

Escola Secundária de Francisco Franco (2012/2013)

Curso Profissional de Informática de Gestão – 2.º ano

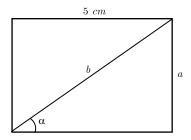
Matemática – 11.º 22 outubro de 2012

1.º Período

1.º mini-teste do módulo 4 (Funções periódicas) Duração: 45 min.

trigonometria em triângulos retângulos; o radiano

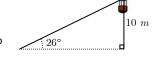
Nome:

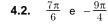

N.º:

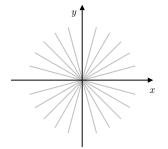
Classificação:

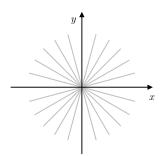
O professor:

Em todas as respostas, indique todos os cálculos que tiver de efetuar e todas as justificações necessárias. Sempre que utilizar cálculos intermédios, conserve pelo menos três casas decimais.

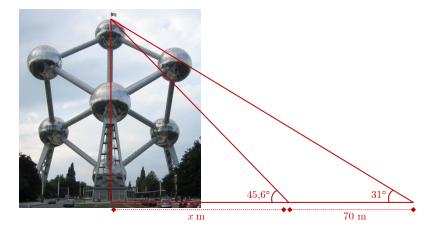

- Na figura ao lado, o retângulo têm de dimensões 5 e a. valores em centímetros. A diagonal do retângulo mede b centímetros e faz um ângulo de amplitude α com a base do retângulo.
 - **1.1.** Suponha nesta alínea que $\alpha = 38^{\circ}$. Calcule a área do retângulo, apresentando-a em centímetros quadrados arredondados às décimas.


- **1.2.** Considere agora que $b = 6 \ cm$ Calcule, arredondado às centésimas, o valor de α no sistema sexagesimal.
- 2. 2.1. Esboce um triângulo retângulo que satisfaça as seguintes condições:
 - nenhum dos lados mede 3 unidades
 - sendo β um dos ângulos agudos, sabe-se que $\cos \beta = \frac{2}{3}$


2.2. Determine as outras razões trigonométricas de β


- O cesto de um balão está preso por duas cordas; uma na vertical a $10\,$ metros de altura e outra na diagonal (corda de segurança). O ângulo que a corda de segurança faz com o chão é 26°
 - **3.1.** Converta para o sistema circular a amplitude 26°
 - Calcule, arredondado à décima do metro, comprimento da corda de segurança.

Represente, em cada referencial seguinte, os ângulos de amplitude:



5. O *Atomium* é uma estrutura cúbica enorme. Foi construído para a Exposição Internacional de Bruxelas (na Bélgica) em 1958 e a sua forma corresponde à de uma molécula cristalizada de ferro, sendo composta por nove esferas unidas por vinte tubos.

Atendendo aos dados da figura, determine a altura do *Atomium*, apresentando o resultado arredondado às décimas.

Cotações								
20	20	20	25	20	20	20	20	35

O professor: RobertOliveira http://roliveira.pt.to