

Teste 3

FUNÇÕES
EXPONENCIAIS
E FUNÇÕES
LOGARÍTMICAS.
FUNÇÕES REAIS DE VARIÁVEL
REAL.
CÁLCULO COMBINATÓRIO.
PROBABILIDADES

Nome	N.°	_Turma	_Data	_ /jan./2020
Avaliação	Drofess	or		

Grupo I

Os cinco itens deste grupo são de escolha múltipla. Para cada um deles, escolhe a única opção correta.

1. Seja a um número real maior do que 1.

Seja $b = \log_a(18)$ e seja $c = \log_a(2)$.

Qual é o valor de $a^{\frac{b-c}{2}}$?

(A) 3

(B) 6

(C) 9

(D) 12

2. Sejam $a \in b$ números reais maiores do que 1 tais que $\log_b(a) = 4$.

Qual é o valor de $\log_a(ab^2)$?

(A) $\frac{1}{2}$

(B) $\frac{3}{4}$

(C) $\frac{5}{4}$

(D) $\frac{3}{2}$

3. Para um certo número real k , tem-se $\lim_{n \to \infty} \left(1 + \frac{k}{4n}\right)^{n+1} = \sqrt{e}$.

Qual é o valor de k ?

(A) $\frac{3}{2}$

(B) 2

(C) $\frac{5}{2}$

(D) 3

4. Qual é o valor de $\lim_{x\to 0} \frac{e^{x-1}(e^x-1)}{x^2-x}$?

(A) -e

(B) $-\frac{1}{e}$

(C) $\frac{1}{e}$

(D) *e*

5. O código de um cofre é uma sequência de cinco algarismos diferentes de 0.

O João não sabe o código, mas sabe que este contém dois algarismos ímpares diferentes e três algarismos pares, dos quais dois são iguais.

O João vai tentar abrir o cofre.

Qual é a probabilidade (valor arredondado às centésimas de milésimas) de o João o conseguir, com uma única tentativa?

(A) 0,000 12

(B) 0,000 13

(C) 0,000 14

(D) 0,000 15

Grupo II

Na resposta a cada um dos cinco itens deste grupo, apresenta todos os cálculos que efetuares, explica os raciocínios e justifica as conclusões.

1. Como sabes, 1910 foi o ano da implantação da República em Portugal.

Admite que a população de Portugal Continental, em milhões de habitantes, t anos após o início de 1910, é dada aproximadamente por:

$$p(t) = \frac{11,742}{1 + 1.06e^{-0.022t}} \quad (t \ge 0)$$

a) De acordo com este modelo, em que ano é que a população de Portugal Continental atingiu dez milhões de habitantes?

b) Desde o instante $\,t=0\,$ até um certo instante $\,t=a\,$, a população de Portugal Continental aumentou, em média, $50\,000\,$ habitantes por ano. Determina, recorrendo às capacidades gráficas da calculadora, o valor de $\,a\,$.

Na tua resposta:

- · equaciona o problema;
- reproduz, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora que te permite(m) resolver a equação;
- apresenta o valor de α arredondado às unidades.
- **2.** Seja f a função de domínio $\mathbb R$ definida por:

$$f(x) = \begin{cases} \frac{2e^{x-1} - x + 3 & \text{se } x \le 1\\ \frac{\ln(4x-3)}{x-1} & \text{se } x > 1 \end{cases}$$

- a) Justifica que a função f é contínua.
- **b)** Estuda a função f quanto às assíntotas ao seu gráfico.
- c) Estuda, quanto à monotonia e quanto à existência de extremos relativos, a restrição da função f ao intervalo $]-\infty,1]$.
- **3.** Para cada número real k , seja g a função de domínio $\left]-\frac{1}{2}$, $+\infty\right[$ definida por:

$$g(x) = k + \frac{x+2}{2}\ln(2x+1) - \ln(5)$$

- a) Determina o conjunto dos valores de k para os quais o teorema de Bolzano-Cauchy, aplicado no intervalo [0,2], garante a existência de pelo menos um zero da função g em [0,2].
- **b)** Considera k=0 . Estuda a função g quanto ao sentido das concavidades do seu gráfico e quanto à existência de pontos de inflexão.
- **4.** Seja E o espaço amostral associado a uma experiência aleatória.

Sejam $A \in B$ dois acontecimentos ($A \subset E \in B \subset E$).

Sabe-se que $P(B) \neq 1$ e que A e \overline{B} são acontecimentos equiprováveis.

Prova que $P(\overline{A}|\overline{B}) - P(A \cap B) = P(B) \times P(B|A)$.

5. Seja f a função de domínio \mathbb{R}^+ definida por $f(x) = p \log_a(x)$

(p designa um número real positivo e q designa um número real maior do que 1).

Seja a um número real positivo. Seja A o ponto do gráfico de f cuja abcissa é a e seja r a reta tangente ao gráfico de f no ponto A .

Sejam $B \in C$ os pontos de interseção da reta r com os eixos das ordenadas e das abcissas, respetivamente. Sabe-se que o ponto B tem ordenada positiva.

Seja D o ponto de coordenadas (a,0).

Determina o valor de $\,a$, sabendo que o triângulo $\,[ACD]\,$ é isósceles e que o triângulo $\,[BCD]\,$ é retângulo.

FIM