

Matemática A

12.º ANO DE ESCOLARIDADE

Duração: 90 minutos | Data:

Caderno 1

(45 min)

(é permitido o uso de calculadora)

1. Uma caixa contém seis bolas vermelhas, três bolas brancas e quatro bolas azuis.

Tanto as bolas vermelhas como as bolas brancas são iguais entre si, isto é, são indistinguíveis. As bolas azuis são numeradas de 1 a 4.

As 13 bolas vão ser retiradas da caixa e colocadas em fila, umas ao lado das outras.

1.1. Quantas filas diferentes é possível formar de modo que as bolas azuis fiquem seguidas?

- **(A)** $\frac{9! \times 4!}{6! \times 3!}$
- **(B)** $\frac{10! \times 4!}{6! \times 3!}$
- **(B)** $\frac{10! \times 4!}{9!}$
- (C) ${}^{13}C_6 \times {}^7C_3 \times 4!$

1.2. Quantas filas diferentes é possível formar de modo que nas extremidades fiquem duas bolas iguais?

2. Um código de abertura de uma mala é formado por quatro caracteres escolhidos entre 26 letras (A, B, C, ..., Z) e 10 algarismos (0, 1, 2, ...,9)

2.1. Quantos códigos se podem formar com duas letras diferentes e dois algarismos diferentes?

- (**A**) 351 000
- **(B)** 58 500
- **(B)** 14 625
- (C) 388 800

2.2. Quantos códigos é possível formar com quatro algarismos diferentes cujo produto seja um número par?

- 3. Um baralho de cartas completo é constituído por 52 cartas, repartidas por quatro naipes (espadas, copas, ouros e paus). Em cada naipe há 13 cartas: três figuras (rei, dama e valete) e mais 10 cartas.
 - **3.1.** Utilizando apenas as 12 figuras (quatro reis, quatro damas e quatro valetes), quantas sequências diferentes de 12 cartas se podem formar de modo que os reis fiquem seguidos e as damas também fiquem seguidas?
 - 3.2. Do baralho completo vai ser escolhido um conjunto de 13 cartas.De quantas maneiras pode ser feita a escolha de forma que no conjunto das 13 cartas

escolhidas haja 10 e só 10 cartas do naipe de copas?

4. De quantas maneiras 13 livros diferentes podem ser divididos por cinco estudantes de forma que o André, a Beatriz e o Carlos recebam três livros cada um e o Diogo e a Ema recebam dois livros cada?

Fim do Caderno 1

COTAÇÕES (Caderno 1)

1.1.	1.2.	2.1.	2.2.	3.1.	3.2.	4.	
10	15	10	15	15	15	15	95

Caderno 2

(45 min)

(não é permitido o uso de calculadora)

- 5. Determine *n* tal que $30 \times {}^{n}C_{2} = n \times {}^{n}A_{3}$.
- 6. Considere o desenvolvimento de $A(x) = \left(\sqrt{x} \frac{3}{x}\right)^{10}$.

O coeficiente do termo de grau 2 é:

- **(A)** -405
- **(B)** 405
- **(C)** −3240
- **(D)** 3240
- 7. Uma equipa participante num concurso de canções é formada por dez elementos sendo quatro rapazes e seis raparigas.
 - **7.1.** Vai ser escolhido um grupo de quatro elementos da equipa para participarem na próxima eliminatória.

De quantas maneiras pode ser feita a escolha de forma que do grupo de quatro faça parte pelo menos um rapaz e pelo menos uma rapariga?

7.2. Os dez elementos da equipa vão posar para uma fotografia, colocando-se uns ao lado dos outros.

De quantas maneiras o podem fazer de forma que as extremidades da fila sejam ocupadas por rapazes e que não fiquem dois rapazes em lugares consecutivos?

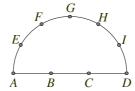
(Pode apresentar apenas uma expressão que traduza o número pedido não precisando de calcular o seu valor.)

- 8. ${}^{n}C_{100} + {}^{n}C_{101} + {}^{n+1}C_{102}$ é igual a:
 - (A) $^{n+1}C_{103}$
- **(B)** $^{n+2}C_{102}$
- (C) $^{n+2}C_{103}$
- **(D)** $^{n+3}C_{102}$

9. O sétimo elemento de uma linha do triângulo de Pascal é igual ao vigésimo.

Qual é o segundo elemento da linha seguinte?

- (A) 28
- **(B)** 27
- **(C)** 26
- **(D)** 25
- **10.** Na figura estão representados nove pontos: *A*, *B*, *C*, *D*, *E*, *F*, *G*, *H* e *I*.



Sabe-se que:

- os pontos A, E, F, G, H, I e D pertencem à semicircunferência de diâmetro [AD];
- os pontos $B \in C$ pertencem ao diâmetro [AD].
- **10.1.** Quantos triângulos são definidos por estes nove pontos?
- **10.2.** Escolhem-se ao acaso dois desses nove pontos. Qual é a probabilidade de estes definirem uma reta que interseta a semicircunferência num único ponto.

Apresente o resultado na forma de fração irredutível.

Fim da prova

COTAÇÕES (Caderno 2)

2.	10.2.	10.1.	9.	8.	7.2.	7.1.	6.	5.	
10	15	15	10	10	15	15	10	15	
20	TOTAL (Caderno 1 + Caderno 2)								

Proposta de resolução

Caderno 1

As nove bolas não numeradas, seis vermelhas e três brancas, podem ser ordenadas de $\frac{9!}{6! \times 3!}$ maneiras 1.1.

diferentes.

As quatro bolas azuis, numeradas, podem ser ordenadas de 4! maneiras diferentes.

O lugar do grupo de bolas azuis na fila pode ser escolhido de 10 maneiras diferentes (entre as nove bolas vermelhas e brancas, no início ou no fim da fila: $-\bigcirc_1\bigcirc_2\bigcirc_3\bigcirc_4\bigcirc_5\bigcirc_6\bigcirc_7\bigcirc_8\bigcirc_9\bigcirc_{10}$)

O número de maneiras de formar a fila é, então, dado por:

$$\frac{9!}{6! \times 3!} \times 4! \times 10 = \frac{10 \times 9!}{6! \times 3!} \times 4! = \frac{10!}{6! \times 3!} \times 4! = \frac{10! \times 4!}{6! \times 3!}$$

Resposta: (B)

- 1.2. Nas extremidades podem ficar duas bolas vermelhas ou duas bolas brancas:
 - Se nas extremidades ficarem duas bolas vermelhas a parte restante da fila é formada por 11 bolas sendo 4 vermelhas (indistinguíveis), 3 brancas (indistinguíveis) e 4 azuis (diferentes).

Neste caso é possível formar $\frac{11!}{4! \times 3!} = 277 \ 200$ filas distintas.

Se nas extremidades ficarem duas bolas brancas a parte restante da fila é formada por 11 bolas sendo 6 vermelhas (indistinguíveis), 1 branca e 4 azuis (diferentes).

Neste caso é possível formar $\frac{11!}{6!}$ = 55 440 filas distintas.

É possível formar $277\ 200+55\ 440=332\ 640$ filas diferentes.

 $\binom{^{26}C_2 \times {}^{10}C_2}{\times 4!} = 325 \times 45 \times 24 = 351\,000$ Número de maneiras de ordenar os quatro caracteres → Número de maneiras de escolher os dois algarismos

→ Número de maneiras de escolher as duas letras

$$^{26}C_2 \times ^4A_2 \times ^{10}A_2 = 325 \times 12 \times 90 = 351\,000$$

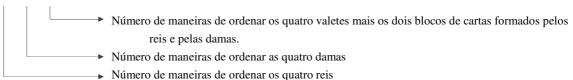
Resposta: (A)

 $^{10}A_4 - ^{5}A_4 = 5040 - 120 = 4920$ 2.2.

> Número de códigos que é possível formar com quatro algarismos diferentes cujo produto é um número ímpar (número de sequências de quatro algarismos diferentes escolhidos entre os cinco algarismos ímpares 1, 3, 5, 7 e 9, dado que, para que o produto seja ímpar, os fatores têm de ser todos ímpares) ➤ Número de códigos que é possível formar com quatro algarismos diferentes

É possível formar 4920 códigos com quatro algarismos diferentes cujo produto é um número par.

3.1. $4! \times 4! \times 6! = 414720$



Podem ser formadas 414 720 sequências.

3.2. Copas Outras

$$\frac{13}{10}$$
 $\frac{39}{3}$

$$^{13}C_{10} \times ^{39}C_{3} = 286 \times 9139 = 2613754$$

Número de maneiras de escolher 3 cartas entre as 39 que não são de copas

Número de maneiras de escolher 10 cartas entre as 13 de copas

A escolha pode ser feita de 2 613 754 maneiras

4.

ou

$$\frac{13!}{3! \times 3! \times 3! \times 2! \times 2!} = 7\ 207\ 200$$

Os 13 livros podem ser divididos de 7 207 200 maneiras diferentes.

Caderno 2

5. Para $n \in \mathbb{Z} \land n \ge 2 \land n \ge 3$, ou seja, para $n \in \mathbb{N} \setminus \{1, 2\}$, temos:

$$30 \times {}^{n}C_{2} = n \times {}^{n}A_{3} \Leftrightarrow 30 \times \frac{{}^{n}A_{2}}{2!} = n \times n(n-1)(n-2) \Leftrightarrow$$

$$\Leftrightarrow 30 \times \frac{n(n-1)}{2} = n \times n(n-1)(n-2) \Leftrightarrow 15n(n-1) - n \times n(n-1)(n-2) = 0 \Leftrightarrow$$

$$\Leftrightarrow n(n-1)\left[15 - n(n-2)\right] = 0 \Leftrightarrow n(n-1)\left(15 - n^{2} + 2n\right) = 0 \Leftrightarrow$$

$$\Leftrightarrow \left(n = 0 \vee n - 1 = 0 \vee -n^{2} + 2n + 15 = 0\right) \Leftrightarrow \left(n = 0 \vee n = 1 \vee n^{2} - 2n - 15 = 0\right) \Leftrightarrow |n \in \mathbb{N} \setminus \{1, 2\}$$

$$\Leftrightarrow n = \frac{2 \pm \sqrt{4 + 4 \times 15}}{2} \Leftrightarrow n = \frac{2 \pm \sqrt{64}}{2} \Leftrightarrow n = \frac{2 \pm 8}{2} \Leftrightarrow$$

$$\Leftrightarrow n = -3 \vee n = 5$$
Como $n \in \mathbb{N} \setminus \{1, 2\}$, temos $n = 5$.

6.
$$A(x) = \left(\sqrt{x} - \frac{3}{x}\right)^{10} = \sum_{p=0}^{10} {}^{10}C_p \left(\sqrt{x}\right)^{10-p} \left(-\frac{3}{x}\right)^p = \sum_{p=0}^{10} {}^{10}C_p \left(x^{\frac{1}{2}}\right)^{10-p} \frac{\left(-3\right)^p}{x^p} =$$

$$= \sum_{p=0}^{10} {}^{10}C_p x^{5-\frac{p}{2}} \times \left(-3\right)^p x^{-p} = \sum_{p=0}^{10} {}^{10}C_p \left(-3\right)^p x^{5-\frac{p}{2}-p} =$$

$$= \sum_{p=0}^{10} {}^{10}C_p \left(-3\right)^p x^{5-\frac{3p}{2}}$$

$$5 - \frac{3p}{2} = 2 \Leftrightarrow -\frac{3p}{2} = -3 \Leftrightarrow p = 2$$

$${}^{10}C_2 \left(-3\right)^2 x^{5-\frac{3\times 2}{2}} = \frac{10\times 9}{2} \times 9 \times x^2 = 405x^2$$

Resposta: (B)

7.1. Rapazes Raparigas

$$\frac{4}{1}$$
 $\frac{6}{3}$ $\frac{2}{2}$ $\frac{2}{3}$ $\frac{1}{1}$

3
1
$${}^4C_1 \times {}^6C_3 + {}^4C_2 \times {}^6C_2 + {}^4C_3 \times {}^6C_1 = 4 \times \frac{6 \times 5 \times 4}{3 \times 2} + \frac{4 \times 3}{2} \times \frac{6 \times 5}{2} + 4 \times 6 =$$

$$= 4 \times 20 + 6 \times 15 + 24 = 80 + 90 + 24 = 194$$
Número de maneiras de escolher 3 rapazes e 1 rapariga
Número de maneiras de escolher 2 rapazes e 2 raparigas
Número de maneiras de escolher 1 rapaz e 3 raparigas

A escolha pode ser feita de 194 maneiras

7.2.
$${}^{4}A_{2} \times 6! \times {}^{5}A_{2} = (4 \times 3) \times (6 \times 5 \times 4 \times 3 \times 2) \times (5 \times 4) = 12 \times 30 \times 24 \times 20 = 360 \times 480 = 172800$$

Escolha ordenada de 2 lugares para os restantes 2 rapazes entre os 5 lugares existentes entre as 6 raparigas: $HM_{1}^{-}M_{2}^{-}M_{3}^{-}M_{4}^{-}M_{5}^{-}MH$

Número de maneiras de ordenar as 6 raparigas

→ Escolha ordenada de 2 rapazes para as extremidades da fila

8.
$${}^{n}C_{100} + {}^{n}C_{101} + {}^{n+1}C_{102} = \Big| {}^{n}C_{p} + {}^{n}C_{p+1} = {}^{n+1}C_{p+1}$$
$$= {}^{n+1}C_{101} + {}^{n+1}C_{102} =$$
$$= {}^{n+2}C_{102}$$

Resposta: (B)

9. Sétimo elemento da linha de ordem $n: {}^{n}C_{6}$

Vigésimo elemento da linha de ordem $n: {}^{n}C_{19}$

$${}^{n}C_{6} = {}^{n}C_{19} \Leftrightarrow n-6 = 19 \Leftrightarrow n = 25$$

O segundo elemento da linha seguinte é ${}^{26}C_1 = 26$.

Resposta: (C)

10.1.
$${}^5C_3 + {}^5C_2 \times {}^4C_1 + {}^5C_1 \times {}^4C_2 = \frac{5 \times 4 \times 3}{3 \times 2} + \frac{5 \times 4}{2} \times 4 + 5 \times \frac{4 \times 3}{2} = 10 + 40 + 30 = 80$$

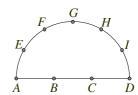
Escolha de 1 pontos entre os pontos $E, F, G, H \in I \in 2$ pontos entre os pontos $A, B, C \in D$.

Escolha de 2 pontos entre os pontos $E, F, G, H \in I \in 1$ ponto entre os pontos $A, B, C \in D$.

Escolha de 3 pontos em $E, F, G, H \in I$

ου

$${}^{9}C_{3} - {}^{4}C_{3} = \frac{9 \times 8 \times 7}{3 \times 2} - 4 = 3 \times 4 \times 7 - 4 = 84 - 4 = 80$$



10.2. Número de casos possíveis: ${}^{9}C_{2} = \frac{9 \times 8}{2} = 9 \times 4 = 36$

Número de casos favoráveis: $5 \times 2 = 10$

■ um ponto escolhido entre os 2 pontos *B* e *C*■ um ponto escolhido entre os 4 pontos *E*, *F*, *G*, *H* e *I*

$$P = \frac{10}{36} = \frac{5}{18}$$

