are
related to the quantization of the cooccurrence space.
Assuming that we want to describe the cooccurrences of D
pixels, we will use a D-dimensional cooccurrence space,
i.e. the gray levels of the D pixels are presented as D-
dimensional vectors. However, if these D-dimensional
entries are straightforwadly stored into matrices, we obtain
matrices of size GD. These matrices can be very large, even
with modest values of D and G, thus computationally
expensive and suspect to statistical unreliability. Conse-
quently, a more efficient quantization of the D-dimensional
cooccurrence space is needed.

In this paper we demonstrate how an efficient quantiza-
tion improves the performance of coocurrence matrices.
Following the work of Valkealahti and Oja [6], we propose
to use learning vector quantization for this purpose. Where
Valkealahti and Oja used fairly complex codebook struc-
ture and learning algorithms, we employ a simple code-
book with the basic optimized LVQ1 training algorithm by
Kohonenet al. [3]. In addition, we also point out two short-
comings in the standard cooccurrence matrix methodology
that is normally used in texture analysis.

This paper is organized as follows. Section 2 describes
the basic idea of quantizing the cooccurrence space using
vector quantization. In Section 3 the performance of the
proposed method is experimentally compared to that of the
conventional approach with a difficult texture classification
problem. Section 4 provides discussion and concludes the
paper.



2 From cooccurrence space to cooccur-
rence histograms via vector quantization

2.1 Cooccurrence space and ‘conventional’
cooccurrence matrices

In this paper we consider cooccurrences within 3x3-
pixel subimages,

and estimate following distributions:

Let Cij  denote the ‘conventional’ 2-dimensional cooc-
currence matrix corresponding to the cooccurrences of
gray levels gi and gj. Then the cooccurrence matrix esti-
mating distribution p2 is simply C2 = C01. Usually, cooc-
currence matrices are made symmetrical by replicating
entries (gi,gj) as (gj,gi), i.e. C2

sym = C01 + C10. However,
we argue against doing this, for replicating entries effec-
tively means ignoring the effect of texture orientation in
opposite directions which can be costly. We will compare
the performance of C2 and C2

sym quantitatively in the
experiments.

We have two alternatives for estimating p3, p5, and p9
with 2-dimensional cooccurrence matrices. First, the ‘con-
ventional’ approach of accumulating cooccurrences into a
single matrix (Cacc). As an alternative approach we pro-
pose to concatenate the cooccurrence matrices of different
pixel pairs into one large matrix (Ccon). Consequently, we
have the following cooccurrence matrices estimating distri-
butions p3, p5, and p9:

Fig. 1a illustrates the 256x256 cooccurrence space of p2
for a particular training set extracted from the texture data
used in the experiments (see Section 3.1 for details on how
the image data is divided into training and testing sets). The
training set contains 1024 64x64 samples which produce
almost 4 million entries into the cooccurrence space. The
intensity reflects the probability of a given cooccurrence;
the darker a cooccurrence cell is the higher is its probabil-
ity andvice versa. Most of the probability mass is located
around the diagonal of the matrice, which reflects the cor-
relation between adjacent pixels.

2.2 Cooccurrence histograms via vector quanti-
zation

To estimate cooccurrences of D pixels, we propose to
partition the D-dimensional cooccurrence space using vec-
tor quantization, instead of using the original multidimen-
sional space or accumulating the cooccurrences into a 2-
dimensional matrix. For this purpose we employ a code-
book of N D-dimensional codewords, which have indeces
n=0,1,...,N-1. The codebook is trained with the optimized
LVQ1 training algorithm (Kohonenet al. 1992), by select-
ing R random vectors from each of the 1024 samples in the
training set. The R*1024 random vectors are presented to
the codebook T times. The small white rectangles in Fig.
1a correspond to the locations of the codewords, when a
codebook of 96 codewords was trained with 100 random
vectors from each sample in the training set (T=1).

We describe the cooccurrence information of a texture
sample with a cooccurrence histogram. The mapping from
the cooccurrence space to the cooccurrence histogram is
straightforward. Given a particular cooccurrence vector,
the index of the nearest codeword corresponds to the bin
index in the cooccurrence histogram. In other words, a
codebook of N codewords produces a histogram of N bins.
The cooccurrence histogram of a texture sample is obtained
by searching the nearest codeword to each vector present in
the sample, and incrementing the bin denoted by the index
of this nearest codeword. The cooccurrence histogram of a
64x64 texture sample is illustrated in Fig. 1b.
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Figure 1: The cooccurrence space of p2 and its quantization
with a codebook of 96 codewords (a) and the cooccurrence
histogram of a 64x64 texture sample (b). The indeces of the
96 codewords correspond to the 96 bins in the histogram.

In the following, we denote the cooccurrence histo-
grams obtained using vector quantization as HD, where
D=2,3,5,9, corresponding to the distribution we are esti-
mating. In the experiments we used codebooks of four dif-
ferent sizes, N=96,192,288,384. These codebooks
correspond to cooccurrence histograms with roughly 40,
20, 13, and 10 entries per bin, respectively, which keeps
them statistically reliable. We always picked R=100 ran-
dom vectors from each of the 1024 training samples, i.e.
102400 vectors were used in training, and presented them
T=1-4 times to the codebook.

3 Experiments

3.1 Texture data

The 32 Brodatz [1] textures used in the experiments are
shown in Fig. 2. The images are 256x256 pixels in size and
they have 256 gray levels. Each image has been divided
into 16 disjoint 64x64 samples, which are independently
histogram-equalized to remove luminance differences
between textures. To make the classification problem more
challenging and generic, three additional samples have
been generated from each sample: a sample rotated by 90
degrees, a 64x64 scaled sample obtained from the 45x45
pixels in the middle of the ‘original’ sample, and a sample
that is both rotated and scaled. Consequently, the classifica-
tion problem involved a total of 2048 samples, 64 samples
in each of the 32 texture categories [6].

The performance of a particular classifier was evaluated
with ten different randomly chosen training and test sets.
The texture classifier was trained by randomly choosing, in
each texture class, eight ‘original’ samples, together with
the corresponding 24 transformed samples, as models. The
other half of the data, eight ‘original’ samples and the cor-
responding 24 transformed samples in each texture class,
was used for testing the classifier. In the classification
phase a test sampleS was assigned to the class of the model
M that maximized the log-likelihood measure:

whereSn andMn correspond to the sample and model prob-
abilities of binn, respectively.

3.2 Experimental results

First, we estimated the distribution p2 with cooccur-
rence matrices C2 and C2

sym, to analyze the effect of dis-
missing the information of texture orientation in opposite
directions. Prior to the extraction of the cooccurrence
matrices the number of gray levels was reduced from 256
to G with histogram equalization. Fig. 3 shows the average
classification accuracies over ten experiments as a function
of G. We see that asymmetric C2 clearly outperforms its
symmetrical counterpart, until its average number of
entries per bin drops to 15 (G=16). Since C2

sym produces
twice as many entries, it manages better with larger matrix
dimensions. C2 peaks at 71.1% (G=7, std.dev. of the 10
experiments is 1.3%), while C2

sym reaches 68.1% (G=11,
std.dev. 0.9%).

The corresponding cooccurrence histogram
H2(N=96,T=1) provides a comparable result to C2 with
70.8% (std.dev. 1.5%), which is sketched for reference in
Fig. 3.
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Figure 3: The asymmetric C2 outperforms its symmetrical
counterpart, while the cooccurrence histogram
H2(N=96,T=1) provides comparable performance.

An interesting observation is that increasing the number
of codewords slightly decreases the performance, even if
the training vectors are presented to the codebook several
times. This has to do with the statistical reliability of the
histograms, for the higher is the number of codewords, the
smaller is the average number of entries per bin. The bene-
fits of vector quantization will become more apparent when
we consider the joint cooccurrences of more than two pix-
els.

Next, we estimated distributions p3, p5, and p9 with the
corresponding cooccurrence matrices and histograms. Note

that given our log-likelihood statistic L Ccon equals sum-
ming up the individual log-likelihood statistics over the
submatrices, i.e. for example L(C3

con) = L(C01) + L(C02).
Effectively this means that we assume C01 and C02 to be
independent, ignoring their possible correlation.

Fig. 4 shows the average accuracies of Ccon and Cacc

matrices as a function of the number of gray levels. We see
that it is clearly more beneficial to concatenate individual
2-dimensional matrices instead of summing them up into a
single matrix. C3

con peaks at 87.5% (G=8, std.dev. 1.3%),
C5

con at 89.3% (G=7, std.dev. 1.2%) and C9
con at 89.4%

(G=7, std.dev. 1.1%). Respectively, C3
acc reaches 81.2%

(G=11, std.dev. 1.4%), C5
acc 80.1% (G=11, std.dev. 1.3%)

and C9
acc 77.9% (G=11, std.dev. 1.5%). The worse results

of C5
cc and C9

acc with respect to C3
acc underline the obser-

vation that inserting additional cooccurrences into a single
matrix only blurs the information. Therefore, it is advisable
to use accumulated matrices only if the rotation invariance
is a real concern. The reason for the Ccon matrices peaking
with smaller values of G is due to the fact that they have a
smaller number of entries per bin than the Cacc matrices.

Again, we examined the effect of using symmetrical
matrices instead of asymmetric ones, repeating the best
classification experiment for each of the six cooccurrence
matrices. The performance of C3

con (G=8) decreased by
3.7% to 83.8% (std.dev. 1.0%), C5

con (G=7) by 2.1% to
87.2% (std.dev. 0.8%), and C9

con (G=7) by 1.7% to 87.7%
(std.dev. 0.9%). Similarly, the accuracy of C3

acc (G=11)
deteriorated by 7.9% to 73.3% (std.dev. 1.4%), C5

acc by
9.2% to 70.9% (std.dev. 0.5%), and C9

acc by 1.9% to
76.0% (std.dev. 0.9%).
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Figure 2: The 32 Brodatz textures used in the experiments.



Figure 4: The advantages of vector quantization become
apparent in the case of multipixel cooccurrences. Also, it
seems to be more beneficial to concatenate matrices instead
of summing them.

The average accuracies of corresponding cooccurrence
histograms H3, H5 and H9 are also marked in Fig. 4.
H3(N=192,T=2) reaches 91.2% (std.dev. 0.9%),
H5(N=384,T=1) 93.8% (std.dev. 0.6%) and
H9(N=288,T=3) 94.5% (std.dev. 0.7%). This clear
improvement over Ccon can be attributed to the more effi-
cient approximation of the joint multidimensional cooccur-
rence space, i.e. cooccurrence histograms address the
correlation between pixels (pixel pairs).

3.3 Results for GMRF and Gabor energy fea-
tur es

Gray level cooccurrences are a powerful method, if they
are employed efficiently. For comparison purposes, the
classification problem was also tackled with the Gaussian
Markov Random Field (GMRF) and Gabor energy fea-
tures, which are widely regarded as the state-of-the-art
methods in texture analysis. The implementations of
GMRF and Gabor energy features were obtained from the
MeasTex site, which is a framework for measuring the per-
formance of texture classification algorithms, providing
large image databases and source codes of standard para-
digms [5].

The GMRF features were computed using the standard
symmetric masks, and all models from the 1st order to the
6th were attempted. Additionally, the features of all six
models were combined into one large set of 48 GMRF fea-
tures. The Gabor energy measures were extracted with a
filter bank of three different wavelengths (2, 4, and 8 pix-
els) and four different orientations (0, 45, 90, and 135
degrees), resulting in a set of 12 features. The width of the

Gaussian window was set to wavelength/2, and all odd
mask sizes between 7x7 and 17x17 pixels were attempted.
Again, the features obtained with different mask sizes were
combined into one large set of 72 Gabor energy features.

Both the multivariate Gaussian discriminant and the 3-
NN classifier were used for classification. When the 3-NN
classifier was used, the features were normalized to have a
unit variance. We report the results for the classifier which
provided the better performance; the Gaussian discriminant
in the case of GMRF features and the 3-NN classifier in the
case of Gabor energy features. Because the GMRF and
Gabor energy features extracted with a particular model or
mask size are fairly correlated, the best classification accu-
racy is not necessarily obtained by using all features simul-
taneously, due to the curse of dimensionality. For this
purpose a stepwise search for best feature combinations
was performed during classification. The search included
both forward and backward selection of features.

When features extracted with an individual GMRF
mask were used, the best classification accuracy was 68.2%
(6th order mask, std.dev. 1.5%). When feature selection
was done from the set of 48 GMRF features, result of
87.7% (std.dev. 1.2%) was obtained. Similarly, when fea-
tures computed with a single Gabor filter bank were used,
the best result was 87.6% (mask size 15x15, std.dev. 1.3%).
When all 72 Gabor energy features were utilized, an aver-
age accuracy of 90.2% (std.dev. 1.4%) was achieved.

4 Discussion and conclusions

We showed that an efficient approximation of a high
dimensional cooccurrence space can be achieved with a
simple codebook and an ‘off-the-shelf’ vector quantization
algorithm. Obviously, the performance of the proposed
approach could still be improved with a more thorough
study on the vector quantization procedure. For example,
we picked just 100 random vectors from each training sam-
ple, thus using less than 3% of the available training data.

We also pointed out two problems in the conventional
use of cooccurrence matrices that should be addressed in
order to achieve the best possible classification accuracy.
First, asymmetric cooccurrence matrices are preferable
over symmetrical ones in this type of a texture classifica-
tion problem, for they contain information about texture
orientation in opposite directions. Second, it is more bene-
ficial to concatenate 2-dimensional matrices computed for
pixel pairs in different directions than to sum them up into
a single matrix, if the rotation invariance is not an issue.

Our experimental results indicate that cooccurrence
matrices are a powerful texture description method, if they
are used properly. The performance can be further
enhanced by utilizing the high correlation between gray
levels of adjacent pixels, and using distributions of signed
gray level differences instead of gray level cooccurrences
[4].
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