RETICULADOS

Problemas Hard e Técnicas Criptográficas

PERTINÊNCIA

Criptografia Assimétrica

Criptografia Simétrica

Criptografia Assimétrica

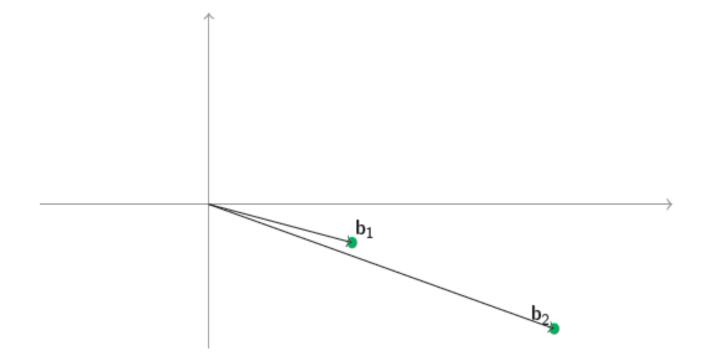
Chave Comum

Chave Pública

Chave Privada

Derivar a chave privada a partir da chave pública é tão difícil quanto inverter uma função unidireccional.

Em Reticulados

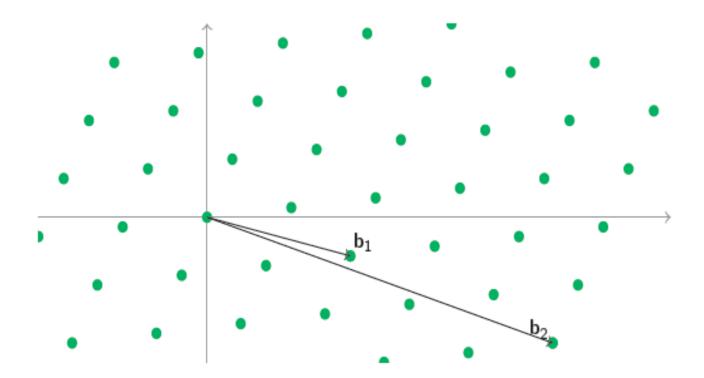

VECTORES CURTOS

VECTORES PRÓXIMOS

Em Reticulados

VECTORES CURTOS

VECTORES PRÓXIMOS

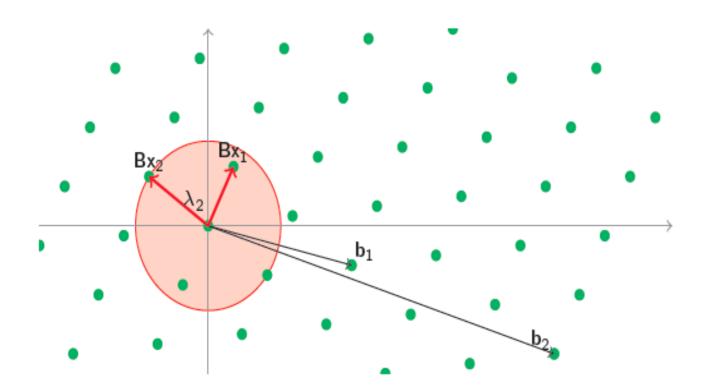


Shortest Vector Problem (SVP)

Em Reticulados

VECTORES CURTOS

VECTORES PRÓXIMOS

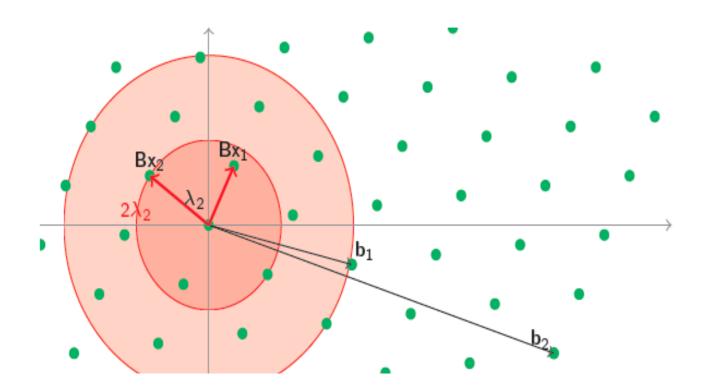


Shortest Vector Problem (SVP)

Em Reticulados

VECTORES CURTOS

VECTORES PRÓXIMOS

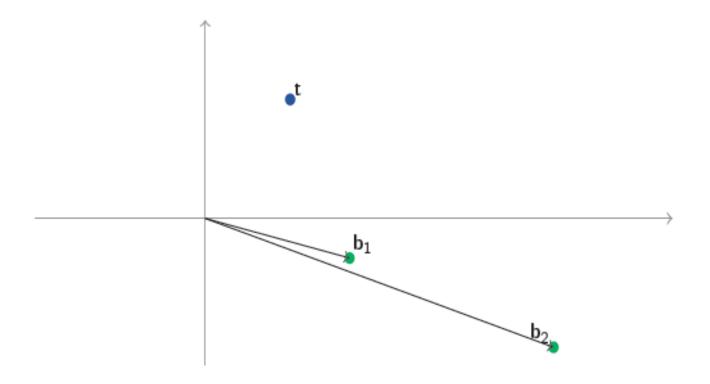


Shortest Vector Problem (SVP)

Em Reticulados

VECTORES CURTOS

VECTORES PRÓXIMOS

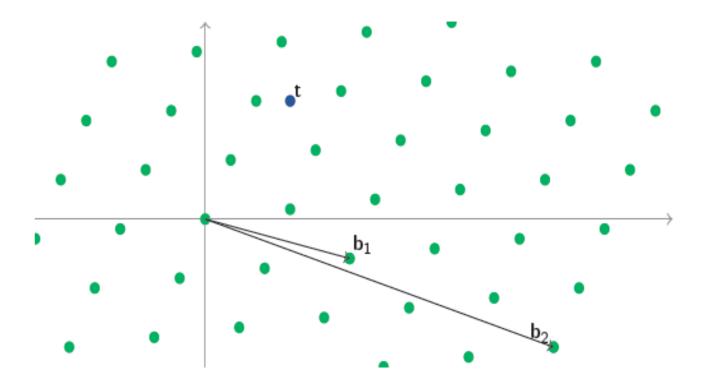


Approximate Shortest Vector Problem (SVPγ)

Em Reticulados

VECTORES CURTOS

VECTORES PRÓXIMOS

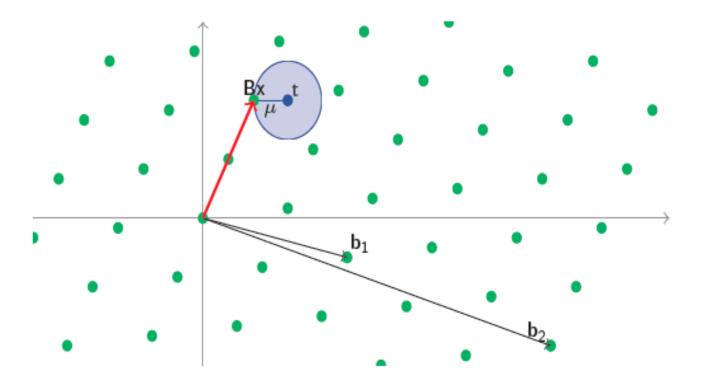


Closest Vector Problem (CVP)

Em Reticulados

VECTORES CURTOS

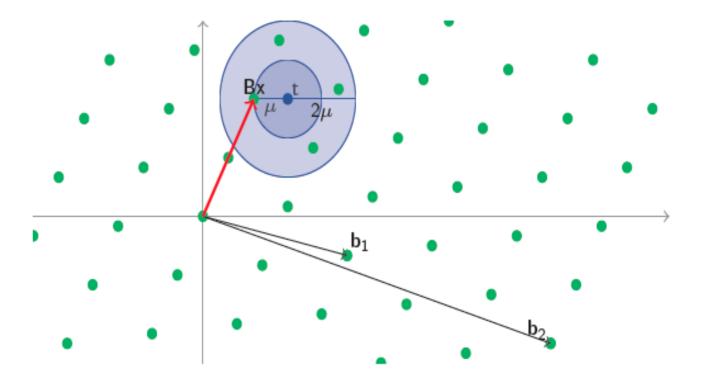
VECTORES PRÓXIMOS



Closest Vector Problem (CVP)

Em Reticulados

VECTORES CURTOS

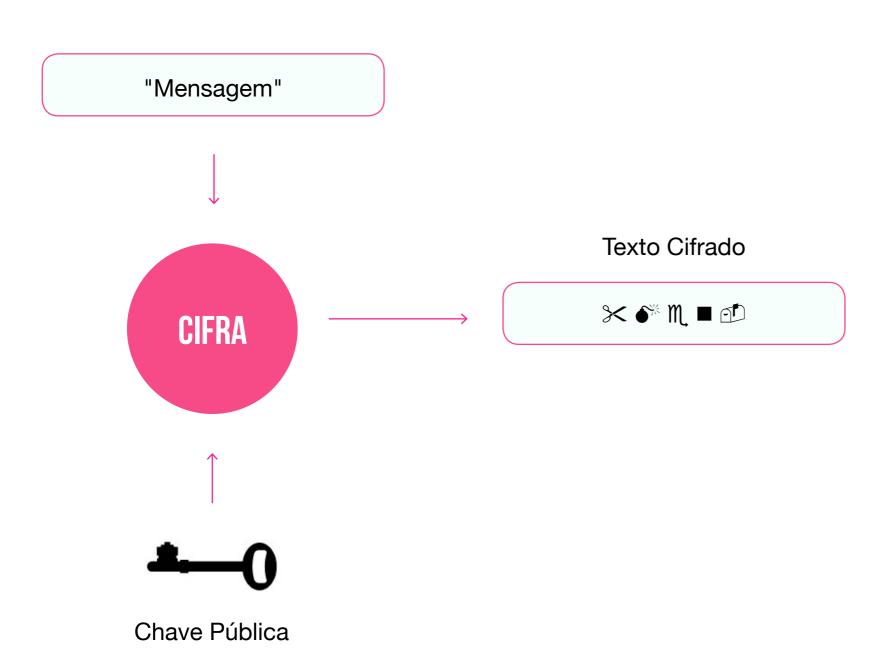

VECTORES PRÓXIMOS

Em Reticulados

VECTORES CURTOS

VECTORES PRÓXIMOS

Esquemas de Criptografia de Chave Pública


EMISSOR

"Mensagem" **CIFRA**

Chave Pública

Esquemas de Criptografia de Chave Pública

EMISSOR

Esquemas de Criptografia de Chave Pública

EMISSOR

"Mensagem"

Texto Cifrado

CIFRA

Texto Cifrado

CIFRA

Texto Cifrado

CIFRA

Texto Cifrado

Chave Pública Chave Privada

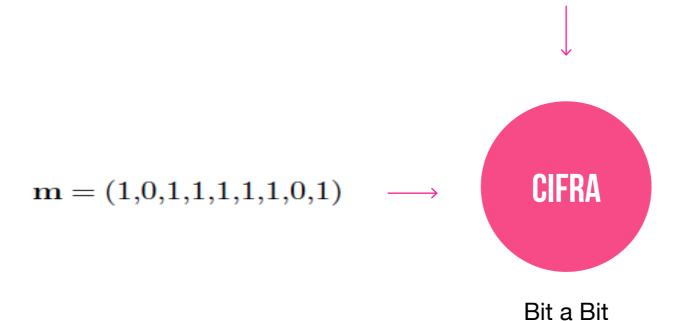
Criptosistema de Ajtai-Dwork

Chave Privada

Vector \mathbf{u} escolhido aleatoriamente da esfera \mathcal{S}_n

$$\mathcal{S}_n = \{ x \in \mathbb{R}^n : ||x|| \leqslant n^{-c} \}$$

Chave Pública

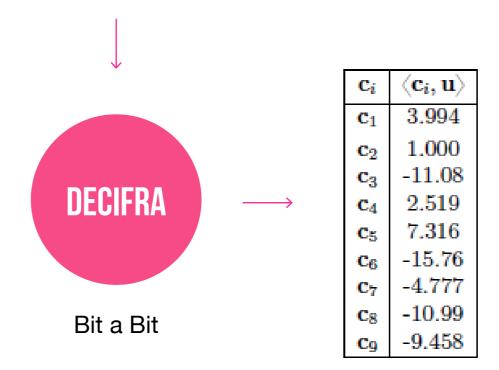

n+m vectores $\mathbf{w_1},...,\mathbf{w_n},\mathbf{v_1},...,\mathbf{v_m}$ retirados de \mathcal{H}_u

Criptosistema de Ajtai-Dwork

Chave Pública

n+m vectores $\mathbf{w_1},...,\mathbf{w_n},\mathbf{v_1},...,\mathbf{v_m}$ retirados de \mathcal{H}_u

 $\mathbf{c} = ((9.986, 3.746, -2.791), (1.365, 1.417, -3.108), (-16.955, -1.992, 9.227), \\ (-5.223, -1.139, 1.278), (5.590, -3.151, -6.728), (-7.319, 9.134, 17.364), \\ (-3.014, 3.752, 2.509), (-9.874, 4.964, 7.645), (-9.039, 4.727, 5.035)).$


Criptosistema de Ajtai-Dwork

Chave Privada

Vector \mathbf{u} escolhido aleatoriamente da esfera \mathcal{S}_n

$$\mathcal{S}_n = \{ x \in \mathbb{R}^n : ||x|| \leqslant n^{-c} \}$$

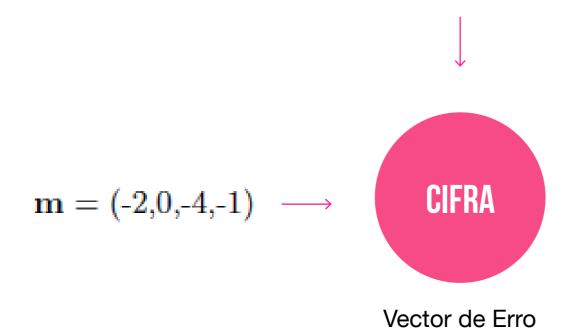
 $\mathbf{m'} = (0,0,0,1,0,0,0,0,1) \ X$

Criptosistema GGH

Chave Privada

Matriz secreta R

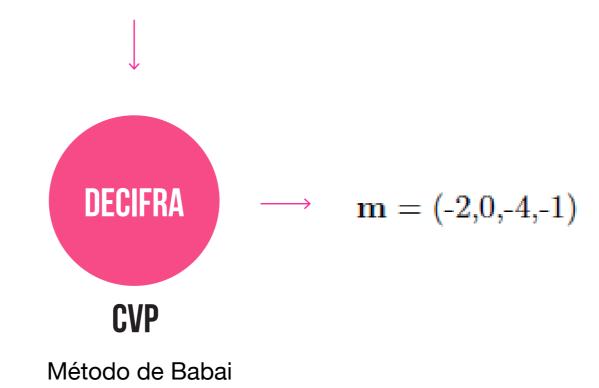
Chave Pública


Matriz ${\cal B}$ gerada aleatoriamente a partir de ${\cal R}$

Criptosistema GGH

Chave Pública

Matriz ${\cal B}$ gerada aleatoriamente a partir de ${\cal R}$


$$\mathbf{c} = \mathcal{B}\mathbf{m} + \mathbf{e} = (-3, 1, -3, -1438).$$

Criptosistema GGH

Chave Privada

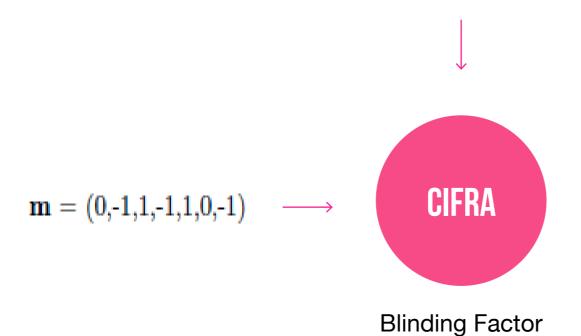
Matriz secreta R

Criptosistema NTRU

Chave Privada

Dados dois polinómios f e g, considerar a multiplicação matricial $[\mathcal{C}^*\mathbf{f}]\mathbf{g}$ equivalente ao produto da convolução dos polinómios f * g. Sendo \mathbf{f} e \mathbf{g} os vectores coeficiente dos polinómios, a chave pri vada corresponde ao vector curto (\mathbf{f},\mathbf{g}) .

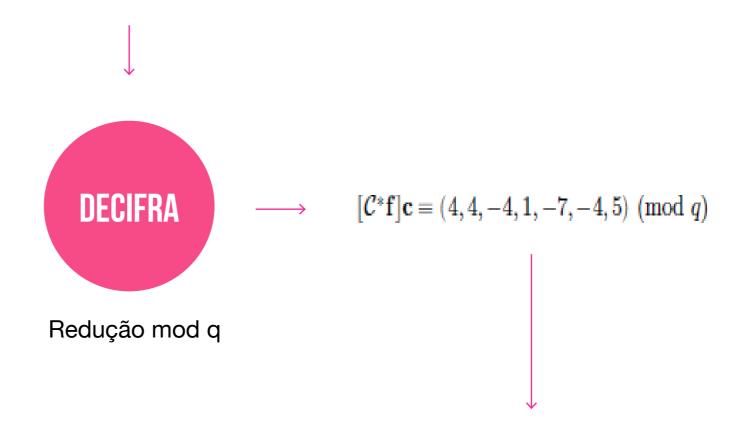
Chave Pública


$$[\mathcal{C}^*\mathbf{f}]\mathbf{h} \equiv p\mathbf{g} \pmod{q} \Rightarrow \mathbf{h} = p[\mathcal{C}^*\mathbf{f}]^{-1}\mathbf{g} \mod{q}$$

Criptosistema NTRU

Chave Pública

$$[\mathcal{C}^*\mathbf{f}]\mathbf{h} \equiv p\mathbf{g} \pmod{q} \Rightarrow \mathbf{h} = p[\mathcal{C}^*\mathbf{f}]^{-1}\mathbf{g} \pmod{q}$$


$$c = [C^*\mathbf{h}]\mathbf{r} + \mathbf{m} \equiv (11, 2, 14, 30, 29, 25, 16) \pmod{q}$$

Criptosistema NTRU

Chave Privada

Dados dois polinómios $f \in g$, considerar a multiplicação matricial $[\mathcal{C}^*f]g$ equivalente ao produto da convolução dos polinómios f * g. Sendo $f \in g$ os vectores coeficiente dos polinómios, a chave pri vada corresponde ao vector curto (f,g).

$$[\mathcal{C}^*\mathbf{f}]_p^{-1} \cdot (4, 4, -4, 1 - -7, -4, 5) \equiv (0, -1, 1, -1, 1, 0, -1)(mod\mathbf{p}) = \mathbf{m}$$

Esquemas de Assinatura Digital

ASSINATURA Texto Cifrado $\times M = 0$ "Mensagem" FUNÇÃO DE **CIFRA** HASH Chave Privada Texto Comprimido

Esquemas de Assinatura Digital

ASSINATURA Texto Cifrado \times \bullet \mathbb{M} \blacksquare \bullet "Mensagem" FUNÇÃO DE **CIFRA** HASH Chave Privada Texto Comprimido

Esquemas de Assinatura Digital

SEGURANÇA

A probabilidade de um qualquer $forger \mathcal{F}$, após visualizar assinaturas de mensagens à sua escolha, conseguir assinar uma mensagem cuja assina tura ainda não tenha visto é desprezável.

Esquemas de Assinatura Digital

SEGURANÇA

A probabilidade de um qualquer $forger \mathcal{F}$, após visualizar assinaturas de mensagens à sua escolha, conseguir assinar uma mensagem cuja assina tura ainda não tenha visto é desprezável.

STRONG UNFORGEABILITY

Um $forger \mathcal{F}$ não é capaz de apresentar uma assinatura diferente para u ma mensagem de cuja assinatura este já tenha tido conhecimento.

Esquemas de Assinatura Digital

SEGURANÇA

A probabilidade de um qualquer $forger \mathcal{F}$, após visualizar assinaturas de mensagens à sua escolha, conseguir assinar uma mensagem cuja assina tura ainda não tenha visto é desprezável.

STRONG UNFORGEABILITY

Um $forger \mathcal{F}$ não é capaz de apresentar uma assinatura diferente para u ma mensagem de cuja assinatura este já tenha tido conhecimento.

Autenticação

Integridade

Não repudiação

Esquemas de Assinatura Digital

LYUBASHEVSKY

Esquema de Identificação

Esquema de Assinatura

Esquemas de Assinatura Digital

LYUBASHEVSKY

Esquema de Identificação

Esquema de Assinatura

LYUBASHEVSKY E MICCIANCIO

Esquema de Assinatura One-time

Esquema de Assinatura

CONCLUSÕES

- As construções criptográficas baseadas em reticulados constituem uma promessa na área da Criptografia Pós-Quântica;
- Nas situações em que o adversário é não passivo, a noção de segurança dos sistemas apresentados não é suficientemente robusta;
- Os esquemas de assinatura baseados em reticulados não atingiram ainda o nível de desenvolvimento das restantes construções criptográficas.