
1

2: Application Layer 2

Chapter 2: Application layer

❒  2.1 Principles of
network applications

❒  2.2 Web and HTTP
❒  2.3 FTP
❒  2.4 Electronic Mail

v  SMTP, POP3, IMAP
❒  2.5 DNS

❒  2.6 P2P applications
❒  2.7 Socket programming

with TCP
❒  2.8 Socket programming

with UDP

2: Application Layer 3

Chapter 2: Application Layer
Our goals:
❒  conceptual,

implementation
aspects of network
application protocols
v  transport-layer

service models
v  client-server

paradigm
v  peer-to-peer

paradigm

❒  learn about protocols
by examining popular
application-level
protocols
v  HTTP
v  FTP
v  SMTP / POP3 / IMAP
v  DNS

❒  programming network
applications
v  socket API

2

2: Application Layer 4

Some network apps

❒  e-mail
❒  web
❒  instant messaging
❒  remote login
❒  P2P file sharing
❒  multi-user network

games
❒  streaming stored video

clips

❒  voice over IP
❒  real-time video

conferencing
❒  grid computing
❒ 
❒ 
❒ 

2: Application Layer 5

Creating a network app
write programs that

v  run on (different) end
systems

v  communicate over network
v  e.g., web server software

communicates with browser
software

No need to write software
for network-core devices
v  Network-core devices do

not run user applications
v  applications on end systems

allows for rapid app
development, propagation

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

3

2: Application Layer 6

Chapter 2: Application layer

❒  2.1 Principles of
network applications

❒  2.2 Web and HTTP
❒  2.3 FTP
❒  2.4 Electronic Mail

v  SMTP, POP3, IMAP
❒  2.5 DNS

❒  2.6 P2P applications
❒  2.7 Socket programming

with TCP
❒  2.8 Socket programming

with UDP
❒  2.9 Building a Web

server

2: Application Layer 7

Application architectures

❒  Client-server
❒  Peer-to-peer (P2P)
❒ Hybrid of client-server and P2P

4

2: Application Layer 8

Client-server architecture
server:

v  always-on host
v  permanent IP address
v  server farms for

scaling
clients:

v  communicate with server
v  may be intermittently

connected
v  may have dynamic IP

addresses
v  do not communicate

directly with each other

client/server

2: Application Layer 9

Pure P2P architecture

❒  no always-on server
❒  arbitrary end systems

directly communicate
❒  peers are intermittently

connected and change IP
addresses

Highly scalable but
difficult to manage

peer-peer

5

2: Application Layer 10

Hybrid of client-server and P2P
Skype

v  voice-over-IP P2P application
v  centralized server: finding address of remote

party:
v  client-client connection: direct (not through

server)
Instant messaging

v  chatting between two users is P2P
v  centralized service: client presence detection/

location
•  user registers its IP address with central

server when it comes online
•  user contacts central server to find IP

addresses of buddies

2: Application Layer 11

Processes communicating
Process: program running

within a host.
❒  within same host, two

processes communicate
using inter-process
communication (defined
by OS).

❒  processes in different
hosts communicate by
exchanging messages

Client process: process
that initiates
communication

Server process: process
that waits to be
contacted

❒  Note: applications with
P2P architectures have
client processes &
server processes

6

2: Application Layer 12

Sockets

❒  process sends/receives
messages to/from its
socket

❒  socket analogous to door
v  sending process shoves

message out door
v  sending process relies on

transport infrastructure
on other side of door which
brings message to socket
at receiving process

process

TCP with
buffers,
variables

socket

host or
server

process

TCP with
buffers,
variables

socket

host or
server

Internet

controlled
by OS

controlled by
app developer

❒  API: (1) choice of transport protocol; (2) ability to fix
a few parameters (lots more on this later)

2: Application Layer 13

Addressing processes
❒  to receive messages,

process must have
identifier

❒  host device has unique
32-bit IP address

❒  Q: does IP address of
host suffice for
identifying the process?

7

2: Application Layer 14

Addressing processes
❒  to receive messages,

process must have
identifier

❒  host device has unique
32-bit IP address

❒  Q: does IP address of
host on which process
runs suffice for
identifying the
process?
v A: No, many

processes can be
running on same host

❒  identifier includes both
IP address and port
numbers associated with
process on host.

❒  Example port numbers:
v  HTTP server: 80
v  Mail server: 25

❒  to send HTTP message
to gaia.cs.umass.edu web
server:
v  IP address: 128.119.245.12
v  Port number: 80

❒  more shortly…

2: Application Layer 15

App-layer protocol defines

❒  Types of messages
exchanged,
v  e.g., request, response

❒  Message syntax:
v  what fields in messages &

how fields are delineated
❒  Message semantics

v  meaning of information in
fields

❒  Rules for when and how
processes send &
respond to messages

Public-domain protocols:
❒  defined in RFCs
❒  allows for

interoperability
❒  e.g., HTTP, SMTP
Proprietary protocols:
❒  e.g., Skype

8

2: Application Layer 16

What transport service does an app need?
Data loss
❒  some apps (e.g., audio) can

tolerate some loss
❒  other apps (e.g., file

transfer, telnet) require
100% reliable data
transfer

Timing
❒  some apps (e.g.,

Internet telephony,
interactive games)
require low delay to be
“effective”

Throughput
❒  some apps (e.g.,

multimedia) require
minimum amount of
throughput to be
“effective”

❒  other apps (“elastic
apps”) make use of
whatever throughput they
get

Security
❒  Encryption, data integrity,

…

2: Application Layer 17

Transport service requirements of common apps

Application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games
instant messaging

Data loss

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

Throughput

elastic
elastic
elastic
audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above
few kbps up
elastic

Time Sensitive

no
no
no
yes, 100’s
msec

yes, few secs
yes, 100’s
msec
yes and no

9

2: Application Layer 18

Internet transport protocols services

TCP service:
❒  connection-oriented: setup

required between client and
server processes

❒  reliable transport between
sending and receiving process

❒  flow control: sender won’t
overwhelm receiver

❒  congestion control: throttle
sender when network
overloaded

❒  does not provide: timing,
minimum throughput
guarantees, security

UDP service:
❒  unreliable data transfer

between sending and
receiving process

❒  does not provide:
connection setup,
reliability, flow control,
congestion control, timing,
throughput guarantee, or
security

Q: why bother? Why is
there a UDP?

2: Application Layer 19

Internet apps: application, transport protocols

Application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

Internet telephony

Application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
HTTP (eg Youtube),
RTP [RFC 1889]
SIP, RTP, proprietary
(e.g., Skype)

Underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

typically UDP

10

2: Application Layer 20

Chapter 2: Application layer

❒  2.1 Principles of
network applications
v  app architectures
v  app requirements

❒  2.2 Web and HTTP
❒  2.4 Electronic Mail

v  SMTP, POP3, IMAP
❒  2.5 DNS

❒  2.6 P2P applications
❒  2.7 Socket programming

with TCP
❒  2.8 Socket programming

with UDP

2: Application Layer 21

Web and HTTP

First some jargon
❒  Web page consists of objects
❒  Object can be HTML file, JPEG image, Java

applet, audio file,…
❒  Web page consists of base HTML-file which

includes several referenced objects
❒  Each object is addressable by a URL
❒  Example URL:
 www.someschool.edu/someDept/pic.gif

host name path name

11

2: Application Layer 22

HTTP overview

HTTP: hypertext
transfer protocol

❒  Web’s application layer
protocol

❒  client/server model
v  client: browser that

requests, receives,
“displays” Web objects

v  server: Web server
sends objects in
response to requests

PC running
Explorer

Server
running

Apache Web
server

Mac running
Navigator

HTTP request

HTTP request

HTTP response

HTTP response

2: Application Layer 23

HTTP overview (continued)

Uses TCP:
❒  client initiates TCP

connection (creates socket)
to server, port 80

❒  server accepts TCP
connection from client

❒  HTTP messages (application-
layer protocol messages)
exchanged between browser
(HTTP client) and Web
server (HTTP server)

❒  TCP connection closed

HTTP is “stateless”
❒  server maintains no

information about
past client requests

Protocols that maintain
“state” are complex!

❒  past history (state) must
be maintained

❒  if server/client crashes,
their views of “state” may
be inconsistent, must be
reconciled

aside

12

2: Application Layer 24

HTTP connections

Nonpersistent HTTP
❒  At most one object is

sent over a TCP
connection.

Persistent HTTP
❒  Multiple objects can

be sent over single
TCP connection
between client and
server.

2: Application Layer 25

Nonpersistent HTTP
Suppose user enters URL www.someSchool.edu/

someDepartment/home.index

1a. HTTP client initiates TCP
connection to HTTP server
(process) at
www.someSchool.edu on port 80

2. HTTP client sends HTTP
request message (containing
URL) into TCP connection
socket. Message indicates
that client wants object
someDepartment/home.index

1b. HTTP server at host
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts” connection,
notifying client

3. HTTP server receives request
message, forms response
message containing requested
object, and sends message
into its socket

time

(contains text,
references to 10

jpeg images)

13

2: Application Layer 26

Nonpersistent HTTP (cont.)

5. HTTP client receives response
message containing html file,
displays html. Parsing html
file, finds 10 referenced jpeg
objects

6. Steps 1-5 repeated for each
of 10 jpeg objects

4. HTTP server closes TCP
connection.

time

2: Application Layer 27

Non-Persistent HTTP: Response time

Definition of RTT: time for
a small packet to travel
from client to server
and back.

Response time:
❒  one RTT to initiate TCP

connection
❒  one RTT for HTTP

request and first few
bytes of HTTP response
to return

❒  file transmission time
total = 2RTT+transmit time

time to
transmit
file

initiate TCP
connection

RTT
request
file

RTT

file
received

time time

14

2: Application Layer 28

Persistent HTTP

Nonpersistent HTTP issues:
❒  requires 2 RTTs per object
❒  OS overhead for each TCP

connection
❒  browsers often open parallel

TCP connections to fetch
referenced objects

Persistent HTTP
❒  server leaves connection

open after sending
response

❒  subsequent HTTP messages
between same client/
server sent over open
connection

❒  client sends requests as
soon as it encounters a
referenced object

❒  as little as one RTT for all
the referenced objects

2: Application Layer 29

Persistent HTTP

15

2: Application Layer 30

HTTP request message

❒  two types of HTTP messages: request, response
❒  HTTP request message:

v  ASCII (human-readable format)

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
User-agent: Mozilla/4.0
Connection: close
Accept-language:fr

(extra carriage return, line feed)

request line
(GET, POST,

HEAD commands)

header
 lines

Carriage return,
line feed

indicates end
of message

2: Application Layer 31

HTTP request message: general format

16

2: Application Layer 32

Uploading form input

Post method:
❒  Web page often

includes form input
❒  Input is uploaded to

server in entity body

URL method:
❒  Uses GET method
❒  Input is uploaded in

URL field of request
line:

www.somesite.com/animalsearch?monkeys&banana

2: Application Layer 33

Method types

HTTP/1.0
❒  GET
❒  POST
❒  HEAD

v  asks server to leave
requested object out of
response

HTTP/1.1
❒  GET, POST, HEAD
❒  PUT

v  uploads file in entity
body to path specified
in URL field

❒  DELETE
v  deletes file specified in

the URL field

17

2: Application Layer 34

HTTP response message

HTTP/1.1 200 OK
Connection close
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 …...
Content-Length: 6821
Content-Type: text/html

data data data data data ...

status line
(protocol

status code
status phrase)

header
 lines

data, e.g.,
requested
HTML file

2: Application Layer 35

HTTP response status codes

200 OK
v  request succeeded, requested object later in this message

301 Moved Permanently
v  requested object moved, new location specified later in

this message (Location:)
400 Bad Request

v  request message not understood by server
404 Not Found

v  requested document not found on this server
505 HTTP Version Not Supported

In first line in server->client response message.
A few sample codes:

18

2: Application Layer 36

Example: Trying out HTTP (client side)

1. Telnet to your favorite Web server:
 Opens TCP connection to port 80

(default HTTP server port) at cis.poly.edu.
Anything typed in sent
to port 80 at cis.poly.edu

telnet cis.poly.edu 80

2. Type in a GET HTTP request:

GET /~ross/ HTTP/1.1
Host: cis.poly.edu

By typing this in (hit carriage
return twice), you send
this minimal (but complete)
GET request to HTTP server

3. Look at response message sent by HTTP server!

2: Application Layer 37

Exercise: Analyze HTTP in action
(submit results via elearning.uminho.pt)

1.  Get into gcom.di.uminho.pt http server (use
telnet <destination-server> 80)

a)  Identify the server’s http version, deamon s/w &
date

b)  Try to get from gcom.di.uminho.pt
»  file index.html
»  figure UMEnglogo.jpg , as referenced in

index.html

2.  Try to get from gcom.di.uminho.pt, using
HTTP/1.1

»  file index.html
»  figure UMEnglogo.jpg , as referenced in

index.html

19

2: Application Layer 38

Exercise: Analyze HTTP in action
(submit results via elearning.uminho.pt)

3.  Get into kepler.gcom.di.uminho.pt http server
a)  Identify the server’s http version, date & server’s

deamon s/w
b)  Try to get from kepler.gcom.di.uminho.pt, using

HTTP/1.1
»  file index.htm
»  figure UMEnglogo.jpg , as referenced in index.html

4.  Comment on the differences between results from
questions 2. and 3.

2: Application Layer 39

5.  Get into gcom.di.uminho.pt http server (use telnet
<destination-server> 80)

GET /index.html HTTP/1.0
Host: gcom.di.uminho.pt
If-Modified-Since: Wed, 19 Oct 2005 10:50:00 GMT

6.  Repeat modifying the date
GET /index.html HTTP/1.0
Host: gcom.di.uminho.pt
If-Modified-Since: Wed, 10 Oct 2012 10:50:00 GMT

