

## CADERNO 1 (É permitido o uso de calculadora gráfica)

**1.**  $u_2 = 6 \iff a^2 - a = 6 \iff a^2 - a - 6 = 0 \iff a = 3 \lor a = -2$ . Como a > 0, conclui-se que a = 3.

$$u_{12} = 265722 \iff 3u_n - 3 = 265722 \iff 3u_n = 265725 \iff u_n = 88575$$

Resposta: Opção correta (B) 88575

2.

- **2.1.** Relativamente à sucessão  $(u_n)$  tem-se:
  - $u_1 = 1 + 3v_1 = 10$ ;
  - $u_2 = 4 + 3v_2 = 7$ ;
  - $\lim (3-v_n) = 3-(-\infty) = +\infty$

Como  $u_1 > u_2$  e  $\lim_{n \to \infty} (u_n) = +\infty$ , conclui-se que a sucessão  $(u_n)$  é não monótona.

**Resposta:** A sucessão  $(u_n)$  é não monótona.

**2.2.** Sabe-se que:  $-1 \le \sin(n) \le 1$ 

Como  $\lim (u_n) = +\infty$ , a partir de uma certa ordem,  $-\frac{1}{u_n} \le \sin(n) \le \frac{1}{u_n}$ .

Como  $\lim_{n \to \infty} \left( -\frac{1}{u_n} \right) = \lim_{n \to \infty} \left( \frac{1}{u_n} \right) = 0$ , pelo Teorema das sucessões enquadradas conclui-se que  $\lim_{n \to \infty} \frac{\sin n}{u_n} = 0$ .

**Resposta:** 
$$\lim \frac{\sin n}{u_n} = 0$$

**3.** Sendo  $f(x) = x^4 - 3x^2 - x + 1$ , tem-se f(1) = -2 e f(2) = 3.

O declive da reta definida pelos pontos A(1, -2) e A(2, 3) é dado por:

$$m = \frac{f(2) - f(1)}{2 - 1} = \frac{3 + 2}{1} = 5$$



Como f é uma função polinomial, é contínua e diferenciável em  $\mathbb{R}$ , em particular é contínua em [1,2] e diferenciável em ]1,2[.

Pelo Teorema de Lagrange,  $\exists c \in [a,b[: f'(c) = 5]$ .

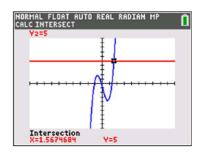
A reta de declive 5 que passa pelo ponto de abcissa c é tangente ao gráfico de f no ponto de abcissa c.

$$f'(x) = 4x^3 - 6x - 1$$

Resolvendo graficamente a equação f'(c) = 5 obtém-se:

$$c \approx 1,57$$

Resposta:  $c \approx 1,57$ 



#### 4. Considera os acontecimentos:

**c**: "O computador é atribuído a um aluno que vive na cidade."

M: "O computador é atribuído a um aluno do sexo masculino."

F: "O computador é atribuído a um aluno do sexo feminino."

Sabe-se que:

• 
$$P(M) = 0.6$$

• 
$$P(C) = 0.75$$

• 
$$P(F | C) = 0.3$$

**4.1.** 
$$P(C \cap F) = 0,3 \times 0,75 = 0,225$$

Resposta: Opção correta (D) 0,225

**4.2.** 
$$P(M \mid C) = 1 - 0, 3 = 0, 7$$

$$P(C|M) = \frac{P(C \cap M)}{P(M)} = \frac{0.75 \times 0.7}{0.6} = 0.875$$

Resposta: A probabilidade de o premiado viver na cidade, sabendo que é rapaz é de 0,875.

### FIM (Caderno 1)

| Cotações             |    |      |      |    |      |      |       |  |
|----------------------|----|------|------|----|------|------|-------|--|
| Questões - Caderno 1 | 1. | 2.1. | 2.2. | 3. | 4.1. | 4.2. | Total |  |
| Pontos               | 15 | 10   | 10   | 15 | 15   | 15   | 80    |  |



# CADERNO 2 (Não é permitido o uso de calculadora)

5. 
$$\lim (x_n) = \lim \frac{2}{\sqrt{n}} = \frac{2}{+\infty} = 0$$

$$\lim f(x_n) = \lim \frac{x_n}{|x_n - 3|} = \frac{0}{3} = 0$$

Resposta: Opção correta (C) 0

6.

**6.1.** 
$$\lim_{x \to -1} \frac{\left[ f(x) - f(-1) \right] \times g(x)}{x^2 - 1} = \lim_{x \to -1} \frac{\left[ f(x) - f(-1) \right] \times g(x)}{(x + 1)(x - 1)} = \lim_{x \to -1} \frac{\left[ f(x) - f(-1) \right] \times \lim_{x \to -1} \frac{g(x)}{x - 1}}{x + 1} \times \lim_{x \to -1} \frac{g(x)}{x - 1} = f'(-1) \times \lim_{x \to -1} \frac{g(x)}{x - 1} = \frac{1 - (-1)^2}{\left( (-1)^2 + 1 \right)^2} \times \lim_{x \to -1} \frac{x}{(1 - x)(x - 1)} = \lim_{x \to -1} \frac{g(x)}{x - 1} = \frac{1 - (-1)^2}{\left( (-1)^2 + 1 \right)^2} \times \lim_{x \to -1} \frac{x}{(1 - x)(x - 1)} = \lim_{x \to -1} \frac{g(x)}{x - 1} = \frac{1 - (-1)^2}{\left( (-1)^2 + 1 \right)^2} \times \lim_{x \to -1} \frac{x}{(1 - x)(x - 1)} = \lim_{x \to -1} \frac{g(x)}{x - 1} = \frac{1 - (-1)^2}{\left( (-1)^2 + 1 \right)^2} \times \lim_{x \to -1} \frac{x}{(1 - x)(x - 1)} = \lim_{x \to -1} \frac{g(x)}{x - 1} = \frac{1 - (-1)^2}{\left( (-1)^2 + 1 \right)^2} \times \lim_{x \to -1} \frac{x}{(1 - x)(x - 1)} = \lim_{x \to -1} \frac{g(x)}{x - 1} = \frac{1 - (-1)^2}{\left( (-1)^2 + 1 \right)^2} \times \lim_{x \to -1} \frac{x}{(1 - x)(x - 1)} = \lim_{x \to -1} \frac{g(x)}{x - 1} = \frac{1 - (-1)^2}{\left( (-1)^2 + 1 \right)^2} \times \lim_{x \to -1} \frac{x}{(1 - x)(x - 1)} = \frac{1 - (-1)^2}{\left( (-1)^2 + 1 \right)^2} \times \lim_{x \to -1} \frac{x}{(1 - x)(x - 1)} = \frac{1 - (-1)^2}{\left( (-1)^2 + 1 \right)^2} \times \lim_{x \to -1} \frac{x}{(1 - x)(x - 1)} = \frac{1 - (-1)^2}{\left( (-1)^2 + 1 \right)^2} \times \lim_{x \to -1} \frac{x}{(1 - x)(x - 1)} = \frac{1 - (-1)^2}{\left( (-1)^2 + 1 \right)^2} \times \lim_{x \to -1} \frac{x}{(1 - x)(x - 1)} = \frac{1 - (-1)^2}{\left( (-1)^2 + 1 \right)^2} \times \lim_{x \to -1} \frac{x}{(1 - x)(x - 1)} = \frac{1 - (-1)^2}{\left( (-1)^2 + 1 \right)^2} \times \lim_{x \to -1} \frac{x}{(1 - x)(x - 1)} = \frac{1 - (-1)^2}{\left( (-1)^2 + 1 \right)^2} \times \lim_{x \to -1} \frac{x}{(1 - x)(x - 1)} = \frac{1 - (-1)^2}{\left( (-1)^2 + 1 \right)^2} \times \lim_{x \to -1} \frac{x}{(1 - x)(x - 1)} = \frac{1 - (-1)^2}{\left( (-1)^2 + 1 \right)^2} \times \lim_{x \to -1} \frac{x}{(1 - x)(x - 1)} = \frac{1 - (-1)^2}{\left( (-1)^2 + 1 \right)^2} \times \lim_{x \to -1} \frac{x}{(1 - x)(x - 1)} = \frac{1 - (-1)^2}{\left( (-1)^2 + 1 \right)^2} \times \lim_{x \to -1} \frac{x}{(1 - x)(x - 1)} = \frac{1 - (-1)^2}{\left( (-1)^2 + 1 \right)^2} \times \lim_{x \to -1} \frac{x}{(1 - x)(x - 1)} = \frac{1 - (-1)^2}{\left( (-1)^2 + 1 \right)^2} \times \lim_{x \to -1} \frac{x}{(1 - x)(x - 1)} = \frac{1 - (-1)^2}{\left( (-1)^2 + 1 \right)^2} \times \lim_{x \to -1} \frac{x}{(1 - x)(x - 1)} = \frac{1 - (-1)^2}{\left( (-1)^2 + 1 \right)^2} \times \lim_{x \to -1} \frac{x}{(1 - x)(x - 1)} = \frac{1 - (-1)^2}{\left( (-1)^2 + 1 \right)^2} \times \lim_{x \to -1} \frac{x}{(1 - x)(x - 1)} = \frac{1 - (-1)^2}{\left$$

$$\frac{0}{4} \times \left(\frac{-1}{-4}\right) = 0$$

Resposta: 
$$\lim_{x \to -1} \frac{\left[ f(x) - f(-1) \right] \times g(x)}{x^2 - 1} = 0$$

**6.2.** Como a função f admite derivada finita em todos os pontos do domínio, em particular em [-1, 2], a função é contínua em [-1, 2].

$$f(-1) = g(-1) = -\frac{1}{2}$$
 e  $f(2) = g(2) = \frac{8}{20} = \frac{2}{5}$ 

Como  $-\frac{1}{2} < 0, 1 < \frac{2}{5}$ , pelo Teorema de Bolzano,  $\exists c \in ]-1, 2[: f(c) = 0, 1]$ .

Logo, a equação f(x) = 0.1 é possível em ]-1, 2[.

**6.3.** Sendo 
$$g(-1) = -\frac{1}{2}$$
 e  $g(2) = \frac{8}{20} = \frac{2}{5}$ , verifica-se que  $-\frac{1}{2} < 0, 1 < \frac{2}{5}$  e  $g(-1) \times g(2) < 0$ .

Como  $\lim_{x\to 0^+} \frac{10-x}{10x} = \frac{10}{0^+} = +\infty$ , a função g não é contínua em [-1, 2], logo o Teorema de Bolzano-Cauchy não é aplicável neste intervalo.

**Resposta:** Não é possível garantir que g(x) = 0.1 é possível através do Teorema de Bolzano-Cauchy.



7.

**7.1.** 
$$f'(x) = 3\left(\frac{x}{x+1}\right)^2 \times \frac{x+1-x}{(x+1)^2} = \frac{3x^2}{(x+1)^4}$$
, como queríamos demonstrar.

**7.2.** 
$$f(1) = \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

Seja y = mx + b a equação da reta tangente ao gráfico de f no ponto de abcissa 1.

$$m = f'(1) = \frac{3}{16}$$
. Então, tem-se  $y - \frac{1}{8} = \frac{3}{16}(x-1) \iff y = \frac{3x}{16} - \frac{3}{16} + \frac{1}{8} \iff y = \frac{3x}{16} - \frac{1}{16}$ 

**Resposta:** 
$$y = \frac{3x}{16} - \frac{1}{16}$$

**7.3.** Sabendo que  $f''(x) = \frac{6x(1-x)}{(x+1)^5}$ , podemos fazer o estudo de sinais de f''.

| X          | -∞ | -1 |   | 0 |   | 1 | +∞ |
|------------|----|----|---|---|---|---|----|
| 6 <i>x</i> | _  |    | _ | 0 | + | + | +  |
| 1-x        | +  |    | + | + | + | 0 | -  |
| $(x+1)^5$  | _  |    | + | + | + | + | +  |
| f''(x)     | +  |    | _ | 0 | + | 0 | -  |

Por observação da tabela identifica-se  $x_A = 0$  e  $x_B = 1$ , abcissas dos pontos de inflexão do gráfico de f.

$$\forall x \in [0, 1[, f''(x) > 0]$$

8

**8.1.** 
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left(\frac{x}{2} + \frac{2}{x}\right) = 0 + \frac{2}{0^+} = +\infty$$

**Resposta:** Uma equação da assíntota vertical do gráfico de  $f \notin x = 0$ .

**8.2.** 
$$f'(x) = \frac{1}{2} - \frac{2}{x^2} = \frac{x^2 - 4}{2x^2}$$
  
 $f'(x) = 0 \Leftrightarrow \frac{x^2 - 4}{2x^2} = 0 \Leftrightarrow (x - 2)(x + 2) = 0 \land x > 0 \Leftrightarrow (x = 2 \lor x = -2) \land x > 0 \Leftrightarrow x = 2$ 

| X     | 0 |   | 2 | +8 |
|-------|---|---|---|----|
| f'(x) |   | - | 0 | +  |
| f     |   | Z | 2 | 7  |

f(2) é mínimo da função. Tem-se f(2) = 2, ou seja C(2, 2).

### Novo Espaço - Matemática A 12.º ano

#### Proposta de Resolução [novembro - 2017]



$$\overline{OC} = \sqrt{2^2 + 2^2} = \sqrt{8}$$

Equação da circunferência de centro C e que passa na origem:  $(x-2)^2 + (y-2)^2 = 8$ 

**Resposta:** 
$$(x-2)^2 + (y-2)^2 = 8$$

**8.3.** Seja  $A\hat{O}B = \alpha$  e y = mx + b a equação reduzida da reta AB.

$$\tan \alpha = \frac{\overline{OB}}{\overline{OA}} = 2$$

$$m = \tan(180 - \alpha) = -\tan \alpha = -2$$

Assim, 
$$f'(x) = -2 \iff \frac{x^2 - 4}{2x^2} = -2 \iff \frac{x^2 - 4 + 4x^2}{2x^2} = 0 \iff \frac{5x^2 - 4}{2x^2} = 0$$
.

Tem-se: 
$$\left(x = \frac{2}{\sqrt{5}} \lor x = -\frac{2}{\sqrt{5}}\right) \land x > 0 \iff x = \frac{2\sqrt{5}}{5}$$

$$f\left(\frac{2\sqrt{5}}{5}\right) = \frac{\frac{2\sqrt{5}}{5}}{2} + \frac{2}{\frac{2\sqrt{5}}{5}} = \frac{\sqrt{5}}{5} + \frac{5\sqrt{5}}{5} = \frac{6\sqrt{5}}{5}. \text{ O ponto } P \text{ tem coordenadas } \left(\frac{2\sqrt{5}}{5}, \frac{6\sqrt{5}}{5}\right).$$

Resposta: 
$$P\left(\frac{2\sqrt{5}}{5}, \frac{6\sqrt{5}}{5}\right)$$

### FIM (Caderno 2)

| Cotações                    |    |      |             |      |      |      |      |       |      |      |       |     |
|-----------------------------|----|------|-------------|------|------|------|------|-------|------|------|-------|-----|
| Caderno 1 (com calculadora) |    |      |             |      |      |      |      |       |      |      |       |     |
| Questões                    | 1. | 2.1. | 2.          | 2.   | 3.   | 4.1. | 4.2. |       |      |      |       |     |
| Pontos                      | 15 | 10   | 10 15 15 15 |      |      |      |      | Total | 80   |      |       |     |
| Caderno 2 (sem calculadora) |    |      |             |      |      |      |      |       |      |      |       |     |
| Questões                    | 5. | 6.1. | 6.2.        | 6.3. | 7.1. | 7.2. | 7.3. | 8.1.  | 8.2. | 8.3. |       |     |
| Pontos                      | 12 | 12   | 12          | 12   | 12   | 12   | 12   | 12    | 12   | 12   | Total | 120 |
| Total                       |    |      |             |      |      |      |      |       |      | 200  |       |     |