

Proposta de teste de avaliação Matemática A 12.º ANO DE ESCOLARIDADE

Duração: 90 minutos | Data:

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identificam a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida aproximação, apresente sempre o valor exato.

1. Seis alunos, entre os quais estão a Ana e o Bruno, colocam-se em fila para serem atendidos na cantina, um de cada vez.

De quantas maneiras se podem colocar em fila de modo que a Ana seja atendida antes do Bruno?

(A) 120

(B) 240

(C) 360

- **(D)** 480
- 2. Considere todas as palavras de seis letras, com ou sem significado, que se podem formar trocando a ordem a letras da palavra *RESOLVER*.

Escolhendo, ao acaso, uma dessas palavras, determine, na forma de fração irredutível, a probabilidade de a primeira e a última letra dessa palavra:

- **2.1.** serem a letra R;
- **2.2.** serem letras diferentes.
- 3. A Ana, o Bruno e o Carlos requisitaram sete livros diferentes na biblioteca da escola para consultarem no próximo fim de semana, tendo em vista um trabalho de grupo em que estão a trabalhar.

De quantas maneiras poderão distribuir entre si os livros requisitados, sabendo que cada um levará para o fim de semana pelo menos dois desses livros?

(A) 630

(B) 210

(C) 105

(D) 35

- **4.** Tendo em vista a renovação dos quadros, o departamento de recursos humanos de uma empresa concluiu que:
 - o número de trabalhadores que se encontram em condições de pré-reforma é
 igual a metade do número de homens que trabalham na empresa;
 - seis em cada dez trabalhadores da empresa em condições de pré-reforma são homens;
 - 75% das mulheres que trabalham na empresa não estão em condições de préreforma.
 - **4.1.** Mostre que em cada 18 trabalhadores da empresa, cinco estão em condições de pré-reforma.
 - **4.2.** Se a empresa tem 540 trabalhadores, quantos destes são mulheres?
- 5. Uma caixa 1 contém várias bolas numeradas.

Uma caixa 2 contém 31 bolas numeradas com números pares e algumas bolas numeradas com números ímpares.

Considere a experiência que consiste em tirar simultaneamente e ao acaso duas bolas da caixa 1, colocá-las na caixa 2 e, em seguida, tirar, também ao acaso, uma bola da caixa 2.

Sejam A e B os acontecimentos:

A: "A soma dos números das bolas tiradas da caixa 1 é um número ímpar"

B: "A bola retirada da caixa 2 tem um número ímpar"

Sabendo que $P(B|A) = \frac{1}{3}$, o número de bolas com número ímpar que inicialmente estavam na caixa 2 é:

(A) 18

(B) 15

(C) 12

(D) 9

6. Considere um dado cúbico, equilibrado, com as faces numeradas de 1 a 6.

6.1. Lança-se o dado quatro vezes seguidas e em cada lançamento regista-se o algarismo da face que fica voltada para cima formando assim um número de quatro algarismos.

Qual é a probabilidade de o número assim formado ser par e maior do que 5000?

(A) $\frac{1}{6}$

(B) $\frac{1}{4}$

(C) $\frac{1}{3}$

(D) $\frac{1}{2}$

6.2. O João vai pintar as faces do dado da seguinte forma:

- quatro ou cinco faces são pintadas de azul;
- as restantes faces são pintadas de vermelho;
- os números inscritos nas faces ficam pintados de branco.

De quantas maneiras pode ser pintado o dado?

(A) 1080

(B) 144

(C) 90

(D) 21

7. Sabe-se que, num grupo de 18 professores de uma Escola Secundária, 12 lecionam Física e 10 lecionam Química.

7.1. Nesse grupo são escolhidos, ao acaso, dois professores.

Em qual das seguintes opções se apresenta, na forma de percentagem com arredondamento às unidades, a probabilidade de os professores escolhidos lecionarem a mesma disciplina?

(A) 4%

(B) 59%

(C) 69%

(D) 73%

7.2. Pretende-se formar uma comissão de cinco professores escolhidos entre os 18 elementos desse grupo para analisarem os novos programas das disciplinas que lecionam.
De quantas maneiras pode ser formada a comissão de forma que dela faça parte pelo menos um professor que lecione as duas disciplinas?

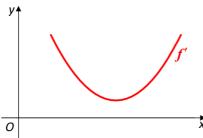
Seja E um conjunto finito, P uma probabilidade em P (E) e sejam A e B dois acontecimentos 8. possíveis $(A, B \in P(E))$

Sabe-se que
$$P(\overline{B} \cup (\overline{A} \cap B)) = P(\overline{B}) + P(A \cap B)$$

Qual é o valor de P(A|B)?

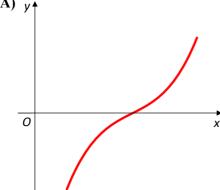
- **(A)**

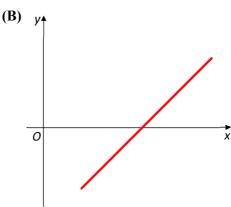
- Na figura está representada parte do gráfico de uma função f^\prime , derivada de f , ambas de 9. domínio \mathbb{R} .

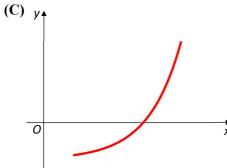


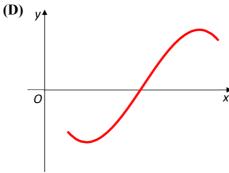
Qual das seguintes figuras pode representar parte do gráfico da função $\,f\,?\,$

(A) _y↑









10. Seja f uma função, de domínio $\mathbb R$, cuja $\operatorname{derivada}, f'$, de domínio $\mathbb R$, é dada por

$$f'(x) = \frac{4x}{x^2 + 1}$$

10.1. Para determinado valor real de k a reta r, de equação y = 2x + k, é tangente ao gráfico da função f num ponto de ordenada 5.

Determine o valor de k.

10.2. Estude a função f quanto ao sentido da concavidade do gráfico e à existência de pontos de inflexão.

Na sua resposta apresente:

- o(s) intervalo(s) em que o gráfico tema concavidade voltada para cima;
- o(s) intervalo(s) em que o gráfico tema concavidade voltada para baixo;
- a(s) abcissa(s) do(s) ponto(s) de inflexão do gráfico de f.
- 11. Mostre que o gráfico de uma função polinomial do terceiro grau tem um e um só ponto de inflexão.

FIM

Cotações:

	Item															
	Cotação (em pontos)															
1.	2.1.	2.2.	3.	4.1.	4.2.	5.	6.1.	6.2.	7.1.	7.2.	8.	9.	10.1.	10.2.	11.	
10	15	15	10	15	15	10	10	10	10	15	10	10	15	15	15	200

Proposta de resolução

1. Os seis alunos podem ordenar-se numa fila de 6! maneiras diferentes. Em metade dos casos a Ana fica à frente do Bruno.

Logo, o número pedido é $\frac{6!}{2} = 360$.

Resposta: (C)

2. Número de casos possíveis: R E S O L V E R

$$\frac{8!}{2! \times 2!} = 10\,080$$
 ou ${}^{8}C_{2} \times {}^{6}C_{2} \times 4! = 28 \times 15 \times 24 = 10\,080$

2.1. R E S O L V E R

Número de casos favoráveis:

 $\frac{6!}{2!}$ = 360 (Fixando as letras R no início e no fim sobram seis letras sendo duas repetidas)

A probabilidade pedida é:

$$P = \frac{360}{10\,080} = \frac{1}{28}$$

2.2. Apenas as letras R e E se podem repetir no início e no fim da palavra.

Atendendo à alínea anterior, o número de casos favoráveis ao acontecimento contrário é

$$2 \times 360 = 720$$
 (há tantas palavras com a letra R repetida, no início e no fim, como com a letra E)

A probabilidade pedida é:

$$P = 1 - \frac{720}{10\,080} = \frac{13}{14}$$

3. Se cada um leva pelo menos dois livros então um deles leva três livros e os outros levam dois livros cada um:

$$^{7}C_{3} \times ^{4}C_{2} \times ^{2}C_{2} \times 3 = 630$$

Número de maneiras de escolher o estudante que leva três livros

Número de maneiras de escolher o primeiro conjunto de dois livros

Número de maneiras de escolher o conjunto dos três livros

Resposta: (A)

4.1. Na escolha, ao acaso, de um trabalhador da empresa, sejam os acontecimentos:

H: "O trabalhador escolhido é um homem";

R: "O trabalhador escolhido está em condições de pré-reforma"

É dado que:

•
$$P(R) = \frac{1}{2}P(H) \Leftrightarrow P(H) = 2P(R)$$

•
$$P(H|R) = \frac{6}{10} = 0.6$$

•
$$P(\overline{R} | \overline{H}) = 0.75$$

$$P(H \mid R) = 0.6 \Leftrightarrow \frac{P(H \cap R)}{P(R)} = 0.6 \Leftrightarrow P(H \cap R) = 0.6P(R)$$

$$P(\overline{R} \mid \overline{H}) = 0.75 \Leftrightarrow \frac{P(\overline{R} \cap \overline{H})}{P(\overline{H})} = 0.75 \Leftrightarrow$$

$$\Leftrightarrow P(\overline{R \cup H}) = 0.75P(\overline{H}) \Leftrightarrow$$

$$\Leftrightarrow 1 - P(R \cup H) = 0.75 \lceil 1 - P(H) \rceil \Leftrightarrow$$

$$\Leftrightarrow 1 - \left[P(R) + P(H) - P(R \cap H)\right] = 0,75 - 0,75P(H) \Leftrightarrow \begin{vmatrix} P(H) = 2P(R) & e \\ P(H \cap R) = 0,6P(R) \end{vmatrix}$$

$$\Leftrightarrow 1 - P(R) - 2P(R) + 0.6P(R) = 0.75 - 0.75 \times 2P(R) \Leftrightarrow [0.75 \times 2 = 1.5]$$

$$\Leftrightarrow -P(R) - 2P(R) + 0.6P(R) + 1.5P(R) = 0.75 - 1 \Leftrightarrow |-1 - 2 + 0.6 + 1.5 = -0.9$$

$$\Leftrightarrow$$
 $-0.9P(R) = -0.25 \Leftrightarrow P(R) = \frac{0.25}{0.9} \Leftrightarrow$

$$\Leftrightarrow P(R) = \frac{25}{90} \Leftrightarrow P(R) = \frac{5}{18}$$

Portanto, como $P(R) = \frac{5}{18}$, podemos concluir que cinco em cada 18 trabalhadores da empresa, estão em condições de pré-reforma.

4.2
$$P(H) = 2P(R) = 2 \times \frac{5}{18} = \frac{5}{9}$$

$$P(\overline{H}) = 1 - \frac{5}{9} = \frac{4}{9}$$

 $\frac{4}{\alpha}$ dos trabalhadores da empresa são mulheres.

$$\frac{4}{9} \times 540 = 240$$

Trabalham na empresa 540 mulheres.

5. P(B|A) significa a probabilidade de retirar da caixa 2 uma bola com número ímpar, sabendo que se retiraram da caixa 1 duas bolas cuja soma dos respetivos números é um número ímpar, ou seja, uma das bolas tem número par e a outra tem número ímpar.

Seja *n* o número de bolas com número ímpar que estavam na caixa 2.

Dado sabermos que na caixa 2 foi introduzida uma bola com número par e outra com número ímpar podemos concluir que esta caixa ficou com a seguinte composição:

Bolas com número ímpar:
$$n+1$$

Total de bolas na caixa:
$$n + 33$$

Então,
$$P(B \mid A) = \frac{n+1}{n+33}$$

$$P(B \mid A) = \frac{1}{3} \Leftrightarrow \frac{n+1}{n+33} = \frac{1}{3} \stackrel{n \in \mathbb{N}}{\Leftrightarrow}$$

$$\Leftrightarrow$$
 3n + 3 = n + 33 \Leftrightarrow 2n = 30 \Leftrightarrow n = 15

Resposta: (B)

6.

Casos possíveis:

$$\frac{1.^{\circ}A}{6} \frac{2.^{\circ}A}{6} \frac{3.^{\circ}A}{6} \frac{4.^{\circ}A}{6}$$

Número de casos possíveis: ${}^{6}A'_{4} = 6^{4} = 6 \times 6 \times 6 \times 6$

Casos favoráveis:

Número de casos favoráveis: $2 \times 6 \times 6 \times 3$

A probabilidade pedida é:
$$P = \frac{2 \times 6 \times 6 \times 3}{6 \times 6 \times 6 \times 6} = \frac{1}{6}$$

Resposta: (A)

6.2. ${}^{6}C_{4} + {}^{6}C_{5} = 15 + 6 = 21$ Número de maneiras de escolher as quatro ou cinco faces

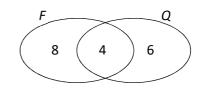
para pintar de azul (as restantes são pintadas de vermelho)

Resposta: (D)

7. $\#F \cap Q = 18$, #F = 12, #Q = 10

7.1.
$$\#F \cup Q = \#F + \#Q - \#F \cap Q$$

 $18 = 12 + 10 - \#F \cap Q \Leftrightarrow$
 $\Leftrightarrow \#F \cap Q = 12 + 10 - 18 \Leftrightarrow \#F \cap Q = 4$



Número de casos possíveis: ${}^{18}C_2 = 153$

Número de casos favoráveis: ${}^{12}C_2 + {}^{10}C_2 - {}^{4}C_2 = 105$

→ Estes pares entraram duas vezes

A probabilidade pedida é $P = \frac{105}{153} \approx 0,686 \approx 69\%$

Resposta: (C)

7.2. De acordo com as opções apresentadas no quadro ao lado, o número de comissões que é possível formar é dado por:

$${}^{4}C_{1} \times {}^{14}C_{4} + {}^{4}C_{2} \times {}^{14}C_{3} + {}^{4}C_{3} \times {}^{14}C_{2} + {}^{4}C_{4} \times {}^{14}C_{1} =$$

$$= 4004 + 2184 + 364 + 14 = 6566$$

Outros	Total
14	18
4	
3	
2]
1	
	14 4 3

Ou

$$^{18}C_5 - ^4\underline{C_0 \times ^{14}C_5} = 6566$$

Comissões só com professores que lecionam apenas uma disciplina

Todas as comissões de cinco elementos.

A comissão pode ser formada de 6566 maneiras.

8.
$$P(\overline{B} \cup (\overline{A} \cap B)) = P((\overline{B} \cup \overline{A}) \cap (\overline{B} \cup B)) = P((\overline{B} \cap A) \cap E) =$$

$$= P(\overline{B} \cap A) = 1 - P(B \cap A)$$

$$P(\overline{B} \cup (\overline{A} \cap B)) = P(\overline{B}) + P(A \cap B) \Leftrightarrow$$

$$\Leftrightarrow 1 - P(B \cap A) = 1 - P(B) + P(A \cap B) \Leftrightarrow$$

$$\Leftrightarrow -2P(B \cap A) = -P(B) \Leftrightarrow$$

$$\Leftrightarrow P(A \cap B) = \frac{1}{2}P(B) \Leftrightarrow$$

$$\Leftrightarrow \frac{P(A \cap B)}{P(B)} = \frac{1}{2} \Leftrightarrow P(A|B) = \frac{1}{2}$$

Resposta: (C)

9. Na tabela seguinte relaciona-se a monotonia de f' com o sinal de f'' e o sentido da concavidade de gráfico de f:

х		x_0	
f'	×	Mín.	7
f"	-	0	+
f	\cap	P.I.	\supset

Apenas o gráfico apresentado em (A) se ajusta a estes resultados.

Resposta: (A)

10.
$$f'(x) = \frac{4x}{x^2 + 1}$$

10.1.
$$r: y = 2x + k$$

A reta r tem declive 2. Logo, esta reta é tangente ao gráfico de f num ponto de abcissa x tal que f'(x) = 2.

$$f'(x) = 2 \Leftrightarrow \frac{4x}{x^2 + 1} = 2 \Leftrightarrow$$

$$\Leftrightarrow \frac{4x}{x^2 + 1} - 2 = 0 \Leftrightarrow$$

$$\Leftrightarrow \frac{4x - 2x^2 - 2}{x^2 + 1} = 0 \Leftrightarrow$$

$$\Leftrightarrow 4x - 2x^2 - 2 = 0 \land x^2 + 1 \neq 0 \Leftrightarrow |x^2 + 1 \neq 0, \forall x \in \mathbb{R}$$

$$\Leftrightarrow x^2 - 2x + 1 = 0 \Leftrightarrow$$

$$\Leftrightarrow (x - 1)^2 = 0 \Leftrightarrow x = 1$$

A reta r é tangente ao gráfico de f num ponto de abcissa 1.

É dado que o ponto de tangência tem ordenada 5. Logo, a reta r passa no ponto de coordenadas (1,5).

$$r: y=2x+k$$

Para x = 1 e y = 5, temos:

$$5 = 2 \times 1 + k \Leftrightarrow k = 5 - 2 \Leftrightarrow k = 3$$

10.2.
$$f''(x) = \left(\frac{4x}{x^2 + 1}\right)' = \frac{(4x)'(x^2 + 1) - (4x)(x^2 + 1)'}{(x^2 + 1)^2} =$$

$$= \frac{4(x^2 + 1) - (4x)(2x)}{(x^2 + 1)^2} =$$

$$= \frac{4x^2 + 4 - 8x^2}{(x^2 + 1)^2} = \frac{4 - 4x^2}{(x^2 + 1)^2}$$

$$f''(x) = 0 \Leftrightarrow \frac{4 - 4x^2}{(x^2 + 1)^2} = 0 \Leftrightarrow 4 - 4x^2 = 0 \land (x^2 + 1)^2 \equiv 0 \Leftrightarrow$$

$$\Leftrightarrow 4 - 4x^2 = 0 \Leftrightarrow 4x^2 = 4 \Leftrightarrow x^2 = 1 \Leftrightarrow x = -1 \lor x = 1$$

O sinal de f'' é o sinal de $4-4x^2$.

х	∞	-1		1	+∞
f''	-	0	+	0	_
f	\cap	P.I.)	P.I.	\cap

O gráfico de f tem a concavidade voltada para baixo em $]-\infty$, -1[e em]1, $+\infty[$ e tem a concavidade voltada para cima em]-1,1[.

O gráfico de f tem dois pontos de inflexão, um com abcissa -1 e outro com abcissa 1.

11. Se f é uma função polinomial do terceiro grau então $f(x) = ax^3 + bx^2 + cx + d$, com $a,b,c,d \in \mathbb{R}$ e $a \neq 0$.

Temos, então:

$$f'(x) = 3ax^2 + 2bx + c \quad e$$

$$f''(x) = 6ax + 2b$$

$$f''(x) = 0 \Leftrightarrow 6ax + 2b = 0$$

Como $a \neq 0$, esta equação tem uma única solução que é $x = -\frac{2b}{6a} \Leftrightarrow x = -\frac{b}{3a}$.

Por outro lado, sendo f'' uma função polinomial do primeiro grau muda de sinal no zero, ou seja,

em
$$x = -\frac{b}{3a}$$
.

Portanto, o gráfico da função f tem um e um só ponto de inflexão cuja abcissa é $x = -\frac{b}{3a}$.

