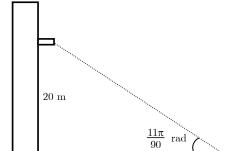
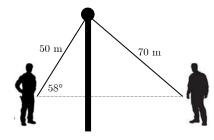
Nome:

Escola Secundária de Francisco Franco (2012/2013)

Curso Profissional de Informática de Gestão - 2.º ano


Matemática – 11 º 23

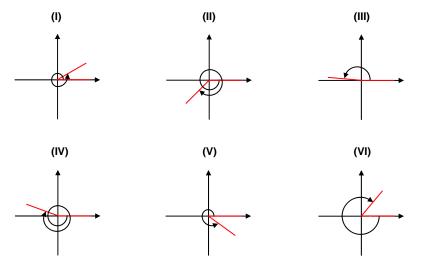
1.º TESTE DO MÓDULO 4											
	<u>Funções periódicas</u>										
1.º Período	25/10/12	Duração: 90	Duração: 90 minutos								
	N.°:	Classificação:	,								
	O profes	ssor:									


Em	todas	as	respostas,	indique	todos	os	cálculos	que	tiver	de	efetuar	е	todas	as	justificaçõe
nece	essária	s.													

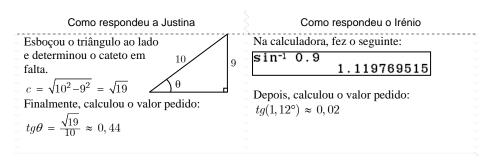
Sempre que utilizar cálculos intermédios, conserve, pelo menos, três casas decimais.

- 1. A senhora Umbelina, avó com cinco netos e dois bisnetos, vive no quarto andar de um prédio, a 20 metros de altura, e quer ligar uma corda desde a varanda até a uma certa distância do prédio (para fazer sliding). Sabe-se que a corda faz um ângulo de $\frac{11\pi}{90}$ radianos com a horizontal.
 - 1.1. Converta sistema sexagesimal a amplitude $\frac{11\pi}{90}$ rad
 - 1.2. Qual deve ser o comprimento da corda de sliding que a senhora Umbelina quer usar? Indique-a arredondado às centésimas.

Dois operários conseguem manter um poste vertical esticando dois cabos de aço de 50 e 70metros, respetivamente. O cabo mais curto faz um ângulo de 58° com a horizontal.



Qual a distância entre os dois operários? Indique-a em metros, a menos de uma décima.


Em baixo estão seis referenciais (de I a VI), cada um deles com um ângulo representado, cujas amplitudes estão na tabela seguinte:

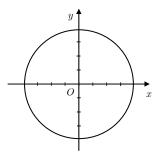
175°	-310°	-560°	$\frac{9\pi}{5}$	$\frac{13\pi}{6}$	$-\frac{11\pi}{4}$

Complete a tabela com as alternativas corretas (a cada ângulo, o seu referencial).

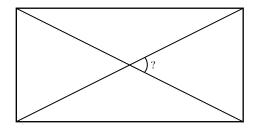
- Um professor de Matemática propôs aos seus alunos o seguinte problema:
 - "De um ângulo agudo heta , sabe-se que sen~ heta=0,9. Indique o valor de tg~ heta, arredondado às centésimas. Nos cálculos intermédios, considere duas casas decimais.

Como se pode ver, as respostas não coincidem. Concorda com alguma delas? Explique o seu raciocínio numa breve composição, realcando, se for caso disso, o erro (ou erros) cometido(s) pela Justina e/ou pelo Irénio e indique uma proposta de resolução para cada um.

- **5.** Os porta-contentores gigantes precisam de fazer certas manobras para poder atracar nos portos.
 - O capitão de um desses navios vai fazer uma manobra que implica que ele vire segundo um ângulo de amplitude 220°

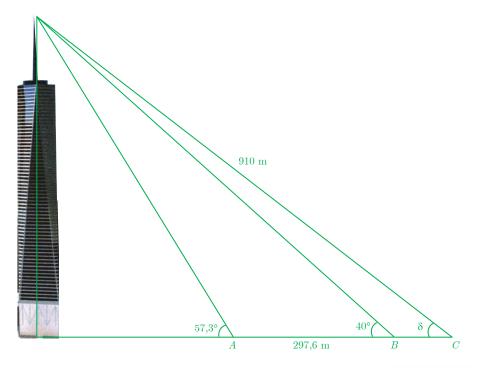


- **5.1.** Um pequeno bote de recreio começa a girar fazendo, desde o início e até parar, um ângulo de amplitude 1120° Justifique que os ângulos 220° e 1120° não têm os mesmos lados.
- **5.2.** Escreva a expressão de todos os ângulos com os mesmos lados de 220°
- **6.** Considere os ângulos de amplitude α e β tais que:


•
$$\alpha \in]0, \pi[\wedge \cos \alpha = -\frac{3}{4}]$$

•
$$\beta \in [\pi, 2\pi] \wedge \operatorname{tg} \beta = 2$$

- **6.1.** No círculo trigonométrico ao lado, represente os ângulos α e β
- **6.2.** Determine os valores de α e de β no sistema circular. Apresente os resultados arredondados às centésimas.



7. No retângulo a seguir, sabe-se que o comprimento é o dobro da largura.

Determine, no sistema sexagesimal, a amplitude do ângulo formado pelas diagonais do retângulo. Apresente o valor pedido arredondado às décimas.

8. Prevista para estar concluída no final de 2013, a torre One World Trade Center está a ser construída perto do sítio onde aconteceram os atentados de 11 de setembro de 2001. A Graciete observou o topo da torre, a uma certa distância (ponto A da figura), segundo um ângulo de amplitude 57.3° depois, percorreu 297.6 metros até chegar ao ponto B, onde aqui ela observou novamente o topo da torre, agora segundo um ângulo de amplitude 40°.

- **8.1.** Atendendo aos dados da figura, determine a altura que terá a torre One World Trade Center, apresentando o resultado em metros, arredondado às décimas.
- 8.2. A Graciete voltou a afastar-se do edifício até chegar ao ponto C, onde ficou a 910 metros **do topo** da torre. Desse ponto, qual seria a amplitude do ângulo (δ) com que ela conseguia observar o topo da torre?

Apresente o resultado no sistema sexagesimal, arredondado às décimas.

Nota: se não fez a alínea anterior, considere a altura do edifício igual a 539,7 metros.

FIM

COTAÇÕES

128	220	318	418	527	636	720	833
1.1. 10				5.1. 18	6.1. 18		8.1. 24
1.2. 18				5.2. 9	6.2. 18		8.2. 9

O professor: RobertOliveira