Advanced Multimedia

Image Content Analysis
Tamara Berg

How are images stored?

Reminder: Images

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

Images are sampled and quantized measurements of light hitting a sensor.

What do we mean by sampled?

What is being quantized?

Images in the computer

Images in the computer

254	254	254	254	254	254	254	254	254	250	245	236	232	227	223	221	221	222	225	229	234	241	248	252	254	254	254	254	254	254	254	254	254
254				254		254		241		223		210				198	200	203	207	212	219	226	237	246	253	254	254	254	254	254	254	254
254	254	254	254	255	254	246	234	222	212	203	195	189	184	180	177	176	178			191		206	216	227	239	250	254	254	254	254	254	254
254	254	254	254	252	243	228	215	202	192	183	174	167	161	158	155	154	155			169			196	209	220	235	248	254	254	254	254	254
254	254	254	252	241	225	211	197	184	173	163	153	147	140	136	133	133	134	137	142	148	157	166	178	190	203	217	232	248	255	254	254	254
254	254	254	243	225	209	194	180	166	154	143	133	125	118	114	111	110	112	115	121	128	137	148	160	172	186	202	217	233	250	254	254	254
253	254	247	229	211	194	178	163	149	136	123	113	105	97	92	90	89	90	94	100	108	118			155				219	238	252	255	254
254	251	235	216	197	180	163	147	132	118	105	94	83	74	70	67	66	68	72	78	88	98	110	123	139	154	171	188	205	224	243	254	254
254	243	223	203	185	167	149	132	116	101	87	74	64	55	49	45	45	46	51	59	68	80	93	107	122				192	211		250	255
251	232	213	193	173	154	135	118	101	85	69	56	44	34	27	22	22	24	30	39	50	62	77	92	108			162			220	242	254
245	224	203	182	163	143	124	104	87	69	52	38	25	13	- 6	4	3	5	9	18	32	45	61	76	95					192	212	234	249
237	216	195	174	154	133	113	93	75	57	39	22	7	1	0	0	0	0	0	3	13	29	46	64	84			142		184	204	226	242
232	211	188	167	147	126	105	84	65	45	25	7	0	0	0	0	0	0	0	0	2	15	34	53	73							220	236
228	206	183	162	141	119	98	76	56	36	14	0	0	0	0	0	0	0	0	0	0	4	24	45	65					172		216	231
225	202	181	158	137	114	94	71	49	28	7	0	0	0	0	0	0	0	0	0	0	0	15	37	58			125				213	229
	200					91	68	46	25	4	0	0	0	0	0	0	0	0	0	0	0	11	33	55	78		122		166		211	
	200			134		90	67	46	23	3	0	0	0	0	0	0	0	0	0	0	0	10	33	55	77	99					211	
	202					92	69	48	25	6	0	0	0	0	0	0	0	9	0	0	0	13	36	57	79		123				212	229
	204					96	75	54	32	11	0	0	0	0	0	0	0	0	0	0	2	20	40	62	84		127			191		230
	208					102	81	61	40	20	3	0	0	0	0	0	0	0	0	0	10	29	49	68	90		133			196	218	235
		192			130	109	89	69	51	33	14	2	0	0	0	0	0	0	0	7	22	40	60	78	98	119		159	181	202	224	239
242	221					120	100	81	63	47	31	17	6	3	1	0	0	2	10	22	37	54	71	89	108		148			208	230	246
248		208			150	131	113	95	78	63	48	35	25	17	14	13	15	21	30	41	54	69	86	102	120		157			217	238	252
	238				162		126	109	94	78	66	55	46	40	36	35	38	42	50	59	72	86	100	116			169		207	226	246	254
	247		211			156		125	110	96	85	75	66	61	58	57	59	63	70	79	90	103	116		147		182		219	238	253	254
254		241		205		171		141		115	103	95	87	83	80	80	81	85	91	99	110	120	133		162	178		213	231	249	255	254
254					204		173	158	146	134	124	114	108	104	101	101	103	105		119	128	140	152	164	178	194	210	226	244	254	254	254
254			250		219		190	177			145					124	125				148	158	170	182	195	210		242	253	254	254	254
254	254		254	250	234	220	207	195			165				145		147			161		178	188	201	212	227	242	252	255	254	254	254
254			254	255	251	239	225	213			186		173		167					181		198	208	219	231	245	253	255	255	254	254	254
254			254			252		234		213						189				202	210	217	228	239	249	254	254	254	254	254	254	254
254	254			254		254	254		243		227				211					225	231	239	247	253	254	254	254	254	254	254	254	254
254	254	254	254	254	254	254	254	254	254	251	244	238	234	231	230	229	230	232	236	241	248	254	255	254	254	254	254	254	254	254	254	255

Ellsworth Kelly Red Blue Green, 1963

- Stored as 3d matrix of r, g, and b values at each pixel
 - Image matrix would be size NxMx3

$$-R = img(:,:,1)$$
 $G = img(:,:,2)$ $B = img(:,:,3)$

Red component

Green component

Blue component

- Stored as 3d matrix of r, g, and b values at each pixel
 - So img(i,j,:) = [r g b]

- Stored as 3d matrix of r, g, and b values at each pixel
 - So img(i,j,:) = [r g b].
 - In the case above this might be [255 0 0].

Useful Matlab image functions

- img = imread(filename); read in an image
- imagesc(img); display an image
- imwrite(img,outfilename); write an image
- img(i,j,:) indexes into the ith row, jth column of the image.
- subimg = img(1:10,20:30,:) extracts part of img.

Matlab demo 1

This will be very useful for homework 3!

Motivation

- Image retrieval
 - We have a database of images
 - We have a query image
 - We want to find those images in our database that are most similar to the query

Motivation

- Image retrieval
 - We have a database of images
 - We have a query image
 - We want to find those images in our database that are most similar to the query

 Similarly to text retrieval, & music retrieval we first need a representation for our data.

How should we represent an image?

First try

Just represent the image by all its pixel values

First try

Say we measure similarity as: sim = sum(abs(img1 - img2))

Img2 =

Img1 =

First try

Img1 =

Say we measure similarity as: sim = average diff between values in img1 and img2

Img2 =

How similar are these two images? Is this bad?

What do we want?

- Features should be robust to small changes in the image such as:
 - Translation
 - Rotation
 - Illumination changes

Second Try

Photo by: marielito

Represent the image as its average pixel color

Second Try

Photo by: marielito

Represent the image as its average pixel color Pros?

Cons?

Third Try

Photo by: marielito

Represent the image as a spatial grid of average pixel colors Pros?

Cons?

QBIC system

QBIC link

- First content based image retrieval system
 - Query by image content (QBIC)
 - IBM 1995
 - QBIC interprets the virtual canvas as a grid of coloured areas, then matches this grid to other images stored in the database.

Color is not always enough!

The representation of these two umbrella's should be similar....

Under a color based representation they look completely different!

What next?

Edges! But what are they & how do we find them?

Reminder: Convolution

Alternatively you can convolve the input signal with a filter to get frequency limited output signal.

Convolution:

$$(f*g)[n] \stackrel{\text{def}}{=} \sum_{m=-\infty}^{\infty} f[m] \cdot g[n-m]$$
 (convolution demo)

signal

filter

Alternatively you can convolve the input signal with a filter to get frequency limited output signal.

$$(f * g)[n] \stackrel{\text{def}}{=} \sum_{m=0}^{\infty} f[m] \cdot g[n-m]$$
 (convolution demo)

Alternatively you can convolve the input signal with a filter to get frequency limited output signal.

$$(f*g)[n] \stackrel{\text{def}}{=} \sum_{m=0}^{\infty} f[m] \cdot g[n-m]$$
 (convolution demo)

Alternatively you can convolve the input signal with a filter to get frequency limited output signal.

$$(f*g)[n] \stackrel{\text{def}}{=} \sum_{m=0}^{\infty} f[m] \cdot g[n-m]$$
 (convolution demo)

Alternatively you can convolve the input signal with a filter to get frequency limited output signal.

$$(f*g)[n] \stackrel{\mathrm{def}}{=} \sum^{\infty} f[m] \cdot g[n-m]$$
 (convolution demo)

Alternatively you can convolve the input signal with a filter to get frequency limited output signal.

$$(f*g)[n] \stackrel{\text{def}}{=} \sum^{\infty} f[m] \cdot g[n-m]$$
 (convolution demo)

Filtering

Alternatively you can convolve the input signal with a filter to get frequency limited output signal.

Convolution:

$$(f*g)[n] \stackrel{\text{def}}{=} \sum_{m=0}^{\infty} f[m] \cdot g[n-m]$$
 (convolution demo)

 1
 3
 2
 5
 3
 2
 4
 5

 *
 *
 *
 *
 *

 1/4
 1/2
 1/4

Convolution computes a weighted average.

= - 2.25 3 3.75 3.25 2.75 3.75 -

Images -> 2d filtering

Moving average

- Let's replace each pixel with a weighted average of its neighborhood
- The weights are called the filter kernel
- What are the weights for a 3x3 moving average?

Moving average

- Let's replace each pixel with a weighted average of its neighborhood
- The weights are called the filter kernel
- What are the weights for a 3x3 moving average?

"box filter"

Defining convolution in 2d

 Let f be the image and g be the kernel. The output of convolving f with g is denoted f * g.

$$(f * g)[m,n] = \sum_{k,l} f[m-k,n-l]g[k,l]$$

- Convention: kernel is "flipped"
- MATLAB: conv2 vs. filter2 (also imfilter)

Source: F. Durand

F[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

"box filter"

G[x,y]

G[x,y]

G[x,y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

What is this filter doing?

0	0	0
0	1	0
0	0	0

Original

Original

Filtered (no change)

Ori	giı	nal

0	0	0
0	0	1
0	0	0

Original

Shifted left By 1 pixel

	•	•	1
1 11	r1 (T11	ากไ
\ /	11>	, 11	ıal
<u> </u>		 -	

1	1	1	1
) 	1	1	1
9	1	1	1

Original

Blur (with a box filter)

Gaussian Kernel

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

0.003	0.013	0.022	0.013	0.003
0.013	0.059	0.097	0.059	0.013
0.022	0.097	0.159	0.097	0.022
0.013	0.059	0.097	0.059	0.013
0.003	0.013	0.022	0.013	0.003

$$5 \times 5$$
, $\sigma = 1$

 Constant factor at front makes volume sum to 1 (can be ignored, as we should re-normalize weights to sum to 1 in any case)

Example: Smoothing with a Gaussian

Edges

Edge detection

- **Goal:** Identify sudden changes (discontinuities) in an image
 - Intuitively, most semantic and shape information from the image can be encoded in the edges
 - More compact than pixels
- Ideal: artist's line drawing (but artist is also using object-level knowledge)

Origin of Edges

Edges are caused by a variety of factors

Source: Steve Seitz

Characterizing edges

 An edge is a place of rapid change in the image intensity function

source: Svetlana Lazebnik

Edge filters

Approximations of derivative filters:

Prewitt:
$$M_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$
; $M_y = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$

Sobel:
$$M_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$
; $M_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$

Roberts:
$$M_x = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
 ; $M_y = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

Convolve filter with image to get edge map

Edge filters

Approximations of derivative filters:

$$M_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

		- 1	1	1
M_y	=	0	0	0
		-1	-1	-1

Sobel:

$$M_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$
;

$$M_y = \begin{array}{c|cccc} 1 & 2 & 1 \\ \hline 0 & 0 & 0 \\ \hline -1 & -2 & -1 \end{array}$$

Roberts:

$$M_x = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

$$M_y = \begin{array}{c|c} 1 & 0 \\ \hline 0 & -1 \end{array}$$

Respond highly to vertical edges

Edge filters

Approximations of derivative filters:

Prewitt:
$$M_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

Sobel:

$$M_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

Roberts:

$$M_x = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

	1	1	1
$M_y =$	0	0	0
	-1	-1	-1
	1	2	1
	$\overline{}$	_	

$$M_y = \begin{array}{c|cccc} 1 & 2 & 1 \\ \hline 0 & 0 & 0 \\ \hline -1 & -2 & -1 \end{array}$$

$$M_y = \begin{array}{c|c} 1 & 0 \\ \hline 0 & -1 \end{array}$$

Edges: example

source: Svetlana Lazebnik

What about our umbrellas?

The representation of these two umbrella's should be similar....
Under a color based representation they look completely different!
How about using edges?

Edges

Red umbrella Gray umbrella

Edges extracted using convolution with Prewitt filter

Edges

Edges overlayed from red and gray umbrellas.

How is this?

MatLab

- Imfilter
- filter

Edge Energy in Spatial Grid

How is this representation?

Quick overview of other common kinds of Features

Important concept: Histograms

Graphical display of tabulated frequencies, shown as bars. It shows what proportion of cases fall into each of several categories. The categories are usually specified as non-overlapping intervals of some variable.

Color Histograms

Representation of the distribution of colors in an image, derived by counting the number of pixels of each of given set of color ranges in a typically (3D) color space (RGB, HSV etc).

What are the bins in this histogram?

Image Shapes

- Determined only by outer boundary of an object
- Rigid Objects
 - Transformations: Translations, Rotations, uniform scaling (size changes)
 - Mirror image can be a different image
 - Congruent objects
- Non-rigid Objects (deformable shapes)
 - Ex: a person on different positions

Shape Descriptors: shape context

Representation of the local shape around a feature location (star) – as histogram of edge points in an image relative to that location. Computed by counting the edge points in a log polar space.

So what are the bins of this histogram?

Shape descriptors: SIFT

- Descriptor computation:
 - Divide patch into 4x4 sub-patches
 - Compute histogram of gradient orientations (convolve with filters that respond to edges in different directions) inside each subpatch
 - Resulting descriptor: 4x4x8 = 128 dimensions

David G. Lowe. "Distinctive image features from scale-invariant keypoints." *IJCV* 60 (2), pp. 91-110, 2004.

source: Svetlana Lazebnik

Texture Features

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003