
1

2: Application Layer 40

User-server state: cookies

Many major Web sites
use cookies

Four components:
1) cookie header line of

HTTP response message
2) cookie header line in

HTTP request message
3) cookie file kept on

user’s host, managed by
user’s browser

4) back-end database at
Web site

Example:
❒  Susan always access

Internet always from PC
❒  visits specific e-

commerce site for first
time

❒  when initial HTTP
requests arrives at site,
site creates:
v  unique ID
v  entry in backend

database for ID

2: Application Layer 41

Cookies: keeping “state” (cont.)
client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734
usual http request msg Amazon server

creates ID
1678 for user create

 entry

usual http response
Set-cookie: 1678

ebay 8734
amazon 1678

usual http request msg
cookie: 1678 cookie-

spectific
action

access
ebay 8734
amazon 1678

backend
database

2

2: Application Layer 42

Cookies (continued)
What cookies can bring:
❒  authorization
❒  shopping carts
❒  recommendations
❒  user session state

(Web e-mail)

Cookies and privacy:
❒  cookies permit sites to

learn a lot about you
❒  you may supply name

and e-mail to sites

aside

How to keep “state”:
❒  protocol endpoints: maintain state

at sender/receiver over multiple
transactions

❒  cookies: http messages carry state

2: Application Layer 43

Web caches (proxy server)

❒  user sets browser:
Web accesses via
cache

❒  browser sends all
HTTP requests to
cache
v  object in cache: cache

returns object
v  else cache requests

object from origin
server, then returns
object to client

Goal: satisfy client request without involving origin server

client

Proxy
server

client

HTTP request

HTTP response

HTTP request HTTP request

origin
server

origin
server

HTTP response HTTP response

3

2: Application Layer 44

More about Web caching

❒  cache acts as both
client and server

❒  typically cache is
installed by ISP
(university, company,
residential ISP)

Why Web caching?
❒  reduce response time

for client request
❒  reduce traffic on an

institution’s access
link.

❒  Internet dense with
caches: enables “poor”
content providers to
effectively deliver
content (but so does
P2P file sharing)

2: Application Layer 45

Caching example
Assumptions
❒  average object size = 100,000

bits
❒  avg. request rate from

institution’s browsers to
origin servers = 15/sec

❒  delay from institutional router
to any origin server and back
to router = 2 sec

Consequences
❒  utilization on LAN = 15%
❒  utilization on access link = 100%
❒  total delay = Internet delay +

access delay + LAN delay
 = 2 sec + minutes + milliseconds

origin
servers

public
 Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

4

2: Application Layer 46

Caching example (cont)
possible solution
❒  increase bandwidth of access

link to, say, 10 Mbps
consequence
❒  utilization on LAN = 15%
❒  utilization on access link = 15%
❒  Total delay = Internet delay +

access delay + LAN delay
 = 2 sec + msecs + msecs
❒  often a costly upgrade

origin
servers

public
 Internet

institutional
network 10 Mbps LAN

10 Mbps
access link

institutional
cache

2: Application Layer 47

Caching example (cont)

possible solution: install
cache

❒  suppose hit rate is 0.4
consequence
❒  40% requests will be

satisfied almost immediately
❒  60% requests satisfied by

origin server
❒  utilization of access link

reduced to 60%, resulting in
negligible delays (say 10
msec)

❒  total avg delay = Internet
delay + access delay + LAN
delay = .6*(2.01) secs + .
4*milliseconds < 1.4 secs

origin
servers

public
 Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

5

2: Application Layer 48

Conditional GET

❒  Goal: don’t send object if
cache has up-to-date cached
version

❒  cache: specify date of
cached copy in HTTP request
If-modified-since:

<date>

❒  server: response contains no
object if cached copy is up-
to-date:
HTTP/1.0 304 Not

Modified

cache server

HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified

HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

2: Application Layer 49

Chapter 2: Application layer

❒  2.1 Principles of
network applications

❒  2.2 Web and HTTP
❒  2.3 FTP
❒  2.4 Electronic Mail

v  SMTP, POP3, IMAP
❒  2.5 DNS

❒  2.6 P2P applications
❒  2.7 Socket programming

with TCP
❒  2.8 Socket programming

with UDP
❒  2.9 Building a Web

server

6

2: Application Layer 50

FTP: the file transfer protocol

❒  transfer file to/from remote host
❒  client/server model

v  client: side that initiates transfer (either to/from
remote)

v  server: remote host
❒  ftp: RFC 959
❒  ftp server: port 21

file transfer FTP
server

FTP
user

interface
FTP

client

local file
system

remote file
system

user
at host

2: Application Layer 51

FTP: separate control, data connections

❒  FTP client contacts FTP server
at port 21, TCP is transport
protocol

❒  client authorized over control
connection

❒  client browses remote
directory by sending commands
over control connection.

❒  when server receives file
transfer command, server
opens 2nd TCP connection (for
file) to client

❒  after transferring one file,
server closes data connection.

FTP
client

FTP
server

TCP control connection
port 21

TCP data connection
port 20

❒  server opens another TCP
data connection to transfer
another file.

❒  control connection: “out of
band”

❒  FTP server maintains “state”:
current directory, earlier
authentication

7

2: Application Layer 52

FTP commands, responses

Sample commands:
❒  sent as ASCII text over

control channel
❒  USER username
❒  PASS password
❒  LIST return list of file in

current directory
❒  RETR filename retrieves

(gets) file
❒  STOR filename stores

(puts) file onto remote
host

Sample return codes
❒  status code and phrase (as

in HTTP)
❒  331 Username OK,

password required
❒  125 data connection

already open;
transfer starting

❒  425 Can’t open data
connection

❒  452 Error writing
file

2: Application Layer 53

FTP: let us try it out...
and get /pub/rfcs/rfc-index.txt.pdf
(submit results via elearning platform)
 Usage of commands:
Make a telnet connection to

ftp.di.uminho.pt , port 21,
and use:

❒  USER anonymous
❒  PASS any-password
❒  PASV enter the passive

mode
❒  look and record PASV

<response>
❒  Other commands: RETR

filename, LIST
filename, QUIT

Data connection:
A data connection must be

opened. Where to?
❒  <response> =

(X,Y,Z,W,PH,PL) where

❒  IP address = X.Y.Z.W
(or X*256^3 + Y*256^2
+ Z*256 + W)

❒  Port # = PH*256 + PL
❒  … … … (how can you

get the file?)

8

2: Application Layer 54

Chapter 2: Application layer

❒  2.1 Principles of
network applications

❒  2.2 Web and HTTP
❒  2.3 FTP
❒  2.4 Electronic Mail

v  SMTP, POP3, IMAP
❒  2.5 DNS

❒  2.6 P2P applications
❒  2.7 Socket programming

with TCP
❒  2.8 Socket programming

with UDP

2: Application Layer 55

Electronic Mail

Three major components:
❒  user agents
❒  mail servers
❒  simple mail transfer

protocol: SMTP

User Agent
❒  a.k.a. “mail reader”
❒  composing, editing, reading

mail messages
❒  e.g., Eudora, Outlook, elm,

Mozilla Thunderbird
❒  outgoing, incoming messages

stored on server

user mailbox

outgoing
message queue

mail
server

user
agent

user
agent

user
agent mail

server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

9

2: Application Layer 56

Electronic Mail: mail servers

Mail Servers
❒  mailbox contains incoming

messages for user
❒  message queue of outgoing

(to be sent) mail messages
❒  SMTP protocol between mail

servers to send email
messages
v  client: sending mail

server
v  “server”: receiving mail

server

mail
server

user
agent

user
agent

user
agent mail

server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

2: Application Layer 57

Electronic Mail: SMTP [RFC 2821]

❒  uses TCP to reliably transfer email message from client
to server, port 25

❒  direct transfer: sending server to receiving server
❒  three phases of transfer

v  handshaking (greeting)
v  transfer of messages
v  closure

❒  command/response interaction
v  commands: ASCII text
v  response: status code and phrase

❒  messages must be in 7-bit ASCII

10

2: Application Layer 58

Scenario: Alice sends message to Bob
1) Alice uses UA to compose

message and “to”
bob@someschool.edu

2) Alice’s UA sends message
to her mail server; message
placed in message queue

3) Client side of SMTP opens
TCP connection with Bob’s
mail server

4) SMTP client sends Alice’s
message over the TCP
connection

5) Bob’s mail server places
the message in Bob’s
mailbox

6) Bob invokes his user agent
to read message

user
agent

mail
server

mail
server user

agent
1

2 3 4 5 6

2: Application Layer 59

Sample SMTP interaction
 S: 220 hamburger.edu
 C: HELO crepes.fr
 S: 250 Hello crepes.fr, pleased to meet you
 C: MAIL FROM: <alice@crepes.fr>
 S: 250 alice@crepes.fr... Sender ok
 C: RCPT TO: <bob@hamburger.edu>
 S: 250 bob@hamburger.edu ... Recipient ok
 C: DATA
 S: 354 Enter mail, end with "." on a line by itself
 C: Do you like ketchup?
 C: How about pickles?
 C: .
 S: 250 Message accepted for delivery
 C: QUIT
 S: 221 hamburger.edu closing connection

11

2: Application Layer 60

Try SMTP interaction for yourself:

❒  telnet servername 25
❒  see 220 reply from server
❒  enter HELO, MAIL FROM, RCPT TO, DATA, QUIT

commands
above lets you send email without using email client

(reader)

2: Application Layer 61

Try SMTP interaction for yourself…
(submit results via elearning.uminho.pt)
❒  Identify a mail servername you can
access (hint: use “dig” (DNS Mail
eXchanger) MX)

❒  telnet servername 25
❒  see 220 reply from server
❒  enter HELO, EHLO, MAIL FROM, RCPT TO,

DATA, QUIT commands
above lets you send email without using email client

(reader)

12

2: Application Layer 62

SMTP: final words
❒  SMTP uses persistent

connections
❒  SMTP requires message

(header & body) to be in 7-
bit ASCII

❒  SMTP server uses
CRLF.CRLF to determine
end of message

Comparison with HTTP:
❒  HTTP: pull
❒  SMTP: push

❒  both have ASCII
command/response
interaction, status codes

❒  HTTP: each object
encapsulated in its own
response msg

❒  SMTP: multiple objects
sent in multipart msg

2: Application Layer 63

Mail message format

SMTP: protocol for
exchanging email msgs

RFC 822: standard for text
message format:

❒  header lines, e.g.,
v  To:
v  From:
v  Subject:
different from SMTP

commands!
❒  body

v  the “message”, ASCII
characters only

header

body

blank
line

13

2: Application Layer 64

Message format: multimedia extensions
❒  MIME: multimedia mail extension, RFC 2045, 2056
❒  additional lines in msg header declare MIME content

type

From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe.
MIME-Version: 1.0
Content-Transfer-Encoding: base64
Content-Type: image/jpeg

base64 encoded data
.........................
......base64 encoded data

multimedia data
type, subtype,

parameter declaration

method used
to encode data

MIME version

encoded data

2: Application Layer 65

Mail access protocols

❒  SMTP: delivery/storage to receiver’s server
❒  Mail access protocol: retrieval from server

v  POP: Post Office Protocol [RFC 1939]
•  authorization (agent <-->server) and download

v  IMAP: Internet Mail Access Protocol [RFC 1730]
•  more features (more complex)
•  manipulation of stored msgs on server

v  HTTP: gmail, Hotmail, Yahoo! Mail, etc.

user
agent

sender’s mail
server

user
agent

SMTP SMTP access
protocol

receiver’s mail
server

14

2: Application Layer 66

POP3 protocol
authorization phase
❒  client commands:

v  user: declare username
v  pass: password

❒  server responses
v  +OK
v  -ERR

transaction phase, client:
❒  list: list message numbers
❒  retr: retrieve message by

number
❒  dele: delete
❒  quit

 C: list
 S: 1 498
 S: 2 912
 S: .
 C: retr 1
 S: <message 1 contents>
 S: .
 C: dele 1
 C: retr 2
 S: <message 1 contents>
 S: .
 C: dele 2
 C: quit
 S: +OK POP3 server signing off

S: +OK POP3 server ready
C: user bob
S: +OK
C: pass hungry
S: +OK user successfully logged on

2: Application Layer 67

POP3 (more) and IMAP
More about POP3
❒  Previous example uses

“download and delete”
mode.

❒  Bob cannot re-read e-
mail if he changes
client

❒  “Download-and-keep”:
copies of messages on
different clients

❒  POP3 is stateless
across sessions

IMAP
❒  Keep all messages in

one place: the server
❒  Allows user to

organize messages in
folders

❒  IMAP keeps user state
across sessions:
v  names of folders and

mappings between
message IDs and folder
name

15

2: Application Layer 68

Chapter 2: Application layer

❒  2.1 Principles of
network applications

❒  2.2 Web and HTTP
❒  2.3 FTP
❒  2.4 Electronic Mail

v  SMTP, POP3, IMAP
❒  2.5 DNS

❒  2.6 P2P applications
❒  2.7 Socket programming

with TCP
❒  2.8 Socket programming

with UDP
❒  2.9 Building a Web

server

2: Application Layer 69

DNS: Domain Name System

People: many identifiers:
v  SSN, name, passport #

Internet hosts, routers:
v  IP address (32 bit) -

used for addressing
datagrams

v  “name”, e.g.,
ww.yahoo.com - used by
humans

Q: map between IP
addresses and name ?

Domain Name System:
❒  distributed database

implemented in hierarchy of
many name servers

❒  application-layer protocol
host, routers, name servers to
communicate to resolve names
(address/name translation)
v  note: core Internet

function, implemented as
application-layer protocol

v  complexity at network’s
“edge”

16

2: Application Layer 70

DNS
Why not centralize DNS?
❒  single point of failure
❒  traffic volume
❒  distant centralized

database
❒  maintenance

doesn’t scale!

DNS services
❒  hostname to IP

address translation
❒  host aliasing

v  Canonical, alias names
❒  mail server aliasing
❒  load distribution

v  replicated Web servers:
set of IP addresses for
one canonical name

2: Application Layer 71

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS servers yahoo.com

DNS servers
amazon.com
DNS servers

pbs.org
DNS servers

Distributed, Hierarchical Database

Client wants IP for www.amazon.com; 1st approx:
❒  client queries a root server to find com DNS server
❒  client queries com DNS server to get amazon.com

DNS server
❒  client queries amazon.com DNS server to get IP

address for www.amazon.com

17

2: Application Layer 72

DNS: Root name servers
❒  contacted by local name server that can not resolve name
❒  root name server:

v  contacts authoritative name server if name mapping not known
v  gets mapping
v  returns mapping to local name server

 13 root name
servers worldwide

b USC-ISI Marina del Rey, CA
l ICANN Los Angeles, CA

e NASA Mt View, CA
f Internet Software C. Palo Alto,
CA (and 36 other locations)

i Autonomica, Stockholm (plus
28 other locations)

k RIPE London (also 16 other locations)

m WIDE Tokyo (also Seoul,
Paris, SF)

a Verisign, Dulles, VA
c Cogent, Herndon, VA (also LA)
d U Maryland College Park, MD
g US DoD Vienna, VA
h ARL Aberdeen, MD
j Verisign, (21 locations)

2: Application Layer 73

TLD and Authoritative Servers

❒ Top-level domain (TLD) servers:
v  responsible for com, org, net, edu, etc, and all

top-level country domains uk, fr, ca, jp.
v Network Solutions maintains servers for com TLD
v Educause for edu TLD

❒ Authoritative DNS servers:
v  organization’s DNS servers, providing

authoritative hostname to IP mappings for
organization’s servers (e.g., Web, mail).

v  can be maintained by organization or service
provider

18

2: Application Layer 74

Local Name Server

❒  does not strictly belong to hierarchy
❒  each ISP (residential ISP, company,

university) has one.
v  also called “default name server”

❒ when host makes DNS query, query is sent
to its local DNS server
v  acts as proxy, forwards query into hierarchy

2: Application Layer 75

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4
5

6

authoritative DNS server
dns.cs.umass.edu

7 8

TLD DNS server

DNS name
resolution example

❒  Host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

iterated query:
❒  contacted server

replies with name of
server to contact

❒  “I don’t know this
name, but ask this
server”

19

2: Application Layer 76

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2

4 5

6

authoritative DNS server
dns.cs.umass.edu

7

8

TLD DNS server

3 recursive query:
❒  puts burden of name

resolution on
contacted name
server

❒  heavy load?

DNS name
resolution example

2: Application Layer 77

DNS: caching and updating records
❒  once (any) name server learns mapping, it caches

mapping
v  cache entries timeout (disappear) after some

time
v TLD servers typically cached in local name

servers
•  Thus root name servers not often visited

❒  update/notify mechanisms under design by IETF
v  RFC 2136
v  http://www.ietf.org/html.charters/dnsind-charter.html

20

2: Application Layer 78

DNS records
DNS: distributed db storing resource records (RR)

❒  Type=NS
v  name is domain (e.g.

foo.com)
v  value is hostname of

authoritative name server
for this domain

RR format: (name, value, type, ttl)

❒  Type=A
v  name is hostname
v  value is IP address

❒  Type=CNAME
v  name is alias name for some

“canonical” (the real) name
 www.ibm.com is really
 servereast.backup2.ibm.com

v  value is canonical name

❒  Type=MX
v  value is name of mailserver

associated with name

2: Application Layer 79

DNS protocol, messages
DNS protocol : query and reply messages, both with

same message format

msg header
❒  identification: 16 bit #

for query, reply to query
uses same #

❒  flags:
v  query or reply
v  recursion desired
v  recursion available
v  reply is authoritative

21

2: Application Layer 80

DNS protocol, messages

Name, type fields
 for a query

RRs in response
to query

records for
authoritative servers

additional “helpful”
info that may be used

2: Application Layer 81

Inserting records into DNS
❒  example: new startup “Network Utopia”
❒  register name networkuptopia.com at DNS registrar

(e.g., Network Solutions)
v  provide names, IP addresses of authoritative name server

(primary and secondary)
v  registrar inserts two RRs into com TLD server:

(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)

❒  create authoritative server Type A record for
www.networkuptopia.com; Type MX record for
networkutopia.com

❒  How do people get IP address of your Web site?

22

Let’s try it out… DNS:
(submit answers via elearning platform)
Submit answers via http://elearning.uminho.pt
1.  Which are the Name Servers and IP addresses for

1.  di.uminho.pt., uminho.pt., google.com.
2.  Get Authoritative answer for the IP address of:

1.  SOA server for sapo.pt., yahoo.com., publico.pt.
2.  MX record for di.uminho.pt., up.pt.

3.  Identify completely (including domain name, email address, surface
address, telephone #) an hypothetical attacker:
1.  193.136.19.190, 193.137.89.146
2.  193.137.90.45

4.  identify temporal parameters for domain
“gcom.di.uminho.pt”

2: Application Layer 82

