
CLUSTERING of TEXTURE FEATURES for
CONTENT BASED IMAGE RETRIEVAL

Erbug Celebi, Adil Alpkocak

Dokuz Eylul University
Department of Computer Engineering

35100 Bornova, Izmir, TURKEY
{celebi,alpkocak}@cs.deu.edu.tr

Abstract. Content-based image retrieval has received significant attention in
recent years and many image retrieval systems have been developed based on
image contents. In such systems, the well-known features to describe an image
content are color, shape and texture.

In this paper, we have studied an approach based on clustering of the texture
features, aiming both to improve the retrieval performance and to allow users to
express their queries easily. To do this, the texture features extracted from
images are grouped according to their similarities and then one of them is
chosen as a representative for each group. These representatives are then given
to users to express their query. Besides the detailed descriptions of clustering
process and a summary of results obtained from the experiments, a comparison
about statistical texture extraction methods and effects of clustering to them are
also presented.

1 Introduction

Image databases are becoming increasingly popular due to large amount of images
that are generated by various applications and the advances in computation power,
storage devices, scanning, networking, image compression, and desktop publishing.
The typical application areas of such systems are medical image databases, photo clip
archives, art images, textile pattern archive, photojournalism, WWW, and etc. All
these fields need better techniques and mechanism to store and retrieve such huge
amount of images.

The early implementation of image databases were based on simply giving
descriptive keywords to each image, and allowing users to make query on these
keywords for accessing the images. However, this method has some deficiencies such
as subjectivity and labor-intensive nature of the keywords assigning process.
Moreover, it is sometimes almost impossible to describe content of an image by
words, especially for textures found in an image. As a solution to these problems,
content-based image retrieval method is proposed based on image features extracted
automatically from images. These well-known features are local color, global color,

structures in the image (i.e. shape.) and textures found in an image. In this study we
focused on textural features of images and aimed both to improve retrieval
performance and help users to express their queries easily.

An image database may contain thousands of textured images. The main problem a
user faced is locating the images having similar texture given in the query. More
clearly, this problem has two main parts: (1) finding the images having the similar
texture given in query and (2) specifying a texture in query. A good image retrieval
system dealing with textures must provide solutions to both problems.

Specifying the requirement is not a trivial task for querying images since image are
hard to describe in nature. Moreover, the information is meaningful only when it can
be retrieved through an expressive query. In forming an expressive query for texture,
it is quite unrealistic to expect the user to draw the texture (s)he wants. In our
approach, all the textures extracted from the database are classified into clusters and
one of the textures in each cluster is chosen as a representative. These representative
textures can be presented to the user and asked to choose the closest one that of the
requested image. In this way, textures can be used for expressive querying.

Although several researchers have been working on texture classification, none of
them is aiming to use texture classification for expressive querying. Smith et. al. [9]
proposed a method for classification and discrimination of textures based on the
energies of image subbands. They also proposed that texture classification may be
used for indexing large databases.

In this study, we have used gray level single-textured images to extract their
features and construct a feature vector by using co-occurrence matrixes for each
textured image. Then, feature vectors are clustered into groups by using hierarchical
clustering techniques and one of the textures is selected as a representative for each
group. These representatives are then used in user interfaces for query forming
process to narrow down the entire search space. In this way, a much smaller subset of
the whole database is given to user to query. Cluster based retrieval also has some
advantages on retrieval performance. Our experimentation showed that the results are
promising.

In the remainder of this paper, first, texture features and their extraction methods
are discussed. In section three clustering process of texture features are presented. The
results obtained from our experimentation are presented in section four. Section five
gives a look to future works and concludes the paper.

2 Representation of Textures Features

Query submitted by the user will be executed on feature vectors rather than on images
themselves. Therefore, the representation of texture is directly related to system
performance. However, the features must be extracted first via texture analysis that
provides an algorithm for extracting texture features from images.

Haralick proposed the usage of co-occurrence matrixes for texture feature
representation [4]. This approach explored the gray level spatial dependencies of
texture. It is first constructed a co-occurrence matrix based on the orientation and
distance between image pixels and then extracted meaningful statistics from the
matrix as texture representation. The feature vector for a texture is constructed from
many matrices for different orientation and distance. In the literature there are many
other approaches for extracting texture features like wavelet transformations [9],
spatial/spatial frequency (s/s-f) subbands [8], Markov Random Fields [2], Gabor
wavelet [5].

A feature is an attribute that characterizes a specific property of an object. An
n-dimensional feature vector represents an object, where n is the selected numbers of
attributes. An object may be image, video, sound and etc. More formally, an image I,
can be represented as following feature vector:

I : < e0, e1, e2, e3, e4, e5, e6, e7, …>, where each entry (ei) of this vector represents a
feature of image I.

Spatial placement of pixels are used to make texture analysis. The information
about the spatial placement of pixels can be summarized in two dimensional
co-occurrence matrices computed for different distances and orientations. In the
following subsection, we give a short description on Gray Level Co-occurrence
matrices, which is a well-known statistical texture feature extraction techniques and
provide a comparison among them.

2.1 Gray Level Co-occurrence matrix

The Gray Level Co-occurrence matrix (GLCM) contains the information about gray
levels (intensities) of pixels and their neighbors, at fixed distance and orientation. The
idea is to scan the image and keep track of gray levels of each of two pixels separated
within a fixed distance d and direction θ. But only one distance and one direction
generally are not enough to describe textural features. So, we have used more than
one direction and distance. It is common to use four directions horizontally and
vertically and, two for diagonals. Most of the researchers use four directions and five
distances [1, 4]. In our study, we have used four matrices for every value of distance d
and four matrices for direction θ. We have represented an image by totally 16
matrices.

Each matrix is 256×256 in size assuming that images are in 256 gray levels. But
each of matrix, which is 256×256 in size, requires a huge memory to store and it is a
time consuming task to produce the matrix. Therefore, we first convert the images in
to 16 gray-levels and then produce a co-occurrence matrix for this new image instead
of the original one. This reduction allows us to work with GLCM matrices 16×16 in
size. Our experiments show that converting the image from 256 in to 16 gray level
does not affect the texture query results. However, these matrices are still containing
much data (each matrix has got 16×16=256 entries) and needs to be reduced. What is
usually done is, to analyze these matrices and compute a few simple numerical values
that encapsulates the information about matrixes. Some statistics computed from

GLCM can be used instead of the whole matrix. The gray level co-occurrence matrix
is determined as follows:

Let Dx = {0, 1, …, Nx-1} and Dy = {0, 1, …, Ny-1} be the spatial domains of row
and column dimensions respectively, where Nx and Ny are the number of pixels in axis
X and Y respectively. And, G = {0, 1, …., Ng-1} be the domain of gray levels where
Ng is the number of gray levels. The Image I can be represented as a 2D function;
I:Dx × Dy Æ G . For abbreviation, a new domain can be defined, as D⊂ N2 (where N
is the set of Natural numbers) instead of Dx × Dy. Positions and orientations are shown
in Figure 1 and Figure 2.

Fig.1. Distances of pixel p for co-occurrence
matrix.

Fig. 2. Directions for co-occurrence matrix.

In our derivation, we used the following definition for the co-occurrence matrix in
distance d and direction θ , P(i,j;d,θ) as in Equation 1.

,),(),','(),,((||,)y',(x'y),(x,=||d | DxD)y',(x'y),((x, {#),;,(IiyxIyxyxdjip =∠=∈= θθ (1)

where, P(i,j;d,θ) is the co-occurrence matrix, # stands for the function “number of”,
(x,y) and (x′,y′) are valid image pixel coordinates, D is discrete gray scale image
domain, d is the distance between two pixels, θ is the direction of two pixels.

In Equation 1 we obtained the features of textured images. However, two images
with the same texture, but different in size may have different feature vectors. To
accomplish this, matrices need to be normalized by the size of images as in Equation
2.

,y'))}((x,y),(x')||, �,y),(x',y'D | d=||(xD(x',y')# {((x,y),

j}i,I(x',y')),y'),I(x,y((x,y),(x'||, �y),(x',y')D |d=||(x,D(x',y')#{ ((x,y),
P(i,j;d,�

∠=×∈

==∠=×∈
=) (2)

In order to use the information contained in the gray level co-occurrence matrices,
Haralick defined 14 statistical measures, which is based on textural characteristics
like homogeneity, contrast, organized structure, complexity and nature of gray level
transitions [4]. However, many authors used only one of the characteristics; variance

[1]. We have used only four of GLCM features shown in Table 1. Other features can
be found from Haralick's study [4].

Table 1. Four features computed from co-occurrence matrixes.

Features Equations Features Equations

Entropy ∑−
ji

jiPjiP
,

),(log),(Homogeneity ∑
−+ji ji

jip

, ||1

),(

Contrast ∑ −
ji

jiP
k

ji
,

),(||
"

Variance ∑ −
ji

jijiP
,

2
)).(,(

Once the texture features are extracted and stored in a database, a similarity
function is required to compare texture for similarities. In our study, we have used
Euclidean distance metric as similarity function.

3 Clustering Texture Features

The Cluster analysis is a partitioning of data into meaningful subgroups (clusters),
when the number of subgroups and other information about their composition or
representatives are unknown. A general information for clustering can be found in
[10] and [3].

Cluster analysis does not use category labels that tag objects with prior identifiers.
In other words, we don’t have prior information about cluster seeds or representatives.
The absence of category labels distinguishes cluster analysis from discriminant
analysis (and classification and decision analysis). The objective of cluster analysis is
simply to find a convenient and valid organization (i.e. group) of the data.

There are many application areas of cluster analysis such as image segmentation,
image indexing or, in general, object indexing and to allow users to navigate over the
images. The main purpose of clustering is to reduce the size and complexity of the
data set. Data reduction is accomplished by replacing the coordinates of each point in
a cluster with the coordinates of that cluster’s reference point (cluster’s seed or
representative). Clustered data require considerably less storage space and can be
manipulated more quickly than the original data. The value of a particular clustering
method depends on how closely the reference points represent the data as well as how
fast the program runs.

As mentioned before, a clustering schema may represent simply a convenient
method for organizing a large set of data so that the retrieval of information may be
made more efficiently. Cluster representatives may provide a very convenient
summary of the database. In another say, it forms a narrowing down phase of the
whole search space.

3.1 Data Types and Data Scales

Clustering algorithms group objects, or data items based on indices of proximity
(similarity) between pairs of objects.

Pattern Matrix: If each object in a set of n objects is represented by a set of d
measurements each object is represented by a pattern, or d-dimensional vector. The
set itself is viewed as n × d pattern matrix. Each row of this matrix defines a pattern
and each column denotes a feature or measurement.

Proximity Matrix: A proximity matrix [d(i,j]] accumulates the pair-wise indices of
proximity in a matrix in which each row and column represents a pattern. In
proximity matrix, di j denotes the similarity/dissimilarity between object i and j. Note
the matrix is always symmetric.

Similarity and dissimilarity can be summarized as follows:

(a) For a dissimilarity: d(i,i) = 0, for all i,
(b) For a similarity: d(i,i) = maxkd(i,k), for all k.

3.2 Group similarities

In cluster analysis it is some times convenient to use the distance measurement
between groups instead of distance of objects. One obvious method for constructing
distance measure between groups is to substitute group mean for the d variables in the
formula for inter individual measures such as Euclidean distance or other distance
metrics. If, for example, group A has a mean vector []X x x xA A A Ad= 1 2, ,...., and group

B has a mean vector, []X x x xB B B Bd= 1 2, ,...., , then one measure of the distance

between the two group would be as in Equation 3.

()
2

1
∑

=

−=
d

i

BiAiAB xxd (3)

3.3 Hierarchical Clustering

A hierarchical classification is a nested sequence of partitions. In this study we have
used exclusive (each object belongs to exactly one group) and agglomerative
classification. Agglomerative classification places each object in its own cluster and
merges these atomic clusters in to larger and larger clusters. The algorithms start with
a set of object and merge them to form the clusters and, ends when there are no object
to merge with any cluster. In this study, we modified the algorithms to stop when the
desired number of clusters reached.

Single linkage is one of the most popular methods, which is used for
agglomerative clustering, and it is also known as nearest neighbor technique. The
characteristic of the method is that distance between groups is defined as the closest
pair of objects. For example distance between a cluster with two objects and an object
can be defined as follows:

d(ij)k= min [dik , djk]

The algorithm starts with searching the proximity matrix and finds the smallest
entry. Smallest entry means the most similar textures they can form a cluster. Once
they are merged they are considered as a single object. The algorithm works until all
the objects are in the same cluster or, the desired number of clusters is reached.

There are different clustering methods, which can be defined according to
measurement of distances between clusters, such as centroid clustering, complete-
link, group average clustering and single-link clustering as described by [10]. We
used group average method in this study. In addition to clustering, we have selected a
representative for each cluster to help user to form texture queries. Representatives
are selected by the closest object to the average feature vector of each cluster.

4 Experimentation Results

In this section cluster based texture query experiments are presented. We used the
well-known methods mentioned in the previous sections. We have implemented an
application to observe the results of our study. The purposes of implementing this
application is both to provide an example for content-based texture query systems and
monitor the effectiveness of a cluster based texture query systems.

4.1 Image Test Bed

There are many texture sets for the purpose of evaluating the textured image retrieval
methods. We have used three of them; Brodatz Texture Set, Ohan & Dubes Texture
Set and VisTex Texture Set. In our experiments, we have used 14 samples from
Brodatz album as a test bed of homogeneously textured images as in some other
researches did [7,8]. Each of the 14 sample images has been divided into 25 partly
overlapping sub-images of size 170 × 170. We have selected 5 sub-images randomly
from each image and prepared totally 70 images. Our expectation was to obtain 14
clusters containing 5 textures, when desired number of clusters is 14. We are also
expecting each sub-texture, which was extracted from the same texture, to be in the
same cluster, since they are similar.

4.2 Experimentation Results

We have made a series of experiments to compare their performance on our test bed.
In our experiments, first we have tested homogeneity, variance, entropy and contrast

features of textures. The results obtained from experiments are summarized in
Figure-3.

It is clear that the retrieval performance of entropy is the worst among others.
However it is hard to say which one is the best. It depends on the texture domain. For
instance, precision value of homogeneity for query 7 is better than variance’s value.
But variance gives better result than homogeneity for query 4.

Recall and precision are popular measures for retrieval evaluation. Recall signifies the
proportion of relevant images in the entire database that are retrieved in the query. In
other words Recall is the ability to retrieve relevant textures. Precision is the ability to
reject nonrelevant textures. A good system should have high precision and recall
values as in [6].

The X-axis of the Figure 4 and Figure 5 shows the number of clusters. We used
two models; 1234 which means distances, d, 1,2,3 and 4 are used to extract features
and 2345 means distance 2,3,4 and 5 are used for feature extraction. We did 7
experiments for each feature type to observe the effect of number of clusters in query.
We were expecting the performance to be the best, when there are 14 clusters (as
explained in previous sections). We could yield two results from these experiments,

����

����

����

����

����

����

� � � � � � � � � ��
4XHU\ ,G

3
UH
F
LV
R
Q

+RPRJHQLW\

9DULDQFH

(QWURS\

&RQWUDVW

Fig. 3. Precison graph for all features on Texture Query Experiments.

Fig. 4. Recall graph of two feature types and their models

0,00

0,20

0,40

0,60

0,80

1,00

of queries

Recall Contrast1234
Contrast2345
Homogenity1234
Homogenity2345

16 15 14 13 12 11 10 9

one is which feature type is better on clustering and other is how many clusters gives
the best performance. From Figure 5 we can conclude that the more cluster means the
higher value in precision. In another word, ability to reject non-relevant texture
increases when we set more clusters. As can be seen from the Figure 5, contrast with
model 1234 gives the best performance on precision. The ability to retrieve relevant
textures can be measured by the values of recall. As can be seen from the Figure-6, it
is best with contrast in model 1234.

In this study, an application has been developed to see the effects of cluster-based
texture retrieval. A typical user interface screen of the application can be seen in
Figure-6. In the left side of the screen-shot the representatives of each cluster are
shown and, one of the image has been clicked as a query. The query results returned
for the query can be seen in right side of Figure-6.

Fig 6 : An example cluster query on gravel155.2.bmp.

���

���

���

���

���

�

� RI FOXVWHUV

�
S
UH
F
LV
LR
Q

+RPRJHQLW\����

&RQWUDVW����

&RQWUDVW����

+RPRJHQLW\����

�� �� �� �� �� �� �� �

Fig. 5. Precision graph of two feature types and their models

5 Conclusion and future works

In this study, we have developed a system that allows user to input a textured image
and retrieves textures from a database similar to the query. We proposed to cluster
textures into groups according to their similarities to make the query expressions
easier. Hierarchical clustering techniques have been used for grouping textures in to
clusters and selected a representative texture for each group to make the query
expressions easier.

We have developed an application both to show its effectiveness and to evaluate
the system performance by precision and recall measures. Experimentation has been
shown that the results are promising and the cluster-based texture retrieval is
acceptable for content based image retrieval.

In this study, we have worked on only single textured images. We are planning to
extend our study to the domain independent multi-textured images and test its
scalability for more images in future.

References

1. Aksoy, S. & Haralick, R. M. (1998). Content Based Image Database Retrieval Using
Variance of Gray Level Spatial Dependencies. IAPR International Workshop on
Multimedia Information Analysis & Retrieval (MINAR’98), Hong Kong.

2. Andrey P. & Tarroux P. (August 1995). Unsupervised segmentation of Markov
random field modeled textured images using selection relaxation. Technical
Report: BioInfo-95-03.

3. Everitt, B. S. (1980). Cluster Analysis. John Wiley & Sons.
4. Haralick, R.M. (May 1979). Statistical and structural approaches to texture.

Proceedings of the IEEE, 67(5): 786-804.
5. Manjunath B. S. & Ma W. Y. (August 1996). Texture features for browsing and

retrieval of image data. IEEE Transactions on Pattern Analysis and Machine
Intelligence. Vol. 18, No:8, pp. 837-842

6. Ozkarahan, E. (1986). Database Machines and Database Management. Prentice
Hall, New Jersey.

7. Puzicha, J. & Hofmann, T. & Buhman, J.(1998). Histogram Clustering for
Unsupervised Segmentation and Image Retrieval.

8. Smith J. R., & Chang S.F. (May 1996). Automated binary texture feature sets for
image retrieval. Proceedings of the IEEE. ICASSP-96. Atlanta, GA.

9. Smith, J. R. & Chang, S. F. (1994). Transform features for texture classification and
discrimination in large image databases. Proceedings of IEEE International Conference on
Image Processing (ICIP-94), Austin, Texas.

10. Jain, A. K. & Dubes, R. C. (1988). Algorithms for Clustering Data, Prentice Hall.

