TESTE N.º 5 - Proposta de resolução

Caderno 1

1. Opção (B)

Depois de colocados o X, o P, o T e o O, existem 8C_3 maneiras de colocar os três E nos oito espaços disponíveis. Por cada uma destas maneiras, existem 5C_2 formas de colocar os dois 1 nos cinco lugares ainda disponíveis, sendo que, por cada uma das maneiras de colocar o X, o P, o T, o O, os três E e os dois 1, existem 3! formas de colocar o N, o 8 e o 9.

2. Opção (B)

Sabe-se que P(A) > 0, P(B) > 0, $P(A \cap B) = 0$, P(A) = P(B) e $P(\overline{A} \cap \overline{B}) = 0.4$. Assim:

$$P(\overline{A} \cap \overline{B}) = 0.4 \Leftrightarrow P(\overline{A \cup B}) = 0.4 \Leftrightarrow P(A \cup B) = 1 - 0.4$$

$$\Leftrightarrow P(A \cup B) = 0.6$$

$$\Leftrightarrow P(A) + P(B) - P(A \cap B) = 0.6$$

$$\Leftrightarrow P(B) + P(B) - 0 = 0.6$$

$$\Leftrightarrow P(B) = 0.3$$

Logo, $P(\overline{A} \cap B) = P(B) - P(A \cap B) = 0.3 - 0 = 0.3$.

3.

3.1. Sabemos que:

- f é contínua em $]-1,+\infty[$, logo, em particular, f é contínua em $\left[-\frac{1}{2},0\right]$;
- f é diferenciável em $]-1,+\infty[$, logo, em particular, f é diferenciável em $]-\frac{1}{2},0[$.

Assim, pelo teorema de Lagrange, pode concluir-se que $\exists c \in \left] -\frac{1}{2}, 0\right[:f'(c) = \frac{f(0) - f\left(-\frac{1}{2}\right)}{0 - \left(-\frac{1}{2}\right)}, \text{ isto \'e},$

 $\exists c \in \left] -\frac{1}{2}, 0 \right[: f'(c) = 2 \left(f(0) - f\left(-\frac{1}{2} \right) \right), \text{ como queríamos demonstrar.}$

3.2.
$$f'(x) = \frac{(\ln(3x+3))' \times (x+1) - \ln(3x+3) \times (x+1)'}{(x+1)^2} + 0 =$$
$$= \frac{\frac{3}{3x+3} \times (x+1) - \ln(3x+3) \times 1}{(x+1)^2} =$$
$$= \frac{1 - \ln(3x+3)}{(x+1)^2}$$

$$f'(x) = 0$$

$$1 - \ln(3x + 3) = 0 \quad \land \quad (x + 1)^2 \neq 0 \iff \ln(3x + 3) = 1 \quad \land \quad x + 1 \neq 0$$

$$\Leftrightarrow 3x + 3 = e \quad \land \quad x \neq -1$$

$$\Leftrightarrow x = \frac{e - 3}{3}$$

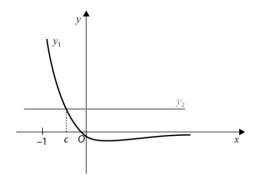
x	-1		$\frac{e-3}{3}$	+∞
Sinal de f'	n.d.	+	0	_
Variação de f	n.d.	7	Máx.	7

f é crescente em $\left]-1,\frac{e-3}{3}\right]$ e é decrescente em $\left[\frac{e-3}{3},+\infty\right[$; existe um máximo de f para $x=\frac{e-3}{3}$.

3.3. Comecemos por determinar as coordenadas do ponto A:

$$y_1 = f'(x)$$
, isto é, $y_1 = \frac{1 - \ln(3x + 3)}{(x + 1)^2}$.

$$y_2 = 2\left(f(0) - f\left(-\frac{1}{2}\right)\right)$$
, isto é, $y_2 = 2\left(\ln(3) + 5 - \frac{\ln\left(\frac{3}{2}\right)}{\frac{1}{2}} - 5\right) = 2\left(\ln(3) - 2\ln\left(\frac{3}{2}\right)\right)$.

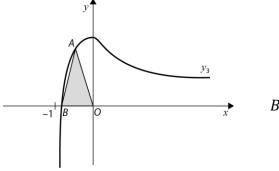


Assim, $c \approx -0.311$.

Logo, A(-0,311; f(-0,311)), isto é, A(-0,311; 6,054).

De seguida, representemos graficamente a função f e determinemos as coordenadas do ponto B:

$$y_3 = \frac{\ln(3x+3)}{x+1} + 5$$



B(-0.846;0)

$$A_{\Delta[OAB]} = \frac{\overline{OB} \times y_A}{2} = \frac{0.846 \times 6.054}{2} \approx 2,56 \text{ u. a.}$$

4.

4.1. Cálculos auxiliares

(1)
$$z_2 = -\cos\left(\frac{\pi}{7}\right) - i\sin\left(\frac{\pi}{7}\right) = -\left(\cos\left(\frac{\pi}{7}\right) + i\sin\left(\frac{\pi}{7}\right)\right) = -e^{i\frac{\pi}{7}} = e^{i\left(\pi + \frac{\pi}{7}\right)} = e^{i\left(\frac{8\pi}{7}\right)}$$

$$\text{Logo, } (z_2)^{14} = e^{i\left(\frac{8\pi}{7}\right) \times 14} = e^{i(16\pi)} = 1.$$
(2) $i^{2019} = i^3 = -i$

$$2019 \quad \boxed{4}$$

$$3 \quad 504$$

$$\frac{z_1 + (z_2)^{14}}{1 - i^{2019}} = \frac{-1 + 3i + 1}{1 - (-i)} = \frac{3i}{1 + i} =$$

$$= \frac{3i(1 - i)}{(1 + i)(1 - i)} = \frac{3i - 3i^2}{1 - i^2} =$$

$$= \frac{3i + 3}{2} = \frac{3}{2} + \frac{3}{2}i$$

4.2. Seja z = a + bi e w = c + di, onde a, b, c e $d \in \mathbb{R}$.

Assim:

$$\overline{z} w + z \overline{w} = (a - bi)(c + di) + (a + bi)(c - di) =$$

$$= ac + adi - bci - bdi^2 + ac - adi + bci - bdi^2 =$$

$$= 2ac + bd + bd =$$

$$= 2ac + 2bd \in \mathbb{R}$$

Caderno 2

5. Opção (C)

P é o ponto do gráfico de f de abcissa a, logo $P\left(a,f(a)\right)$. Como $\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}=0$, conclui-se que f'(a)=0 e como $\lim_{x\to a}\frac{f'(x)-f'(a)}{x-a}=-1$, conclui-se que f''(a)=-1.

Assim, como f'(a) = 0 e f''(a) < 0, podemos concluir que f(a) é um máximo relativo da função f.

6.

6.1. f é contínua em x=0 se e só se existir $\lim_{x\to 0} f(x)$, ou seja, $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^+} f(x) = f(0)$. Ora:

$$\bullet\, f(0)=k$$

•
$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{e^{x}-1}{3x} \stackrel{\left(\begin{array}{c}0\\0\end{array}\right)}{=} \frac{1}{3} \lim_{x\to 0^+} \frac{e^{x}-1}{x} = \frac{1}{3} \times 1 = \frac{1}{3}$$

•
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{\sin(3x^{2})}{\cos^{2}(\frac{\pi}{2} - x)} \stackrel{\text{def}}{=} \lim_{x \to 0^{-}} \frac{\sin(3x^{2})}{\sin^{2} x} =$$

$$= \lim_{x \to 0^{-}} \left(\frac{\sin(3x^{2})}{3x^{2}} \times \frac{x}{\sin(x)} \times \frac{x}{\sin(x)} \times 3 \right) =$$

$$= \lim_{3x^{2} \to 0^{+}} \frac{\sin(3x^{2})}{3x^{2}} \times \frac{1}{\lim_{x \to 0^{-}} \frac{\sin(x)}{x}} \times \frac{1}{\lim_{x \to 0^{-}} \frac{\sin(x)}{x}} \times 3 =$$

$$= 1 \times \frac{1}{1} \times \frac{1}{1} \times 3 =$$

$$= 3$$

Visto que $\lim_{x\to 0^-} f(x) \neq \lim_{x\to 0^+} f(x)$, conclui-se assim que não existe nenhum valor real de k para o qual a função f é contínua em x=0.

6.2. Como f tem domínio $\left[-\frac{\pi}{2}, +\infty\right[$, apenas faz sentido estudar as assíntotas não verticais ao gráfico de f quando $x \to +\infty$.

Assim:

$$m = \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{\frac{e^{x} - 1}{3x}}{x} = \lim_{x \to +\infty} \frac{e^{x} - 1}{3x^{2}} \stackrel{\left(\frac{\infty}{\infty}\right)}{=}$$

$$= \lim_{x \to +\infty} \left(\frac{e^{x}}{3x^{2}} - \frac{1}{3x^{2}}\right) =$$

$$= \frac{1}{3} \lim_{x \to +\infty} \frac{e^{x}}{x^{2}} - \lim_{x \to +\infty} \frac{1}{3x^{2}} =$$

$$= \frac{1}{3} \times (+\infty) - 0 =$$

$$= +\infty \notin \mathbb{R}$$

Conclui-se, assim, que o gráfico de f não admite assíntotas não verticais.

6.3. Opção (C)

Em]0,
$$+\infty$$
[, $h(x) = f(x) \times 3x - x^2$. Logo, $h(x) = \frac{e^x - 1}{3x} \times 3x - x^2 = e^x - 1 - x^2$.

Assim, em]0,
$$+\infty$$
[, $h'(x) = e^x - 2x$ e $h''(x) = e^x - 2$.

$$h''(x) = 0 \Leftrightarrow e^x - 2 = 0 \Leftrightarrow e^x = 2 \Leftrightarrow x = \ln(2)$$

x	0		ln(2)	+∞
Sinal de h''	n.d.	_	0	+
Variação de h'	n.d.	7	mín.	7

Seja r a reta tangente ao gráfico da função h que tem declive mínimo.

Tem-se que $h'(\ln(2)) = e^{\ln(2)} - 2\ln(2) = 2 - \ln(4)$ é o declive da reta r.

7. Seja g a função, de domínio $]-\pi,\pi[$, definida por $g(x)=2\cos x+\cos^2 x+5x$. Tem-se que:

$$g'(x) = -2\operatorname{sen} x - 2\cos x \operatorname{sen} x + 5 = -2\operatorname{sen} x - \operatorname{sen}(2x) + 5$$

$$g''(x) = -2\cos x - 2\cos(2x)$$

$$g''(x) = 0 \Leftrightarrow -2\cos x - 2\cos(2x) = 0 \Leftrightarrow -\cos x = \cos(2x)$$

$$\Leftrightarrow \cos(\pi + x) = \cos(2x)$$

$$\Leftrightarrow \pi + x = 2x + 2k\pi \quad \forall \quad \pi + x = -2x + 2k\pi, k \in \mathbb{Z}$$

$$\Leftrightarrow x = \pi + 2k\pi \quad \forall \quad x = -\frac{\pi}{3} + \frac{2k\pi}{3}, k \in \mathbb{Z}$$

Como
$$x \in]-\pi, \pi[, x = -\frac{\pi}{3} \ \lor \ x = \frac{\pi}{3}$$

x	-π		$-\frac{\pi}{3}$		$\frac{\pi}{3}$		π
Sinal de g''	n.d.	+	0	_	0	+	n.d.
Sentido das concavidades do	n.d.	U	P.I.	Λ	P.I.	U	n.d.
gráfico de g							

O gráfico de g tem a concavidade voltada para cima em $\left]-\pi, -\frac{\pi}{3}\right]$ e em $\left[\frac{\pi}{3}, \pi\right[$ e a concavidade voltada para baixo em $\left[-\frac{\pi}{3}, \frac{\pi}{3}\right]$; tem dois pontos de inflexão de abcissas $x = -\frac{\pi}{3}$ e $x = \frac{\pi}{3}$.

8. f'(0) = 0, pois, em x = 0, a função f é diferenciável e apresenta um máximo.

Assim, $g(0) \times f'(0) = 0$, pelo que a afirmação (I) é falsa.

 $\lim_{x\to +\infty} g(x) = \lim_{x\to +\infty} \frac{x+1}{f(x)} = \frac{+\infty}{1} = +\infty$, logo o gráfico da função g não admite uma assíntota horizontal quando $x\to +\infty$ e a afirmação (II) é falsa.

 $\lim_{x\to-\infty}g(x)=\lim_{x\to-\infty}\frac{x+1}{f(x)}=\frac{-\infty}{0^+}=-\infty$, logo o gráfico da função g não admite uma assíntota horizontal quando $x\to-\infty$ e a afirmação (III) é falsa.

A função f é contínua em $\mathbb R$ e não tem zeros, logo a função g é contínua em $\mathbb R$, por se tratar do quociente entre duas funções contínuas em $\mathbb R$, cujo denominador não se anula. Assim, o gráfico da função g não admite assíntotas verticais e a afirmação (IV) é a afirmação verdadeira.

9. Opção (D)

Sendo h um oscilador harmónico, h(t) é da forma $h(t) = A\cos(\omega \pi + \phi)$.

Por observação da representação gráfica, A=4, pois o máximo é 4 e o mínimo é -4 e T=2.

Como $T = \frac{2\pi}{\omega}$, vem que $2 = \frac{2\pi}{\omega} \Leftrightarrow \omega = \pi$. Assim, $h(t) = 4\cos(\pi t + \phi)$, o que exclui as opções (A) e (C).

Como $h\left(\frac{1}{2}\right) = 4$, exclui-se a opção (B), pois, nesta opção, $h\left(\frac{1}{2}\right) = 4\cos\left(\pi \times \frac{1}{2} + \frac{\pi}{2}\right) = 4\cos\pi = -4$.

Na opção (D), $h\left(\frac{1}{2}\right) = 4\cos\left(\pi \times \frac{1}{2} + \frac{3\pi}{2}\right) = 4\cos(2\pi) = 4$.