# Proposta de teste de avaliação Matemática A

12.º ANO DE ESCOLARIDADE

**Duração:** 90 minutos | **Data:** 



### Caderno 1

(é permitido o uso de calculadora)

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identificam a opção escolhida.

1. A Sara recebeu de presente uma caixa contendo dez bolas de Natal, sendo seis azuis e quatro brancas.

As dez bolas distinguem-se apenas pela cor.



1.1. Se forem retiradas, simultaneamente e ao acaso, cinco bolas da caixa, qual é a probabilidade de saírem três bolas azuis e duas brancas?

Apresente o resultado na forma de percentagem, arredondado às unidades.

1.2. Admita que se extraem, ao acaso, sucessivamente e sem reposição, duas bolas da caixa. Determine a probabilidade de as duas bolas extraídas serem azuis, sabendo que são da mesma cor.

Apresente o resultado na forma de fração irredutível.

**1.3.** Considere, agora, que da caixa são retiradas n bolas azuis, ficando, portanto, com 6-n bolas azuis e quatro bolas brancas.

Realiza-se a seguinte experiência: extraem-se simultaneamente duas bolas da caixa, ao acaso. Sabendo que a probabilidade de as duas bolas extraídas serem azuis é igual a  $\frac{1}{7}$ , determine o valor de n.

Para resolver este problema, percorra a seguintes etapas:

- · equacione o problema;
- resolva a equação.



**1.4.** Suponha agora que as dez bolas inicialmente existentes na caixa são retiradas e colocadas numa fila, encostadas umas ao lado das outras.

Sabendo que bolas da mesma cor não se distinguem, quantas filas diferentes é possível formar em que haja pelo menos duas bolas brancas seguidas?

 $(\mathbf{A}) \quad \frac{10!}{4! \times 6!}$ 

- **(B)**  ${}^{10}C_6 {}^7C_4$
- (C)  $10! 6! \times {}^{7}A_{4}$
- **(D)**  $^{10}C_4 ^6C_4$
- 2. Um dos termos do desenvolvimento de  $\left(2 + \frac{x^2}{2}\right)^{12}$  é um monómio da forma  $k x^{10}$ .

Determine o valor de k.

3. Relativamente a uma linha do Triângulo de Pascal sabe-se que o 6.º elemento é igual ao 15.º.

Qual é o maior valor dessa linha?

- **(A)** 48 620
- **(B)** 184 756
- **(C)** 352 716
- **(D)** 92 378

Fim do Caderno 1

**COTAÇÕES** (Caderno 1)

| Item                |      |      |      |    |    |    |
|---------------------|------|------|------|----|----|----|
| Cotação (em pontos) |      |      |      |    |    |    |
| 1.1.                | 1.2. | 1.3. | 1.4. | 2. | 3. |    |
| 15                  | 20   | 15   | 10   | 15 | 10 | 85 |



# Caderno 2

(não é permitido o uso de calculadora)

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identificam a opção escolhida.

4. Uma turma do 12.º ano com 30 alunos tem igual número de rapazes e raparigas.

Nessa turma, 18 alunos têm a disciplina de Física e os restantes têm, em alternativa, a disciplina de Psicologia. Nove dos alunos que têm Psicologia são raparigas.

Escolhe-se ao acaso um aluno dessa turma.

Qual é a probabilidade de:

- o aluno escolhido ser uma rapariga que frequenta a disciplina de Física?

- (A)  $\frac{1}{2}$  (B)  $\frac{1}{3}$  (C)  $\frac{1}{5}$  (D)  $\frac{2}{5}$
- **4.2.** o aluno escolhido ser rapaz, sabendo que não tem a disciplina de Psicologia?

- (A)  $\frac{2}{3}$  (B)  $\frac{1}{3}$  (C)  $\frac{2}{5}$
- 5. Escolhe-se, ao acaso, um aluno de uma turma do 12.º ano. Relativamente a esta experiência aleatória, considere os acontecimentos:

A: "O aluno é um rapaz"

B: "O aluno usa óculos"

Sabe-se que  $P(\overline{A} \cap B) = \frac{1}{6}$ .



Qual das afirmações seguintes é necessariamente verdadeira?

(A) 
$$P(A \cup B) = P(A) + P(B)$$

**(B)** 
$$P(\overline{A} \cup B) < P(\overline{A}) + P(B)$$

(C) 
$$P(A \cup \overline{B}) = \frac{2}{3}$$

$$(\mathbf{D}) \qquad P(A) > \frac{5}{6}$$



- 6. Seja E um conjunto finito, P uma probabilidade em P(E) e sejam A e B dois acontecimentos possíveis  $(A, B \in P(E))$ .
  - **6.1.** Mostre que  $P(A \cup B) P(A) \times P(\overline{B} \mid A) = P(B)$ .
  - **6.2.** Sabe-se que:
    - $\bullet \quad P(A \mid B) = \frac{1}{3}$
    - $\bullet \quad P(B \mid A) = \frac{1}{4}$
    - $P(\overline{A} \cap \overline{B}) = \frac{2}{5}$

Determine o valor de P(B).

- 7. Considere a função g definida em  $\mathbb{R}$  por  $g(x) = x^5 + x 1$ .
  - **7.1.** Mostre que a função g é estritamente crescente.
  - **7.2.** Sabendo que g é a segunda derivada de uma determinada função f, mostre que o gráfico da função f tem um e um só ponto de inflexão e que a sua abcissa pertence ao intervalo ]0,1[.
  - **7.3.** Sabe-se que uma função  $h \notin \text{tal que } \forall x \in \mathbb{R}, g(x) \ge h(x)$ .

O valor de 
$$\lim_{x \to -\infty} \frac{1 - g(x) \times h(x)}{g(x)}$$
 é:

- **(A)** 0
- **(B)** 1
- **(C)** −∞
- **(D)** +∞
- **8.** Utilize o teorema das sucessões enquadradas para calcular o limite da sucessão  $u_n = \left(\frac{n+4}{3n+3}\right)^n$ .

### Fim da prova

# COTAÇÕES (Caderno 2)

|                             | Item                |    |      |      |      |      |      |    |     |
|-----------------------------|---------------------|----|------|------|------|------|------|----|-----|
|                             | Cotação (em pontos) |    |      |      |      |      |      |    |     |
| 4.1                         | 4.2.                | 5. | 6.1. | 6.2. | 7.1. | 7.2. | 7.3. | 8. |     |
| 10                          | 10                  | 10 | 15   | 15   | 15   | 15   | 10   | 15 | 115 |
| TOTAL (Caderno1 + Caderno2) |                     |    |      |      | 200  |      |      |    |     |



## Proposta de resolução

### Caderno 1

1.

1.1. Azuis Brancas Total  $\frac{6}{3}$   $\frac{4}{3}$   $\frac{10}{3}$ 

Número de casos possíveis:  ${}^{10}C_5 = 252$ 

Número de casos favoráveis:  ${}^{6}C_{3} \times {}^{4}C_{2} = 20 \times 6 = 120$ 

Probabilidade pedida:  $\frac{120}{252} \approx 48\%$ 

**1.2.** Sejam os acontecimentos:

 $A_{l}$ : "A primeira bola extraída é azul"

 $B_1$ : "A primeira bola extraída é branca"

 $A_2$ : "A segunda bola extraída é azul"

 $B_2$ : "A segunda bola extraída é branca"

A: "As duas bolas extraídas são azuis"

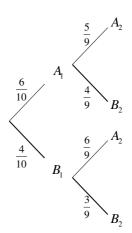
C: "As duas bolas extraídas são da mesma cor"

Pretende-se determinar P(A | C)

$$P(A \mid C) = \frac{P(A \cap C)}{P(C)} = \frac{P(A_1 \cap A_2)}{P(A_1 \cap A_2) + P(B_1 \cap B_2)} =$$

$$= \frac{P(A_1) \times P(A_2 \mid A_1)}{P(A_1) \times P(A_2 \mid A_1) + P(B_1) \times P(B_2 \mid B_1)} =$$

$$= \frac{\frac{6}{10} \times \frac{5}{9}}{\frac{6}{10} \times \frac{5}{9} + \frac{4}{10} \times \frac{3}{9}} = \frac{\frac{30}{90}}{\frac{30}{90} + \frac{12}{90}} = \frac{\frac{30}{90}}{\frac{42}{90}} = \frac{\frac{30}{42}}{\frac{42}{90}} = \frac{5}{7}$$



**1.3.** Número total de bolas: 10-n; número de bolas azuis: 6-n

Número de casos possíveis:  ${}^{10-n}C_2$  (número de maneiras de escolher 2 bolas entre as 10-n existentes

na caixa)

Número de casos favoráveis:  $^{6-n}C_2$  (número de maneiras de escolher 2 bolas azuis entre as 6-n existentes na caixa)

A probabilidade de as duas bolas serem azuis é igual a  $\frac{6-n}{10-n}C_2$ .

$$\frac{^{6-n}C_2}{^{10-n}C_2} = \frac{1}{7} \Leftrightarrow \frac{\frac{^{6-n}A_2}{2!}}{\frac{2!}{2!}} = \frac{1}{7} \Leftrightarrow \frac{\frac{(6-n)(5-n)}{2!}}{\frac{(10-n)(9-n)}{2!}} = \frac{1}{7} \Leftrightarrow \frac{(6-n)(5-n)}{(10-n)(9-n)} = \frac{1}{7} \Leftrightarrow \frac{30-6n-5n+n^2}{90-10n-9n+n^2} = \frac{1}{7} \Leftrightarrow \frac{7(30-11n+n^2) = 90-19n+n^2 \Leftrightarrow 210-77n+7n^2-90+19n-n^2 = 0 \Leftrightarrow 6n^2-58n+120 = 0 \Leftrightarrow 3n^2-29n+60 = 0 \Leftrightarrow n = \frac{29\pm\sqrt{29^2-4\times3\times60}}{6} \Leftrightarrow n = \frac{29\pm\sqrt{121}}{6} \Leftrightarrow n = \frac{29\pm\sqrt{121}}{6} \Leftrightarrow n = 3 \lor n = \frac{20}{3}$$

Como n é um número inteiro e  $0 \le n \le 4$ , vem n = 3.



**1.4.** Número de filas que é possível formar:

 $^{10}C_6$ : número de maneiras de, entre os dez lugares da fila, escolher seis para as bolas azuis

Os restantes quatro lugares serão ocupados pelas bolas brancas (ou  $^{10}C_4$ , que é o número de maneiras de, entre os dez lugares da fila, escolher quatro para as bolas brancas).

Número de filas que é possível formar em que não apareçam duas bolas brancas seguidas:

escolher quatro para as bolas brancas.

Portanto, o número de filas diferentes que é possível formar em que haja pelo menos duas bolas brancas seguidas é dado por:  ${}^{10}C_6 - {}^{7}C_4$ 

Resposta: (B)

2. 
$$\left(2 + \frac{x^2}{2}\right)^{12} = \sum_{p=0}^{12} {}^{12}C_p \times 2^{12-p} \left(\frac{x^2}{2}\right)^p$$

$$T_{p+1} = {}^{12}C_p \times 2^{12-p} \left(\frac{x^2}{2}\right)^p = {}^{12}C_p \times 2^{12-p} \times \frac{x^{2p}}{2^p} = {}^{12}C_p \times \frac{2^{12-p}}{2^p} x^{2p} = {}^{12}C_p \times 2^{12-p-p} x^{2p} = {}^{12}C_p \times 2^{12-2p} x^{2p}$$

$$2p = 10 \Leftrightarrow p = 5$$

$$T_{5+1} = {}^{12}C_5 \times 2^{12-2\times5} x^{2\times5} = 792 \times 2^2 x^{10} = 792 \times 4x^{22} = 3168x^{22}$$

Logo, 
$$k = 3168$$

3. A linha de ordem n é formada por elementos da forma  ${}^nC_p$ , com  $0 \le p \le n$ .

Sabe-se que o 6.º elemento  $\binom{n}{C_5}$  é igual ao 15.º  $\binom{n}{C_{14}}$ , ou seja:

$${}^{n}C_{5} = {}^{n}C_{14} \Leftrightarrow n-5 = 14 \Leftrightarrow n = 19$$

A linha de ordem 19 tem 20 elementos. Como n é ímpar (e o número de elementos é par), o maior valor é o dos dois elementos centrais:  $^{19}C_9 = ^{19}C_{10} = 92\,378$ .

Resposta: (D)

#### Caderno 2

4. Na tabela seguinte resumem-se os dados do problema.

|               | Física | Psicologia |    |
|---------------|--------|------------|----|
| Rapazes       | 12     | 3          | 15 |
| Raparigas (M) | 6      | 9          | 15 |
|               | 18     | 12         | 30 |

$$\begin{vmatrix} 30:2=15\\ 30-18=12\\ 12-9=3\\ 15-3=12\\ 18-12=6 \end{vmatrix}$$

**4.1.** Em 30 alunos há 6 raparigas que frequentam a disciplina de Física.

A probabilidade pedida é  $\frac{6}{30} = \frac{1}{5}$ .

Resposta: (C)

**4.2.** Há 18 alunos que não têm a disciplina de Psicologia, 12 dos quais são rapazes.

Portanto, a probabilidade de o aluno escolhido ser rapaz, sabendo que não tem a disciplina de Psicologia, é

igual a 
$$\frac{12}{18} = \frac{2}{3}$$
.

Resposta: (A)

5.

•  $P(A \cup B) = P(A) + P(B)$  apenas se  $P(A \cap B) = 0$ , o que não se pode garantir (não é dado que nenhum rapaz usa óculos). Logo, esta afirmação pode ser verdadeira ou falsa.

• 
$$P(\overline{A} \cup B) = P(\overline{A}) + P(B) - P(\overline{A} \cap B)$$
  
Como  $P(\overline{A} \cap B) = \frac{1}{6} > 0$ , vem  $P(\overline{A} \cup B) < P(\overline{A}) + P(B)$ .

Logo, a afirmação é verdadeira

• 
$$P(\overline{A} \cap B) = \frac{1}{6} \Leftrightarrow P(\overline{\overline{A} \cap B}) = 1 - \frac{1}{6} \Leftrightarrow P(A \cup \overline{B}) = \frac{5}{6}$$
  
Portanto,  $P(A \cup \overline{B}) \neq \frac{2}{3}$ , pelo que a afirmação é falsa.

• 
$$P(\overline{A} \cap B) \le P(\overline{A}) \Leftrightarrow \frac{1}{6} \le 1 - P(A) \Leftrightarrow P(A) \le 1 - \frac{1}{6} \Leftrightarrow P(A) \le \frac{5}{6}$$
  
Logo, a afirmação  $P(A) > \frac{5}{6}$  é falsa.

Resposta: (B)

6.1. 
$$P(A \cup B) - P(A) \times P(\overline{B} \mid A) =$$

$$= P(A) + P(B) - P(A \cap B) - P(A \cap \overline{B}) =$$

$$= P(B) + [P(A) - P(A \cap B)] - P(A \cap \overline{B}) =$$

$$= P(B) + P(A \cap \overline{B}) - P(A \cap \overline{B}) =$$

$$= P(B) + P(A \cap \overline{B}) - P(A \cap \overline{B}) =$$

$$= P(B)$$

$$= P(B)$$

**6.2.** 
$$P(A|B) = \frac{1}{3} \Leftrightarrow \frac{P(A \cap B)}{P(B)} = \frac{1}{3} \Leftrightarrow P(A \cap B) = \frac{1}{3}P(B)$$
 (1)

$$P(B \mid A) = \frac{1}{4} \Leftrightarrow \frac{P(B \cap A)}{P(A)} = \frac{1}{4} \Leftrightarrow P(A) = 4P(B \cap A) \Leftrightarrow P(A) = 4P(A \cap B) \tag{2}$$

$$P(\overline{A} \cap \overline{B}) = \frac{2}{5} \Leftrightarrow P(\overline{A \cup B}) = \frac{2}{5} \Leftrightarrow P(A \cup B) = 1 - \frac{2}{5} \Leftrightarrow P(A \cup B) = \frac{3}{5}$$
 (3)

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$\frac{3}{5} = 4P(A \cap B) + P(B) - P(A \cap B) \Leftrightarrow \frac{3}{5} = 3P(A \cap B) + P(B) \Leftrightarrow$$

$$\Leftrightarrow \frac{3}{5} = 3 \times \frac{1}{3} P(B) + P(B) \Leftrightarrow$$

$$\Leftrightarrow \frac{3}{5} = 2P(B) \Leftrightarrow P(B) = \frac{1}{2} \times \frac{3}{5} \Leftrightarrow$$

$$\Leftrightarrow P(B) = \frac{3}{10}$$

$$(3) e (2)$$

$$\Leftrightarrow \frac{3}{5} = 3 \times \frac{1}{3} P(B) + P(B) \Leftrightarrow$$

$$\Leftrightarrow P(B) = \frac{3}{10}$$

7.1. 
$$g(x) = x^5 + x - 1$$
;  $D_g = \mathbb{R}$   
 $g'(x) = 5x^4 + 1$ 

Como g'(x) > 0,  $\forall x \in \mathbb{R}$ , podemos concluir que a função g é estritamente crescente.



A função g é contínua  $\mathbb{R}$  por ser uma função polinomial. Logo, g é contínua em [0,1].

$$g(0) = 0^5 + 0 - 1 = -1$$
;  $g(1) = 1^5 + 1 - 1 = 1$ 

Assim,  $g(0) \times g(1) < 0$ .

Como g é contínua em [0,1] e  $g(0) \times g(1) < 0$ , pelo corolário do Teorema de Bolzano-Cauchy podemos concluir que existe pelo menos um  $x \in [0, 1]$  tal que g(x) = 0.

Atendendo a que a função g é estritamente crescente em  $\mathbb{R}$ , então é injetiva, pelo que o zero cuja existência se provou é único.

Seja 
$$x_0 \in ]0$$
, 1[ o zero de  $g$ .

Sendo a função g estritamente crescente, vem que g(x) < 0, qualquer que seja

 $x \in ]-\infty$ ,  $x_0[$  e g(x) > 0, qualquer que seja  $x \in ]x_0$ ,  $+\infty[$ .



| х       | -∞     | $\mathcal{X}_0$ | +∞ |  |
|---------|--------|-----------------|----|--|
| f'' = g | _      | 0               | +  |  |
| f       | $\cap$ |                 | U  |  |
| P.I.    |        |                 |    |  |

Portanto, como a função g é a segunda derivada da função f, podemos concluir que o ponto do gráfico de fcuja abcissa é  $x_0 \in ]0$ , 1[ é o seu único ponto de inflexão.

**7.3.** 
$$\lim g(x) = \lim (x^5 + x - 1) = \lim (x^5) = (-\infty)^5 = -\infty$$

Se  $\lim_{x \to \infty} g(x) = -\infty$  e  $\forall x \in \mathbb{R}$ ,  $g(x) \ge h(x)$ , então  $\lim_{x \to \infty} h(x) = -\infty$  (teorema de comparação de funções)

$$\lim_{x \to -\infty} \frac{1 - g(x) \times h(x)}{g(x)} = \lim_{x \to -\infty} \left( \frac{1}{g(x)} - \frac{g(x) \times h(x)}{g(x)} \right) = \lim_{x \to -\infty} \left( \frac{1}{g(x)} - h(x) \right) =$$

$$= \lim_{x \to -\infty} \frac{1}{g(x)} - \lim_{x \to -\infty} h(x) = \frac{1}{-\infty} - (-\infty) = 0 + \infty = +\infty$$

Resposta: (D)

8. 
$$\frac{n+4}{3n+3} = \frac{1}{3} + \frac{3}{3n+3} = \frac{1}{3} + \frac{1}{n+1}$$

$$\frac{n+4}{-n-1} = \frac{3n+3}{3}$$

 $\frac{n+4}{3n+3} = \frac{1}{3} + \frac{3}{3n+3} = \frac{1}{3} + \frac{1}{n+1}$   $\frac{1}{n+1}$  \(\frac{n+4}{3} \frac{|3n+3}{\frac{1}{3}} \frac{1}{3}\)  $\frac{1}{n+1} \(\frac{\epsilon}{n} \text{ o termo geral de uma sucessão estritamente decrescente de termos positivos.}$ 

Assim, para qualquer  $n \in \mathbb{N}$ :

$$0 < \frac{1}{n+1} < \frac{1}{1+1} \Leftrightarrow 0 < \frac{1}{n+1} < \frac{1}{2} \Leftrightarrow \frac{1}{3} < \frac{1}{3} + \frac{1}{n+1} < \frac{1}{2} + \frac{1}{3} \Leftrightarrow \frac{1}{3} < \frac{n+4}{3n+3} < \frac{3+2}{6} \Leftrightarrow \frac{1}{3} < \frac{n+4}{3n+3} < \frac{5}{6} \Leftrightarrow \left(\frac{1}{3}\right)^n < \left(\frac{n+4}{3n+3}\right)^n < \left(\frac{5}{6}\right)^n$$

Como  $\lim_{n \to \infty} \left(\frac{1}{3}\right)^n = \lim_{n \to \infty} \left(\frac{5}{6}\right)^n = 0$  e, para todo o  $n \in \mathbb{N}$ ,  $\left(\frac{1}{3}\right)^n < u_n < \left(\frac{5}{6}\right)^n$ , podemos concluir, pelo teorema das sucessões enquadradas, que  $\lim u_n = 0$ .